
Modeling Asynchronous Message Passing for C
Programs

Everett Morse, Nick Vrvilo, Eric Mercer, and Jay McCarthy

Brigham Young University, Provo UT 84601, USA,
{eamorse,nick.vrvilo}@byu.net,

{egm,jay}@cs.byu.edu,
WWW home page: http://vv.cs.byu.edu

Abstract. This paper presents a formal modeling paradigm that is
callable from C, the dominant language for embedded systems program-
ming, for message passing APIs that provides reasonable assurance that
the model correctly captures intended behavior. The model is a suitable
reference solution for the API, and it supports putative what-if queries
over API scenarios for behavior exploration, reproducibility for test and
debug, full exhaustive search, and other advanced model checking analy-
sis methods for C programs that use the API. This paper illustrates the
modeling paradigm on the MCAPI interface, a growing industry standard
message passing library, showing how the model exposes errors hidden
by the C reference solution provided by the Multicore Association.

Keywords: Model Checking, Concurrency, Test, Debug, Validation

1 Introduction

Asynchronous message passing for C is important in writing applications for
embedded heterogeneous multicore systems. The Multicore Association (MCA),
an industry consortium promoting multicore technology, is working to standard-
ize message passing into a single API, MCAPI, for bare metal implementation
and portability across platforms [26]. The MCAPI specification is a 169 page
document in English. The inherent vagueness of such a description is valuable
because implementation details are not micro-managed by API designers. In
other words, high-level properties of the API such as “atomic”, “blocking”, or
“non-overtaking” are specified without detailed explanation of internal API state
nor how they should be provided. Correctness in implementing and using such
an API, however, is difficult to reason about manually.

It is not unusual to provide an initial API implementation (production or
otherwise) with a natural language description of the interface and MCAPI is
no different, providing a C implementation of the interface. Unfortunately, there
are two issues with it: (1) it is implemented in a production language that is
semantically distant from the natural language description so it is not clear which
behaviors of the description it implements nor if it is correct; and (2) the reference
is non-deterministic due to concurrency in the reference itself making test and



debug activities difficult. A reference implementation needs to be semantically
near the natural language description, while still being formal, and it needs to
be deterministic for test, debug, and exploration. Programmers must have have
a way to directly control API internals to expose or reproduce errors.

There are several formal modeling languages with mathematically defined
operational semantics. A few languages such as TLA also provide a general run-
time implementation of the operational semantics [14]; though most only provide
tools to verify properties of models expressed in the formal language [11, 17, 13,
22]. Regardless, the implementation of the operational semantics for these gen-
eral languages is in a low-level language such as C introducing a significant gap
between the mathematical expression of the semantics and the actual rendered
implementation that is difficult to reason about. Additionally, for those that do
implement a runtime for the formal language, there is no obvious way to con-
nect that runtime to C programs written against the API. As such, these formal
models are not suitable reference implementations for test and debug.

This paper presents a modeling language, 4M, for message passing APIs de-
fined by natural language descriptions. The modeling language is sufficiently
abstract to provide a reasonable assurance that the model correctly captures
the intent of the natural language description. Furthermore, since 4M formally
defines operational semantics, standard model checking or theorem proving tech-
niques can be applied to prove the model implements the API specification (as-
suming such a specification exists). Novel to the 4M modeling language is a
deterministic runtime, callable from C, derived from its operational semantics
that is suitable for test, debug, scenario exploration, model checking, or other
verification techniques. We demonstrate the methodology through a case study
on the MCAPI communication library. The contributions of this work are

– a modeling language, 4M, implemented as a term rewriting system that is
suited to natural language descriptions;

– a novel architecture to directly connect the C runtime to the 4M runtime
to use the model as an instance of the API that is explorable, testable, and
capable of model checking;

– an implementation of the rewriting system in Racket which a programming
language based on PLT Scheme; and

– an MCAPI 4M model with running time results to measure overhead and
bugs discovered from several C programs written against the MCAPI.

The result is that when an API is formally modeled in 4M, it is possible to use
that model to explore system-wide program behavior that existing models and
implementations cannot reason about.

Fig. 1 illustrates the methodology. 4M intuitively expresses the intent of the
natural language API description (Fig. 1(a)). The core calculus describing the
operational semantics of 4M is directly implemented by PLT Redex (Fig. 1(b)).1

Programs using the API are developed in the C language as intended by the

1 PLT Redex is a tool for creating and debugging language semantics defined as term
rewriting systems, and it is part of the Racket runtime [7, 8].



Fig. 1. Architecture for an API model callable from a native runtime.

