
Computing in Cantor’s Paradise With λZFC

Neil Toronto and Jay McCarthy
neil.toronto@gmail.com and jay@cs.byu.edu

PLT @ Brigham Young University, Provo, Utah, USA

Abstract. Applied mathematicians increasingly use computers to an-
swer mathematical questions. We want to provide them domain-specific
languages. The languages should have exact meanings and computational
meanings. Some proof assistants can encode exact mathematics and ex-
tract programs, but formalizing the required theorems can take years.
As an alternative, we develop λZFC, a lambda calculus that contains
infinite sets as values, in which to express exact mathematics and grad-
ually change infinite calculations to computable ones. We define it as a
conservative extension of set theory, and prove that most contemporary
theorems apply directly to λZFC terms.
We demonstrate λZFC’s expressiveness by coding up the real numbers,
arithmetic and limits. We demonstrate that it makes deriving computa-
tional meaning easier by defining a monad in it for expressing limits, and
using standard topological theorems to derive a computable replacement.

Keywords: Lambda Calculus, Set Theory, Semantics

No one shall expel us from the Paradise that Cantor has created.
David Hilbert

1 Introduction

Georg Cantor first proved some of the surprising consequences of assuming in-
finite sets exist. David Hilbert passionately defended Cantor’s set theory as a
mathematical foundation, coining the term “Cantor’s Paradise” to describe the
universe of transfinite sets in which most mathematics now takes place.

The calculations done in Cantor’s Paradise range from computable to unimag-
inably uncomputable. Still, its inhabitants increasingly use computers to answer
questions. We want to make domain-specific languages (DSLs) for writing these
questions, with implementations that compute exact and approximate answers.

Such a DSL should have two meanings: an exact mathematical semantics,
and an approximate computational one. A traditional, denotational approach is
to give the exact as a transformation to first-order set theory, and because set
theory is unlike any intended implementation language, the approximate as a
transformation to a lambda calculus. However, deriving approximations while
switching target languages is rife with opportunities to commit errors.

A more certain way is to define the exact semantics in a proof assistant like
HOL [11] or Coq [5], prove theorems, and extract programs. The type systems
confer an advantage: if the right theorems are proved, the programs are correct.

Unfortunately, reformulating and re-proving theorems in such an exacting
way causes significant delays. For example, half of Joe Hurd’s 2002 dissertation
on probabilistic algorithms [9] is devoted to formalizing early-1900s measure
theory in HOL. Our work in Bayesian inference would require at least three
times as much formalization, even given the work we could build on.

Some middle ground is clearly needed: something between the traditional,
error-prone way and the slow, absolutely certain way.

Instead of using a typed, higher-order logic, suppose we defined, in first-
order set theory, an untyped lambda calculus that contained infinite sets and
operations on them. We could interpret DSL terms exactly as uncomputable
programs in this lambda calculus. But instead of redoing a century of work to
extract programs that compute approximations, we could directly reuse first-
order theorems to derive them from the uncomputable programs.

Conversely, set theory, which lacks lambdas and general recursion, is an awk-
ward target language for a semantics that is intended to be implemented. Sup-
pose we extended set theory with untyped lambdas (as objects, not quantifiers).
We could still interpret DSL terms as operations on infinite objects. But instead
of leaping from infinite sets and operations on them to implementations, we
could replace those operations with computable approximations piece at a time.

If we had a lambda calculus with infinite sets as values, we could approach
computability from above in a principled way, gradually changing programs for
Cantor’s Paradise until they can be implemented in Church’s Purgatory.

We define that lambda calculus, λZFC, and a call-by-value, big-step reduction
semantics. To show that it is expressive enough, we code up the real numbers,
arithmetic and limits, following standard analysis. To show that it simplifies
language design, we define the uncomputable limit monad in λZFC, and derive
a computable, directly implementable replacement monad by applying standard
topological theorems. When certain proof obligations are met, the output of pro-
grams that use the computable monad converge to the same values as the output
of programs that use the uncomputable monad but are otherwise identical.