API (Fig. 1(c)). Such a program calls C function stubs that define the API
interface and communicate with the runtime implementation of the 4M semantics
through a pipe (Fig. 1(d)). Program execution proceeds in a normal fashion. As
each thread enters the API, the corresponding thread is blocked. When all of
the threads are blocked in the API, the API then communicates with a search
strategy to choose a next state, and returns to the C runtime. In the case study
on MCAPI presented in this paper, the search strategy is a random walk or an
exhaustive search. The user can make both of these deterministic for debug or
replay by setting the random seed to a known value (Fig. 1(e)).2

The following sections describe this process and our contributions in detail:
Sec. 2 informally presents 4M on a toy message passing library;3 Sec. 3 presents
the novel client-server architecture that bridges the C runtime to the 4M core
runtime; Sec. 4 presents our study on MCAPI; Sec. 5 addresses specific related
work to this research; And Sec. 6 concludes and presents future work.

2 Modeling with 4M

Fig. 2(a) is the English description of a connectionless message passing API
for multi-threaded applications. The specification defines four API functions to
create mailboxes, get mailboxes, and then send and receive messages between
mailboxes. The structure of the natural language specification defines transitions
with their input, effects, and error conditions, which are helpful properties in
understanding individual API behavior in isolation.

It is a challenge to explain intended behavior in simple scenarios consisting
of a handful of calls when dealing with APIs for concurrent programs. Such
scenarios are often created by adopters or implementers of the API to reason

2 The random seed is provided as output from the tool and can be specified as part
of the run configuration for a test.

3 More details on the 4M language with its core operational semantics and program-
ming framework are in [1].



mbox t mbox(int id, status t *s)

Description: Creates a mailbox for id, returns its reference, and sets *s to
1. If id already exists, *s is set to -1 and the return has no meaning.

mbox t get mbox(int id, status t *s)

Description: Returns the reference for mailbox id and sets *s to 1. The call
blocks if the mailbox has yet to be created.

void send(mbox t frm, msg t *msg, mbox t to)

Description: Sends the message msg from the mailbox frm to the mailbox
to. It is a blocking function and returns once the buffer msg can be reused by
the application.

void recv(mbox t to, msg t *msg)

Description: Receives a message into msg from the mailbox to. It is a
blocking function and returns once a message is available and the received
data filled in msg. Messages from a common mailbox are non-overtaking.

(a)

Thread 0 Thread 1 Thread 2

to0 = mbox(0,&s) to1 = mbox(1,&s) from2 = mbox(2,&s)

to0 = get mbox(0, &s) to0 = get mbox(0, &s)

from1 = mbox(3, &s) to1 = get mbox(1, &s)

recv(to0,&a) recv(to1,&c) send(from2,"Y",to0)

recv(to0,&b) send(from1,"X",to0) send(from2,"Z",to1)

(b)

Fig. 2. A simple message passing API. (a) The natural language description of the
API. (b) A scenario written over the API.

about the expected API behavior relative to its documentation. Most often these
scenarios assist in understanding the API behavior and are used to convey that
understanding to the broader community. Consider the scenario in Fig. 2(b) that
includes three threads using the blocking send (send) and receive (recv) calls
from the API to communicate with each other. The declarations of the local
variables (e.g., to0 ) are omitted for space. Picking up just after the mailboxes
are defined, thread 0 receives two messages from the mailbox to0 in variables
a and b; thread 1 receives one message from the mailbox to1 in variable c and
then sends the message “X” to the mailbox to0 ; and finally, thread 2 sends
the messages “Y” and “Z” to the mailboxes to0 and to1 respectively. After the
scenario, we may ask: “Which messages may be in which variables?”

Intuitively, variable a should contain “Y” and variable b should contain “X”
since thread 2 must first send message “Y” to mailbox to0 before it can send
message “Z” to mailbox to1 ; consequently, thread 1 is then able to send message
“X” to mailbox to0. Such intuition is a correct program execution, but it is not



the only execution, since the specification allows an alternative scenario where
message “Y” is delayed in transit and arrives at mailbox to0 after message “X”.

The natural language description in Fig. 2(a) states that the send operation
“returns once the buffer msg can be reused by the application.” As such, the
return of the send only implies a copy-out of the message buffer and not a
delivery to the intended mailbox; thus, an additional program execution places
the message “X” in variable a and the message “Y” in variable b.

Nuances like this are discovered in the process of concretizing internal API
details, leading the modeler to engage in an iterative process with API designers
which brings value to both by clarifying the semantics of the API. The speci-
fication in Fig. 2(a) is a simplified subset of a real communications API from
the MCA (MCAPI). Conversations with the MCAPI designers confirmed the in-
tended behavior of the API to include both program executions of the scenario.
To date, there have been three published verification and analysis tools purpose-
built for MCAPI and all of them omit the less intuitive program execution [23,
6, 5]. Naturally, our model does not omit it.

2.1 Formal Model of the API

There are several languages one might consider in modeling an API (see Sec. 5).
Recent attempts to model MPI in the formal logic of TLA have shown the logic to
be too low-level for practical application [14, 20]. Alternatively, when considering
a direct implementation such as one in C, not only is the gap between the
natural language description and C extremely difficult to bridge, for example,
the MCAPI reference solution includes 11776 lines of code to consider, it is
not easy to test in the presence of concurrency because a user cannot readily
control execution schedules. Moreover, C is unusually susceptible to bugs as
evidenced by our experience with the MCAPI reference implementation which
non-deterministically deadlocks.

We propose 4M, which matches the natural language description, as opposed
to most existing modeling languages that do not. Furthermore, the intent of 4M
is not to embed verification assertions such as guaranteed message delivery into
the model. Rather, those types of correctness properties should be expressed in
an appropriate logic and used to verify the correctness of the model. The goal
is to capture the natural language description in an operational model. While
4M is yet another modeling language, it is domain specific, rather than general
purpose, making it more amenable to the task at hand.

4M is a formal modeling language designed to keep the best things from the
natural written style and remove the worst. To be specific, 4M keeps the structure
of the natural language specification that defines transitions with their input,
effects, and error conditions, but it replaces the statements such as “message
non-overtaking” with effects described in first-order logic over a predefined and
explicitly listed vocabulary of API state. Furthermore, all internal processing
implied by statements such as “it returns once the buffer can be reused by another
application” is made explicit by defining daemon transitions that operate on
internal API state that are concurrently enabled with pending API transitions.



The 4M description for our toy API is given in Fig. 3. This model is the input
in Fig. 1(a) of our proposed solution. The vocabulary for the API state is defined
in lines 1–4 comprising mailboxes to track defined end points, modeled as a set
(indicated by the braces {}), and queues, initialized with the value 0, to track
outstanding message sends in the form of a list of tuples. The API interface is
defined as a series of transitions given in lines 5–42 with always enabled daemon
transitions in lines 43–53 to manage internal state.

Consider the mbox transition defined on lines 5–18. It takes three input pa-
rameters: a mailbox identifier id and references to result (resultAddr) and
return status (statusAddr) which are used to communicate with the caller. The
transition itself is divided into two sections: rules (lines 7–13) and errors (lines
14–17). Each section contains a set of guarded transitions.

The 4M language has a first order treatment of errors in any given transi-
tion. The language is designed for natural language description that presents a
transition’s normal behavior followed by a set of possible errors. An error or rule
is enabled when its guard is true. The semantics of 4M block a transition until
a guard becomes true (rule or error), and give preference to error rules. Any
enabled error may be selected, and its corresponding transition is taken. In the
mbox transition, the guard on the error in line 15 uses existential quantification
(\E) over the set mailboxes to determine if the request duplicates an existing
mailbox. The dot notation in box.0 of the guard implies that mailboxes is a
set of tuples, and the notation is comparing the first member of each tuple to
id. The effect of the error (indicated by the text following the ==> on line 16)
is to set the memory referenced by statusAddr in the next state to the value
-1. 4M does not support unbounded non-determinism so integers range over a
bounded set using modular arithmetic. The ‘@’ symbol is the dereference and
the apostrophe indicates the next value. Evaluation of guards and application of
the effect is one atomic step.

The rules section of mbox defines a single behavior on lines 8–12. This tran-
sition is always enabled in the absence of an error, and its effect is to (i) create
an entry in the store and set the reference to be newAddr using the tmp com-
mand (line 9); (ii) set the next value of memory referenced by resultAddr to
be newAddr (the content of resultAddr is the return value from the transition);
(iii) update the set mailboxes with the tuple [id, newAddr] using the union
operator \U (line 11); and (iv) set the memory referenced by statusAddr in the
next state to 1 to indicate the successful completion of the transition as per the
API specification. All of this occurs as one atomic step.

The other transitions get mbox, send, and recv are defined like mbox. The
transition recv, which blocks in the absence of a message, is protected by the
guard on line 38 that is only satisfied if the memory referenced by variable to

is not empty (i.e., when a message is pending). In the rule body, the variable
to references a list (lines 39–40) where the first member is the message with the
content copied into msg and the second member is the list of remaining messages.

Internal API housekeeping is managed by daemon transitions as illustrated
by the pump transition defined on lines 43–53. Daemon transitions are invoked



1 state
2 mailboxes = {}
3 queues = 0
4 end
5 transition mbox
6 input id , statusAddr , resultAddr
7 rules
8 true ==>
9 tmp newAddr;

10 @resultAddr ’ := newAddr;
11 mailboxes ’ := mailboxes \U {[id, newAddr]};
12 @statusAddr ’ := 1;
13 end
14 errors
15 (\E box in mailboxes: box.0 = id) ==>
16 @statusAddr ’ := -1;
17 end
18 end
19 transition get_mbox
20 input id , resultAddr
21 rules
22 (\E box in mailboxes: box.0 = id) ==>
23 let mailbox = (box in mailboxes: box.0 = id);
24 @resultAddr ’ := mailbox.1;
25 end
26 end
27 transition send
28 input from , msg , to
29 rules
30 true ==>
31 queues ’ := [from , queues];
32 @from ’ := [@msg , to, @from];
33 end
34 end
35 transition recv
36 input to , msg
37 rules
38 @to != 0 ==>
39 @msg ’ := (@to).0;
40 @to ’ := (@to).1;
41 end
42 end
43 daemon pump
44 rules
45 queues != 0 ==>
46 let from = queues.0;
47 let msg = (@from).0;
48 let to = (@from).1;
49 @to ’ := [msg , @to];
50 @from ’ := (@from).2;
51 queues ’ := queues.1;
52 end
53 end