1.1 Language Tower and Terminology

λZFC’s metalanguage is first-order set theory: first-order logic with equality
extended with ZFC, or the Zermelo Fraenkel axioms and Choice (equivalently
well-ordering). We also assume the existence of an inaccessible cardinal. Section 2
reviews the axioms, which λZFC’s primitives are derived from.

To help ensure λZFC’s definition conservatively extends set theory, we encode
its terms as sets. For example, 〈tP ,R〉 is the encoding of “the powerset of the
reals” as a pair, where 〈x, y〉 = {{x}, {x, y}} for any sets x and y.

λZFC’s semantics reduces terms to terms; e.g. 〈tP ,R〉 reduces to the actual
powerset of R. Thus, λZFC contains infinite terms. Infinitary languages are useful
and definable: the infinitary lambda calculus [10] is an example, and Aczel’s
broadly used work [2] on inductive sets treats infinite inference rules explicitly.

For convenience, we define a language λ−ZFC of finite terms and a function
FJ·K from λ−ZFC to λZFC. We can then write P R, meaning FJP RK = 〈tP ,R〉.

Semantic functions like FJ·K and the interpretation of BNF grammars are
defined in set theory’s metalanguage, or the meta-metalanguage. Distinguishing
metalanguages helps avoid paradoxes of definition such as Berry’s paradox, which
are particularly easy to stumble onto when dealing with infinities.

We write λ−ZFC terms in sans serif font, and the metalanguage and meta-
metalanguage in math font. We write common keywords in bold and invented
keywords in bold italics. We abbreviate proofs for space.

2 Metalanguage: First-Order Set Theory

We assume readers are familiar with classical first-order logic with equality and
its inference rules, but not set theory. Hrbacek and Jech [8] is a fine introduction.

Set theory extends classical first-order logic with equality, which distinguishes
between truth-valued formulas φ and object-valued terms x. Set theory allows
only sets as objects, and quantifiers like ‘∀’ may range only over sets.

We define predicates and functions using ‘:=’; for example, nand(φ1,φ2) :=
¬(φ1∧φ2). They must be nonrecursive so they can be exhaustively applied. They
are therefore conservative extensions: they do not prove more theorems.

To develop set theory, we make proper extensions, which prove more the-
orems, by adding symbols and axioms to first-order logic. For example, we first
add ‘∅’ and ‘∈’, and the empty set axiom ∀x.x 6∈ ∅.

We use ‘:≡’ to define syntax; e.g. ∀x ∈ A.P (x) :≡ ∀x. (x ∈ A⇒ P (x)),
where predicate application P (x) represents a formula that may depend on x.
We allow recursion in meta-metalanguage definitions if substitution terminates,
so ∀x1 x2 ...xn.φ :≡ ∀x1.∀x2 ...xn.φ can bind any number of names.

We already have Axiom 0 (empty set). Now for the rest.

Axiom 1 (extensionality). Define A ⊆ B := ∀x ∈ A.x ∈ B and assume
∀A B. (A ⊆ B ∧B ⊆ A⇒ A = B); i.e. A = B if they mutually are subsets. ut

The converse follows from substituting A for B or B for A.

Axiom 2 (foundation). Define A 6∩B := ∀x. (x ∈ A⇒ x 6∈ B) (“A and B are
disjoint”) and assume ∀A. (A = ∅) ∨ ∃x ∈ A.x 6∩A. ut

Foundation implies that the following nondeterministic procedure always termi-
nates: If input A = ∅, return A; otherwise restart with any A′ ∈ A.

Thus, sets are roots of trees in which every upward path is unbounded but
finite. Foundation is analogous to “all data constructors are strict.”

Axiom 3 (powerset). Add ‘P’ and assume ∀A x. (x ∈ P(A) ⇐⇒ x ⊆ A). ut

A hereditarily finite set is finite and has only hereditarily finite members.
Each such set first appears in some P(P(...P(∅)...)). For example, after {x, ...}
(literal set syntax) is defined, {∅} ∈ P(P(∅)). {R} is not hereditarily finite.