Fig. 3. A simplified message-passing API in 4M

infinitely often in the API, executed as often as the guards are enabled, and
represent a concurrent thread of execution. The pump daemon in the example
API is active anytime queues has a non-zero value, and its role is to transfer
messages from sending mailboxes to receiving mailboxes. It does this transfer by
(i) defining a local variable from holding the first element of the queues tuple
with the let expression (line 46); (ii) defining msg to hold the actual message
from the sender (line 47); (iii) defining to to hold the address of the destination
mailbox (line 48); (iv) adding the message to the receiver mailbox (line 49); (v)



removing the message from the sender mailbox (line 50); and (vi) removing the
pending send from queues (line 51). All of this occurs as one atomic step.

2.2 Semantic Implementation of 4M

4M is intended for human consumption with a form and semantics that are non-
trivial to define. For example, 4M gives simultaneous update of all API state
variables affected in a transition and allows calls to other transitions within an
active transition. As such, it is possible to define a blocking send as a non-
blocking send followed by a call to wait that blocks until the send completes.
The nuances of this semantics are more easily realized by a simpler core calculus.

The operational semantics for the 4M core is given by a term rewriting system
employing small-step semantics through continuations. The 4M core is mathe-
matically defined in [1]. The novelty in the 4M semantics is the layering of
machines to isolate non-determinism in a single machine. The 4M language it-
self is not terribly unique and rather its contribution lies more in the technique
in creating a domain specific language to model a system.

The implementation of the semantics corresponds to Fig. 1(b) in our archi-
tecture for API modeling. Questions regarding API behavior over concurrent
calls such as the scenario in Fig. 2(b) can be explored directly in the 4M core by
iteratively presenting to the calculus the current API call of each participating
thread and asking the calculus for all possible next states of the system. In such
a manner, it is possible to evolve the API state from a known initial state to one
of several possible end states allowed by the specification.

For example, consider the API state and the thread states shown in Fig. 4 for
our scenario at the point where threads 0 and 1 are blocking on their first calls
to recv, and thread 2 is blocking on its second call to send. The top portion of
the figure shows the state of each thread with its local variables and the current
program location indicated by the •-mark. The local variables hold references
into the API state for each of the mailboxes created in the scenario.

The API state in the bottom portion of the figure is: mailboxes, that as-
sociates an ID with a memory reference that is the actual mailbox; queues,
a list tracking undelivered messages; and the mailboxes themselves with their
contents. From Fig. 4, the scenario has created four mailboxes, and mailbox 2,
located at (addr 7), has the pending message “Y” to be delivered to (addr 5).
The zero entry in the tuple indicates the end of the list (i.e., there is only one
pending message). The queues variable indicates that the message from (addr
7) needs to be delivered (by the pump daemon in the 4M model of Fig. 3).

The semantics allows several next states from the state in Fig. 4 such as the
pump transition moving the message out of the from2 mailbox–(addr 7)–into the
to0 mailbox–(addr 5)–or adding the next send from thread 2 into the queue and
the from2 mailbox–(addr 7). A test is able to trace any possible execution from
the current API state by randomly picking a transition allowed by the semantics.



Thread 0 Thread 1 Thread 2

s: 0 s: 0 s: 0
to0: (addr 5) to0: (addr 5) to0: (addr 5)
a: to1: (addr 6) to1: (addr 6)
b: from1: (addr 8) from2: (addr 7)

c:

•recv(to0,&a) •recv(to1,&c) •send(from2,"Z",to1)
recv(to0,&b) send(from1,"X",to0)

API Global State

mailBoxes–[id,ref ] [0, (addr 5)] [1, (addr 6)]
[2, (addr 7)] [3, (addr 8)]

queues–[ref,queues] [(addr 7), 0]

(addr 5)–mailbox 0

(addr 6)–mailbox 1

(addr 7)–mailbox 2 (“Y”, (addr 5), 0)

(addr 8)–mailbox 3

Fig. 4. The state of the threads and API for Fig. 3 and Fig. 2(b) where the threads
have run until thread 0 and thread 1 are blocking (indicated by the •-mark) at the
receives and thread 2 is attempting its last send.

3 4M Implementation

3.1 Reference Solution for Test, Debug, and Behavior Exploration

Manually writing the state of the API for the 4M core and manually stepping
through the semantics definition is not feasible. Suppose instead that there exists
an actual implementation of the 4M core that captures precisely the operational
semantics. Naturally, it would be ideal to take a C program using the API,
similar to the definition of thread 0 in Fig. 5(a), and connect it directly to the
4M core implementation to simulate the API behavior.

We provide such a connection. It is implemented by a role-based relation-
ship between the C runtime and the 4M core implementation runtime, which
we call the GEM (Golden Executable Model). Thin wrappers bridge the API
calls to the actual C code as shown in Fig. 5(b). These correspond to Fig. 1(d)
of our solution. The gem call is the entry to the model of the API. The GEM
implementation itself blocks waiting for all threads to invoke the API at which
point it communicates with the 4M core implementation to send the states of
the active threads. The component representing the search strategy corresponds
to Fig. 1(e) of our solution. The search strategy determines priority in the search
order of possible next states and can be customized by the user. The 4M im-
plementation, corresponding to Fig. 1(b) of our solution, returns a possible next
state, and the model releases the corresponding blocked gem call for the stopped
thread. The thread then continues until the next API entry occurs to repeat the
process. The model stores a random seed from the execution for reproducibility.

Our architecture for a model replacement of APIs in C programs is divided
into three different components: an implementation of 4M, a mechanism for
capturing C API calls, and a strategy for exploring the possible system states
(see Fig. 1). These components are connected as follows:

1. A driver process spawns the GEM server and GEM client processes and
creates their inter-process communication pipes.



1 void t0() { void send(mbox_t f,msg_t* b,mbox_t t) {
2 msg_t a, b; status_t s; gem_var bv;
3 mbox_t to0 = mbox(0, &s); bv=init_var(b,buf_len(b),GEM_STRING);
4 recv(to0 , &a); gem_call("send (%v %v %v)",f, bv ,t);
5 recv(to0 , &b); del_var(bv);
6 } }

(a) (b)

Fig. 5. An interface to connect the 4M core implementation to C programs. (a) The
C implementation of thread 0 in the scenario. (b) The wrapper for the send API call.

2. As long as there are threads that are not terminated or blocked on API calls,
the GEM client runs the user program using a cooperative threading model,
executing threads one at a time.

3. As the GEM client makes API requests, the GEM server responds to each
one and synchronizes its API state with that of the GEM client.

4. The 4M API model generates a list of possible next states given the in-
formation it has received about the threads and the blocked API call for
each thread. A next state determines which blocking API call will finish.
The GEM server randomizes the list of possible states and designates the
first state as the one to be explored. To ensure deterministic behavior, the
random seed used for the random walk can be set by the user.

5. Once a next state has been selected, the state change is synchronized with
the GEM client and the corresponding threads are unblocked.

6. Steps 2 - 5 are repeated until program termination.

The underlying assumptions for correctness is that i) a thread eventually
enters the API, even if it enters through an explicit call to exit the thread, at
which point we can ignore it forever; and ii) there is no other non-determinism
in the system (i.e., no I/O etc.). The first point (i) is needed to return control
to the API model and indicate when it is time to compute a next state (i.e., all
of the threads have arrived); otherwise, the model does not know if it should
continue to wait for a thread to enter the API or compute a next state. The
second point (ii) is important for replay.

The steps described represent the execution of a single pathway of the user
program. In order to perform an exhaustive exploration, our tool implements
a rewind and replay mechanism. When API calls are made by the GEM client
on behalf of the user program, the responses returned by the GEM server and
API are recorded in a file. This logging enables a zero-calculation replay of the
user program up to the point where a new next state is to be explored. Again,
we currently restrict out all other sources of non-determinism in the program
in order for the replay to work correctly (i.e., I/O etc. must be deterministic
for replay). The GEM client merely reads logged responses from the pipe rather
than reading live responses. During the replay phase, the GEM server ignores any
requests sent by the GEM client. The user program is not rerun in its entirety.
It is instead run to a point decided by the GEM server (i.e., the point at which
is new or different next state is to be considered).



1 mbox_t mbox(int id , status_t* s) {
2 mbox_t res;
3 gem_var sv , rv;
4 sv = reg_var(s, sizeof(int));
5 rv = reg_var (&res , sizeof(mbox_t));
6 gem_call("mbox (%d %v %v)",id,sv ,rv);
7 del_var(sv); del_var(rv);
8 return res;
9 }

Fig. 6. An example wrapper for the mbox function.

The immutable and recursive characteristics of functional programs afford the
GEM server some abilities not easily mirrored in the GEM client. In particular,
they enable the server to “rewind” itself to an earlier program state by simply
returning up the execution stack. We utilize this feature to exhaustively explore
execution paths. Picking up just after step 6 above:

1. The GEM server checks if all possible paths have been explored.
2. If unexplored paths exist, the GEM server rewinds to the point where it last

selected a next state from the list of next states given by the API model. If
all states in the list have already been explored, the server is instead rewound
to the latest point where there still exists unexplored next states.

3. The GEM client is told to replay the user program.
4. The GEM server waits for the GEM client to replay. The responses recorded

from the last execution are sent to the client so it may replay to the execution
point where the GEM server is waiting.