Axiom 4 (union). Add ‘
⋃
’ (“big” union) and assume ∀A x. (x ∈

⋃
A ⇐⇒

∃ y.x ∈ y ∧ y ∈ A). ut

After {x, ...} is defined,
⋃
{{x, y}, {y, z}} = {x, y, z}. Also, ‘

⋃
’ can extract the

object in a singleton set: if A = {x}, then x =
⋃

A.
Axiom 5 (replacement schema). A binary predicate R can act as a function
if ∀x ∈ A.∃! y.R(x, y), where ‘∃!’ means unique existence. We cannot quantify
over predicates in first-order logic, but we can assume, for each such definable R,
that ∀ y. (y ∈ {y′ | x ∈ A ∧R(x, y′)} ⇐⇒ ∃x ∈ A.R(x, y)). Roughly, treating
R as a function, if R’s domain is a set, its image (range) is also a set. ut
A schema represents countably many axioms. If R(n,m) ⇐⇒ m = n + 1, for
example, then {m | n ∈ N ∧R(n,m)} increments the natural numbers.

Define {F (x) | x ∈ A} :≡ {y | x ∈ A ∧ y = F (x)}, analogous to map F A, for
functional replacement. Now {n + 1 | n ∈ N} increments the naturals.

It seems replacement should be defined functionally, but predicates allow
powerful nonconstructivism. Suppose Q(y) for exactly one y. The description
operator ι y.Q(y) :≡

⋃
{y | x ∈ P(∅) ∧Q(y)} finds “the y such that Q(y).”

From the six axioms so far, we can define A ∪B (binary union), {x, ...} (lit-
eral finite sets), 〈x, y, z, ...〉 (ordered pairs and lists), {x ∈ A | Q(x)} (bounded
selection), A\B (relative complement),

⋂
A (“big” intersection),

⋃
x∈A F (x) (in-

dexed union), A×B (cartesian product), and A→ B (total function spaces). For
details, we recommend Paulson’s remarkably lucid development in HOL [16].

2.1 The Gateway to Cantor’s Paradise: Infinity
From the six axioms so far, we cannot construct a set that is closed under
unboundedly many operations, such as the language of a recursive grammar.
Example 1 (interpreting a grammar). We want to interpret z ::= ∅ | 〈∅, z〉. It
should mean the least fixpoint of a function Fz, which, given a subset of z’s
language, returns a larger subset. To define Fz, replace ‘|’ with ‘∪’, the terminal
∅ with {∅}, and the rule 〈∅, z〉 with functional replacement:

Fz(Z) := {∅} ∪ {〈∅, z〉 | z ∈ Z} (1)

We could define Z(0) := ∅, then Z(1) := Fz(Z(0)) = {∅, 〈∅,∅〉}, then Z(2) =
Fz(Z(1)) = {∅, 〈∅,∅〉 , 〈∅,∅,∅〉}, and so on. The language should be the union
of all the Z(n), but we cannot construct it without a set of all n. ♦

We follow Von Neumann, defining 0 := ∅ as the first ordinal number
and s(n) := n ∪ {n} to generate successor ordinals. Then 1 := s(0) = {0},
2 := s(1) = {0, 1}, and 3 := s(2) = {0, 1, 2}, and so on. The set of such numbers
is the language of n ::= 0 | s(n), which should be the least fixpoint of Fn(N) :=
{0} ∪ {s(n) | n ∈ N}, similar to (1). We must assume some fixpoint exists.
Axiom 6 (infinity). ∃ I. I = Fn(I). ut
I is a bounding set, so it may contain more than just finite ordinals. But Fn is
monotone in I, so by the Knaster-Tarksi theorem (suitably restricted [15]),

ω :=
⋂
{N ⊆ I | N = Fn(N)} (2)

is the least fixpoint of Fn: the finite ordinals, a model of the natural numbers.

Example 2 (interpreting a grammar). We build the language of z recursively:

Z(0) = ∅
Z(s(n)) = Fz(Z(n)), n ∈ ω

Z(ω) =
⋃

n∈ω
Z(n) (3)

By induction, Z(n) exists for every n ∈ ω; therefore Z(ω) exists, so (3) is a
conservative extension of set theory. It is not hard to prove (by induction) that
Z(ω) is the set of all finite lists of ∅, and that it is the least fixpoint of Fz. ♦

Similarly to building the language Z(ω) of z in (3), we can build the set V(ω)
of all hereditarily finite sets (see Axiom 3) by iterating P instead of Fz:

V(0) = ∅
V(s(n)) = P(V(n)), n ∈ ω

V(ω) =
⋃

n∈ω
V(n) (4)

The set ω is not just a model of the natural numbers. It is also a number
itself: the first countable ordinal. Indeed, ω is strikingly similar to every finite
ordinal in two ways. First, it is defined as the set of its predecessors. Second,
it has a successor s(ω) = ω ∪ {ω}. (Imagine it as {0, 1, 2, ...,ω}.) Unlike finite,
nonzero ordinals, ω has no immediate predecessor—it is a limit ordinal.