5. Normal execution continues, but this time the GEM server selects the first
unexplored next state from the list.

6. When all paths have been explored, the tool terminates.

Following are some of the finer details of the C Wrappers. Fig. 6 shows an
example wrapper that demonstrates the issues each wrapper must manage:

– The wrapper must match the API interface to be a suitable model. (Line 1)
– As the C runtime and 4M runtime communicate through a pipe, we must

use an external representation of values. (Lines 2 and 3)
– Some parameters may be pointers to C memory (such as s), so the wrapper

must allocate a 4M location (implemented by reg var) for it. (Line 4)
– Similarly, 4M transitions do not have “return values”—instead a return is

accomplished by passing a reference that gets updated. This encoding is
managed by the wrapper by allocating a 4M location. (Lines 2 and 5)

– Since the 4M runtime simply waits for API calls to execute, the wrapper must
marshal each call to 4M. This process entails encoding parameters as 4M
values. Line 3 prepares references, then lines 4 and 5 use the function reg var

to associate the C memory references with 4M store locations. The gem call

function (line 6) automatically expands its arguments to the correct 4M
encoding based on the placeholders in the format string. More complicated
data conversion may be necessary where C datatypes do not match the 4M



core datatypes: C distinguishes between integer and floating-point numbers
while 4M does not; C also allows arrays of bytes, while 4M has only strings.
The details are important, but trivial and tedious.

– Inside gem call, the 4M runtime takes over and can delay arbitrarily long
until the result of the API call is computed by 4M and the search strategy.

– Once gem call completes, the C memory locations associated with 4M store
locations (as established in lines 4 and 5) are updated with their new values,
and the result is returned (line 8).

In summary, the responsibility of the wrappers is to convert data types and
parameters as needed, register memory shared by the C program and API, then
communicate the call to the model where the state capture component takes
over. Once the next state has been computed and reified into the C program,
the model returns control to the wrappers.

Our 4M implementation is written in PLT Redex [7], a domain-specific lan-
guage that ships with Racket [8] for encoding operational semantics as rewriting
systems.4 We employed PLT Redex for its development environment which pro-
vides a richer set of test and debug tools than say Maude, another term rewriting
system. Further, PLT Redex is tightly integrated with Racket letting us embed
arbitrary Racket code into the term rewriting system. Such integration is useful
as some transformations over the machine state are more naturally expressed in
Racket than in PLT Redex. As 4M is defined in machine semantics as a term
rewriting system, the encoding in PLT Redex is obvious.

4 MCAPI Model Results

We validate our process on the connectionless message passing portion of the
MCAPI communications library [26]. There are 43 API calls in the library reg-
istry, and 18 of those are related to the connectionless message passing. We
implement the 12 most relevant calls that cover the bulk of the functionality.
The 4M model comprises 488 lines of code utilizing 3 daemon transitions for
internal processing which is quite small compared to the roughly 30 pertinent
pages of the 169 page English description. The API state itself only contains 4
unique variables. The 4M model compiles into 284 lines of the 4M core calculus.

As there is no “formalism” of the MCAPI API to which we can relate our 4M
model, we validate our model through empirical test. Specifically, we have devel-
oped a suite of API scenarios (i.e., regression tests) for which we have validated
with the API designers the possible outcomes. We run each of these scenarios
through our API model ensuring that our model captures all the allowed behav-
iors specified in the scenarios. In the end, we have no definitive test that proves
our model more correct than say the C reference implementation; however, as

4 We use an unpublished compiler for PLT Redex that drastically improves perfor-
mance by specializing Redex to deterministic reduction semantics where at most
one reduction is applicable. With this new compiler, an exhaustive test that takes
12 minutes on the stock system completes in a few seconds.



Benchmark Lines API Calls Paths Run Time

Self Send 42 6 1 3.969s

Topher Scenario 128 18 27 6.595s

Leader 168 24 42 13.487s

Table 1. Benchmark Runtimes

our model is not so semantically apart from the documentation as say the C ref-
erence implementation, we subjectively have a greater assurance (or at least we
are more able to convince ourselves) that our model is correct. In other words, it
is much easier to argue through inspection that our model implements the API
than it is to argue similarly that the C reference solution implements the API.5

To quantify the overhead in the model, we report running times on several
examples as measured with the Unix time command on an Intel Core 2 Quad
2.66 GHz machine with 8 GB of memory running Fedora 14 as well as the number
of bytes sent through the pipes. Unfortunately, the tested examples are all in-
house as there is no MCAPI code in the wild, to the knowledge of the authors,
at the time of writing. Running the scenario in Fig. 2(b) directly in Racket (not
through the C runtime) in single execution mode takes 1.6 seconds. The same
single execution through the C runtime takes 3 seconds (2.6 of which is starting
the Racket server). This overhead in starting the server is mitigated in longer
running programs. In the C execution, ∼2KB are communicated between the
C runtime and the Racket server. The C runtime spends 403ms waiting for the
Racket runtime (22ms on an average call). An insignificant amount of time is
spent preparing, sending, and parsing IPC messages. Clearly this would grow
with the size of the scenario and the size of the API state.

As a reference point, the running time for the MCAPI dynamic verifier MCC
on a scenario with 3 threads, two performing parallel sends, and the third mak-
ing two sequential receives is under 1 second [23], whereas in our implementation
it takes 2.9 seconds total (2.6s to start the server and 0.3s to compute.) Recall
that the MCC tool relies critically on a reference implementation that, as dis-
cussed previously, is buggy and does not include all the behavior allowed in the
API. As a note, our 4M model can be a drop-in replacement for the reference
implementation in the tool as our model provides the exact interface.

We implemented Dijkstra’s self-stabilization algorithm [3] in C using MCAPI.
This algorithm runs in 8.2 seconds at n = 4. Of this 8.2s, 5.5 was spent in the 4M
implementation and 2.6 starting the Racket server. During the execution,∼14KB
of data is communicated to Racket and ∼3KB from Racket. This suggests that
real programs do incur significant overhead using 4M but can still run feasibly.
With n = 6, the algorithm completes in 35s. Table 1 summarizes the results
obtained from other MCAPI benchmark programs with our tool.

As expected, the exhaustive search using our 4M model found both executions
in the example scenario of Fig. 2(b) which is the Topher Scenario in the table.
The non-intuitive scenario triggers an assertion violation in the test harness. In

5 See [1] for the MCAPI 4M model and the 4M tool set.



addition to these MCAPI benchmarks, we converted a control program for an
amusement park used in an operating system class to MCAPI. The program is
1,192 lines of C code, creates 45 distinct threads, and issues thousands of MCAPI
calls. The program has been run hundreds of times on the MCA reference solution
and has never failed. When using the 4M model, the program immediately failed.
Further inspection revealed three distinct race conditions latent in the code that
can only be realized by specific message orderings allowed by the specification
but not present in the MCA reference implementation.

5 Related Work

Verifying concurrent systems has long be a topic of active research. There are
several modeling and specification languages with complete frameworks for anal-
ysis and model checking. These include Promela, Murphi, TLA+, Z, Alloy, and
B, to name a few [11, 4, 14, 25, 12, 2]. There are two differentiators as related to
the proposed approach in this paper: first, the connection in other solutions be-
tween the mathematical semantic definition of the language and the runtime is
not clear whereas the term rewriting systems expressed in PLT Redex are ex-
pressed naturally in mathematical notation; thus there is a reasonable assurance
that the model runtime corresponds directly to the mathematical expression of
the semantics. And second, the other solutions target analysis in the model’s
runtime whereas our work is intended as a model of the API that serves as
a replacement for the actual API implementation when testing and debugging
applications written against the API in the intended target language.

There have been attempts to model MPI in extant specification languages in-
cluding conversion from C programs using MPI to the specification language [24,
9, 20, 15]. Recent work takes CUDA and C to SMT languages [29, 16, 6, 5]. Such
implementations are only suitable to scenario evaluation and not drop-in re-
placement. They must also prove a correct translation to the analysis language.

Recent work in dynamic verification uses the program directly with the ac-
tual API implementation to perform model checking (i.e., the API implementa-
tion serves as the API model itself) [10, 18, 21, 19, 30, 27, 31, 28]. Although search
through continuations rather than repeated program invocation is similar to [18,
21], the proposed work in this paper does not critically rely on an existing run-
time implementation; thus, it is able to elicit all behaviors captured in the spec-
ification and directly control internal API behavior. Without such control, veri-
fication results are dependent on the chosen implementation, and even then, on
just those implementation aspects that are controllable. For example, it is not
possible to affect arbitrary buffering in MPI or MCAPI runtime libraries and
as a result, behaviors such as those in our example scenario are omitted in the
analysis [23]. Some recent work can test threaded or distributed libraries written
against POSIX or Windows APIs, exploring all possible execution paths in the
implementation itself, but they depend on a specific implementation [31, 28].



6 Conclusion and Future Work

English specification of concurrent APIs catalog interfaces and list effects of
correct and incorrect calls to those interfaces. Unfortunately, they provide no
framework with which a programmer or designer might experiment to further
understand the API in the presence of many concurrent calls. The work in this
paper provides a replacement for concurrent APIs using a formal model by (i)
creating the 4M language to intuitively model natural language API descriptions;
(ii) defining a novel role-based architecture to directly connect the C runtime
to 4M to use the model as an instance of the API that is explorable, testable,
and capable of exhaustive search; (iii) building an implementation of 4M as a
rewriting system in Racket; and (iv) validating the process in a portion of the
MCAPI communication API. The result is that when an API is formally modeled
in 4M, it is possible to use the same model with native programs written against
the API to explore system-wide program behavior.