More limit ordinals allow iterating P further. It is not hard to build ω + ω,
ω2 and ωω as least fixpoints. The Von Neumann hierarchy generalizes (4):

V(0) = ∅
V(s(α)) = P(V (α)), ordinal α

V(β) =
⋃
α∈β

V(α), limit ordinal β (5)

It is a theorem of ZFC that every set first appears in V(α) for some ordinal α.
Equations (3,4,5) demonstrate transfinite recursion, set theory’s unfold:

defining a function V on ordinals, with V (β) in terms of V (α) for every α ∈ β.

2.2 Every Set Can Be Sequenced: Well-Ordering

A sequence is a total function from an ordinal to a codomain; e.g. f ∈ 3→ A is
a length-3 sequence of A’s elements. (An ordinal is comprised of its predecessors,
so 3 = {0, 1, 2}.) A well-order of A is a bijective sequence of A’s elements.

Axiom 7 (well-ordering). Suppose Ord identifies ordinals and B ↔ A is the
bijective mappings from B to A. Assume ∀A.∃α f .Ord(α) ∧ f ∈ α ↔ A; i.e.
every set can be well-ordered. ut

Because f is not unique, a well-ordering primitive could make λZFC’s semantics
nondeterministic. Fortunately, the existence of a cardinality operator is equiva-
lent to well-ordering [19], so we will give λZFC a cardinality primitive.

The cardinality of a set A is the smallest ordinal that can be put in bijection
with A. Formally, if F contains A’s well-orderings, |A| =

⋂
{domain(f) | f ∈ F}.

e ::= n | v | e e | if e e e | e ∈ e |
⋃

e | take e | P e | image e e | card e

v ::= false | true | λ. e | ∅ | ω n ::= 0 | 1 | 2 | · · ·

Fig. 1: The definition of λ−ZFC, which represents countably many λZFC terms.

2.3 Infinity’s Infinity: An Inaccessible Cardinal

The set V(ω) of hereditarily finite sets is closed under powerset, union, replace-
ment (with predicates restricted to V(ω)), and cardinality. It is also transitive:
if A ∈ V(ω), then x ∈ V(ω) for all x ∈ A. These closure properties make it a
Grothendieck universe: a set that acts like a set of all sets.

λZFC’s values should contain ω and be closed under its primitives. But a
Grothendieck universe containing ω cannot be proved from the typical axioms.
If it exists, it must be equal to V(κ) for some inaccessible cardinal κ.
Axiom 8 (inaccessible cardinal). Suppose GU (V) if and only if V is a
Grothendieck universe. Add ‘κ’ and assume Ord(κ) ∧ (κ > ω) ∧GU (V(κ)). ut

We call the sets in V(κ) hereditarily accessible.
Inaccessible cardinals are not usually assumed but are widely believed con-

sistent. Set theorists regard them as no more dangerous than ω. Interpreting
category theory with small and large categories, second-order set theory, or CIC
in first-order set theory requires at least one inaccessible cardinal [20, 3, 21].

Constructing a set A 6∈ V(κ) requires assuming κ or an equivalent, so V(κ)
easily contains most mathematics. In fact, most can be modeled well within
V(2ω); e.g. the model of R we define in Sect. 6 is in V(ω + 11). Besides, if λZFC
needed to contain large cardinals, we could always assume even larger ones.

3 λZFC’s Grammar

We define λZFC’s terms in three steps. First, we define λ−ZFC, a language of finite
terms with primitives that correspond with the ZFC axioms. Second, we encode
these terms as sets. Third, guided by the first two steps, we define λZFC by
defining its terms, most of which are infinite, as sets in V(κ).

Figure 1 shows λ−ZFC’s grammar. Expressions e are typical: variables, values,
application, if, and domain-specific primitives for membership, union, extraction
(take), powerset, functional replacement (image), and cardinality. Values v are
also typical: booleans and lambdas, and the domain-specific constants ∅ and ω.

In set theory,
⋃
{A} = A holds for all A, so

⋃
can extract the element from

a singleton. In λZFC, the encoding of
⋃
{A} reduces to A only if A is an encoded

set. Therefore, the primitives must include take, which extracts A from {A}. In
particular, extracting a lambda from an ordered pair requires take.

We use De Bruijn indexes with 0 referring to the innermost binding. Because
we will define λZFC terms as well-founded sets, by Axiom 2, countably many
indexes is sufficient for λZFC as well as λ−ZFC.

Distinct tvar, tapp, tif , t∈, t∪, ttake, tP , timage, tcard, tset, tatom, tλ, tfalse, ttrue

FJnK := 〈tvar,n〉
FJef exK := 〈tapp,FJef K ,FJexK〉

FJex ∈ eAK := 〈t∈,FJexK ,FJeAK〉
· · ·

FJ∅K := set(∅) FJωK := set(ω)
FJfalseK := afalse afalse := 〈tatom, tfalse〉
FJtrueK := atrue atrue := 〈tatom, ttrue〉
set(A) = 〈tset, {set(x) | x ∈ A}〉

Fig. 2: The semantic function FJ·K from λ−ZFC terms to λZFC terms.

Figure 2 shows part of the meta-metalanguage function FJ·K that encodes
λ−ZFC terms as λZFC terms. It distinguishes sorts of terms in the standard way,
by pairing them with tags; e.g. if tset is the “set” tag, then 〈tset,∅〉 encodes ∅.

To recursively tag sets, we add the axiom set(A) = 〈tset, {set(x) | x ∈ A}〉.
The well-founded recursion theorem proves that for all A, set(A) exists, so
this axiom is a conservative extension. The actual proof is tedious, but in short,
set is structurally recursive. Now set(∅) = 〈tset,∅〉 and set(ω) encodes ω.

3.1 An Infinite Set Rule For Finite BNF Grammars

There is no sensible reduction relation for λ−ZFC. (For example, P ∅ cannot cor-
rectly reduce to a value because no value in λ−ZFC corresponds to {∅}.) The
easiest way to ensure a reduction relation exists for λZFC is to include encodings
of all the sets in V(κ) as values.

To define λZFC’s terms, we first extend BNF with a set rule: {y∗α}, where α
is a cardinal. Roughly, it means sets comprised of no more than α terms from
the language of y. Formally, it means P<(Y ,α) := {x ∈ P(Y) | |x| < α}, where
Y is a subset of y’s language generated while building a least fixpoint.

Example 3 (finite sets). The grammar h ::= {h∗ω} should represent all heredi-
tarily finite sets, or V(ω). Intuitively, the single rule for h should be equivalent
to countably many rules h ::= {} | {h} | {h,h} | {h,h,h} | · · · .

Its language is the least fixpoint of Fh(H) := P<(H,ω). Further on, we will
prove that Fh’s least fixpoint is V(ω) using a general theorem. ♦

Example 4 (accessible sets). The language of a ::= {a∗κ} is the least fixpoint of
Fa(A) := P<(A,κ), which should be V(κ). ♦

The following theorem schemas will make it easy to find least fixpoints.

Theorem 1. Let F be a unary function. Define V by transfinite recursion:

V (0) = ∅
V (s(α)) = F (V (α))

V (β) =
⋃
α∈β

V (α), limit ordinal β (6)

Let γ be an ordinal. If F is monotone on V (γ), V is monotone on γ, and V (γ)
is a fixpoint of F , then V (γ) is also the least fixpoint of F .

e ::= n | v | 〈tapp, e, e〉 | 〈tif , e, e, e〉 | 〈t∈, e, e〉 | 〈t∪, e〉 | 〈ttake, e〉 | 〈tP , e〉 |
〈timage, e, e〉 | 〈tcard, e〉 | 〈tset, {e∗κ}〉

v ::= afalse | atrue | 〈tλ, e〉 | 〈tset, {v∗κ}〉 n ::= 〈tvar, 0〉 | 〈tvar, 1〉 | · · ·

Fig. 3: λZFC’s grammar. Here, {e∗κ} means sets comprised of no more than κ
terms from the language of e.

Proof. By induction: successor case by monotonicity; limit by property of
⋃
. ut

All the F s we define are monotone. In particular, the interpretations of {y∗α}
rules are monotone because P is monotone. Further, all the F s we define give
rise to a monotone V . Grammar terminals “seed” every iteration with singleton
sets, and {y∗α} rules seed every iteration with ∅.

From here on, we write Fα instead of V (α) to mean α iterations of F .

Theorem 2. Suppose a grammar with {y∗α} rules and iterating function F .
Then F ’s least fixpoint is F γ , where γ is a regular cardinal not less than any α.

Proof. Fixpoint by Aczel [2, Theorem 1.3.4]; least fixpoint by Theorem 1. ut

Example 5 (finite sets). Because ω is regular, by Theorem 2, Fh’s least fixpoint
is Fω

h . Further, Fh(H) = P(H) for all hereditarily finite H, and V(ω) is closed
under P, so Fω

h = V(ω), the set of all hereditarily finite sets. ♦

Example 6 (accessible sets). By a similar argument, Fa’s least fixpoint is Fκ
a =

V(κ), the set of all hereditarily accessible sets. ♦

Example 7 (encoded accessible sets). The language of v ::= 〈tset, {v∗κ}〉 is com-
prised of the encodings of all the hereditarily accessible sets. ♦

3.2 The Grammar of Infinite, Encoded Terms

There are three main differences between λZFC’s grammar in Fig. 3 and λ−ZFC’s
grammar in Fig. 1. First, λZFC’s grammar defines a language of terms that are
already encoded as sets. Second, instead of the symbols ∅ and ω, it includes, as
values, encoded sets of values. Most of these value terms are infinite, such as the
encoding of ω. Third, it includes encoded sets of expressions.

The language of n is N := {〈tvar, i〉 | i ∈ ω}. The rules for e and v are
mutually recursive. Interpreted, but leaving out some of e’s rules, they are

Fe(E,V) := N ∪ V ∪ {〈tapp, ef , ex〉 | 〈ef , ex〉 ∈ E × E} ∪ · · · ∪
{〈tset, e〉 | e ∈ P<(E,κ)}

Fv(E,V) := {afalse, atrue} ∪ {〈tλ, e〉 | e ∈ E} ∪ {〈tset, v〉 | v ∈ P<(V ,κ)}
(7)

To use Theorem 2, we need to iterate a single function. Note that the language
pair 〈E,V 〉 = 〈{e, ...}, {v, ...}〉 is isomorphic to the single set of tagged terms

v ⇓ v
(val)

ef ⇓ 〈tλ, ey〉 ex ⇓ vx ey [0\vx] ⇓ vy

〈tapp, ef , ex〉 ⇓ vy
(ap)

ec ⇓ atrue et ⇓ vt

〈tif , ec, et, ef 〉 ⇓ vt

ec ⇓ afalse ef ⇓ vf

〈tif , ec, et, ef 〉 ⇓ vf

(if)

(a) Standard call-by-value reduction rules

eA ⇓ vA Vset(vA) ex ⇓ vx vx ∈ snd(vA)
〈t∈, ex, eA〉 ⇓ atrue

eA ⇓ vA Vset(vA) ex ⇓ vx vx 6∈ snd(vA)
〈t∈, ex, eA〉 ⇓ afalse

(in)

eA ⇓ vA Vset(vA) ∀ vx ∈ snd(vA). Vset(vx)

〈t∪, eA〉 ⇓
⋃̂

(vA)
(union)

eA ⇓ vA Vset(vA)
〈tP , eA〉 ⇓ P̂(vA)

(pow)

eA ⇓ vA Vset(vA) ef ⇓ 〈tλ, ey〉 Î(〈tλ, ey〉 , vA) ⇓ vy

〈timage, ef , eA〉 ⇓ vy
(image)

eA ⇓ vA Vset(vA)
〈tcard, eA〉 ⇓ Ĉ(vA)

(card)

Eset(eA) ∀ ex ∈ snd(eA). ∃ vx. ex ⇓ vx

eA ⇓ 〈tset, {vx | ex ∈ snd(eA) ∧ ex ⇓ vx}〉
(set)

eA ⇓ 〈tset, {vx}〉
〈ttake, eA〉 ⇓ vx

(take)

(b) λZFC-specific rules

Fig. 4: Reduction rules defining λZFC’s big-step, call-by-value semantics.

EV = {〈0, e〉 , ..., 〈1, v〉 , ...}. Binary disjoint union, denoted E t V , creates
such sets. We define Fev by Fev(E t V) = Fe(E,V) t Fv(E,V). By Theorem 2,
its least fixpoint is Fκ

ev, so we define E and V by E t V = Fκ
ev.

To make well-founded substitution easy, we will use capturing substitution,
which does not capture when used on closed terms. Let Cl(e) indicate whether
a term is closed—this is structurally recursive. Then E′ := {e ∈ E | Cl(e)} and
V ′ := {v ∈ V | Cl(v)} contain only closed terms. Lastly, we define λZFC := E′.

4 λZFC’s Big-Step Reduction Semantics

We distinguish sets from other expressions using Eset and Vset, which merely
check tags. We also lift set constructors to operate on encoded sets. For example,
for cardinality, Ĉ(vA) := set(|snd(vA)|) extracts the tagged set from vA, applies
| · |, and recursively tags the resulting cardinal number. The rest are

P̂(vA) := 〈tset, {〈tset, vx〉 | vx ∈ P(snd(vA))}〉⋃̂
(vA) := 〈tset,

⋃
{snd(vx) | vx ∈ snd(vA)}〉

Î(vf , vA) := 〈tset, {〈tapp, vf , vx〉 | vx ∈ snd(vA)}〉

(8)

All but Î return values. Sets returned by Î are intended to be reduced further.
We use e[n\v] for De Bruijn substitution. Because e and v are closed, it is easy

to define it using simple structural recursion on terms; it is thus conservative.
Figure 4 shows the reduction rules that define the reduction relation ‘⇓’.

Figure 4a has standard call-by-value rules: values reduce to themselves, and
applications reduce by substitution. Figure 4b has the λZFC-specific rules. Most

simply use Vset to check tags before applying a lifted operator. The (image)
rule replaces each value vx in the set vA with an application, generating a set
expression, and the (set) rule reduces all the terms inside a set expression.

To define ‘⇓’ as a least fixpoint, we adapt Aczel’s treatment [2]. We first
define a bounding set for ‘⇓’ using closed terms, or U := E′×V ′, so that ⇓ ⊆ U .

The rules in Fig. 4 can be used to define a predicate D(R, 〈e, v〉). This predi-
cate indicates whether some reduction rule, after replacing every ‘⇓’ in its premise
with the approximation R, derives the conclusion e⇓ v.1 Using D, we define a
function that derives new conclusions from the known conclusions in R:

F⇓(R) := {c ∈ U | D(R, c)} (9)

For example, F⇓(∅) = {〈v, v〉 | v ∈ V }, by the (val) rule. F⇓(F⇓(∅)) includes all
pairs of non-value expressions and the values they reduce to in one derivation, as
well as {〈v, v〉 | v ∈ V }. Generally, (val) ensures that iterating F⇓ is monotone.

For F⇓ itself to be non-monotone, for some R ⊆ R′ ⊆ U , there would have
to be a conclusion c ∈ F⇓(R) that is not in F⇓(R′). In other words, having more
known conclusions could falsify a premise. None of the rules in Fig. 4 can do so.

Because F⇓ is monotone and iterating it is monotone, we can define ⇓ := F γ
⇓

for some ordinal γ. If λZFC had only finite terms, γ = ω iterations would reach
a fixpoint. But a simple countable term shows why ‘⇓’ cannot be Fω

⇓ .

Example 8 (countably infinite term). If s is the successor function in λZFC, the
term t := 〈tset, {0, 〈tapp, s, 0〉 , 〈tapp, s, 