Future work includes (i) adapting reductions that leverage SMT technol-
ogy from model checking to mitigate state explosion in data and scheduling
non-determinism [29]; (ii) partial order reduction based on persistent sets; (iii)
improving the communication between the different runtimes using search order
and undo stacks; (iv) case study in other APIs and in particular the MCA API
for resource allocation as it deals with shared memory; and (v) an implementa-
tion of the 4M core in Maude to improve running time performance.

References

1. The 4M modeling language. https://github.com/ericmercer/4M
2. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University

Press (1996)
3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-

cations of the ACM 17, 643–644 (November 1974)
4. Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a hard-

ware design aid. In: IEEE International Conference on Computer Design: VLSI in
Computers and Processors. pp. 522–525 (1992)

5. Elwakil, M., Yang, Z.: CRI: Symbolic debugger for MCAPI applications. In: Au-
tomated Technology for Verification and Analysis (2010)

6. Elwakil, M., Yang, Z.: Debugging support tool for MCAPI applications. In: Parallel
and Distributed Systems (2010)

7. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
The MIT Press (2009)

8. Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Inc. (2010),
http://racket-lang.org/tr1/

9. Georgelin, P., Pierre, L., Nguyen, T.: A formal specification of the MPI primitives
and communication mechanisms. Tech. rep., LIM (1999)

10. Godefroid, P.: Model checking for programming languages using Verisoft. In: Prin-
ciples of Programming Languages. pp. 174–186 (1997)

11. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23, 279–295 (1997)



12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(April 2006)

13. Jongmans, S.S., Hindriks, K., van Riemsdijk, M.: Model checking agent programs
by using the program interpreter. In: Computational Logic in Multi-Agent Systems,
vol. 6245, pp. 219–237 (2010)

14. Lamport, L.: TLA - the temporal logic of actions. http://research.microsoft.
com/users/lamport/tla/tla.html

15. Li, G., DeLisi, M., Gopalakrishnan, G., Kirby, R.M.: Formal specification of the
MPI-2.0 standard in TLA+. In: Principles and Practices of Parallel Programming.
pp. 283–284 (2008)

16. Li, G., Gopalakrishnan, G., Kirby, R.M., Quinlan, D.: A symbolic verifier for CUDA
programs. In: Principles and Practice of Parallel Programming. pp. 357–358 (2010)

17. McMillan, K.L.: Symbolic Model Checking: An approach to the state explosion
problem. Ph.D. thesis, Carnegie Mellon University (1992)

18. Mercer, E.G., Jones, M.: Model checking machine code with the GNU debugger.
In: International SPIN Workshop. pp. 251–265 (2005)

19. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Programming Language Design and Implementation
(2007)

20. Palmer, R., Delisi, M., Gopalakrishnan, G., Kirby, R.M.: An approach to formal-
ization and analysis of message passing libraries. In: Workshop on Formal Methods
for Industrial Critical Systems (2007)

21. Pǎsǎreanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M.,
Person, S., Pape, M.: Combining unit-level symbolic execution and system-level
concrete execution for testing NASA software. In: International Symposium on
Software Testing and Analysis. pp. 15–26 (2008)

22. Roscoe, A.W.: Model-checking CSP, pp. 353–378. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK (1994)

23. Sharma, S., Gopalakrishnan, G., Mercer, E., Holt, J.: MCC: A runtime verification
tool for MCAPI user applications. In: Formal Methods in Computer-Aided Design.
pp. 41–44 (2009)

24. Siegel, S.F., Avrunin, G.: Analysis of mpi programs. Tech. Rep. UM-CS-2003-036,
Department of Computer Science, University of Massachusetts Amherst (2003)

25. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall International Series
In Computer Science p. 155 (1989)

26. The Multicore Association: http://www.multicore-association.org
27. Vakkalanka, S., Gopalakrishnan, G., Kirby, R.M.: Dynamic verification of MPI

programs with reductions in presence of split operations and relaxed orderings. In:
Computer Aided Verification. pp. 66–79 (2008)

28. Šimša, J., Bryant, R., Gibson, G.: dbug: systematic testing of unmodified dis-
tributed and multi-threaded systems. In: Proceedings of the 18th international
SPIN conference on Model checking software. pp. 188–193. Springer-Verlag, Berlin,
Heidelberg (2011)

29. Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolic pruning of concurrent
program executions. In: The Foundations of Software Engineering. pp. 23–32 (2009)

30. Wang, C., Yang, Y., Gupta, A., Gopalakrishnan, G.: Dynamic model checking
with property driven pruning to dectect data race conditions. In: International
Symposium on Automated Technology for Verification and Analysis (2008)

31. Yang, J., Chen, T., Wu, M., Xu, Z., Liu, X., Lin, H., Yang, M., Long, F., Zhang, L.,
Zhou, L.: MODIST: transparent model checking of unmodified distributed systems.
In: Networked systems design and implementation. pp. 213–228 (2009)


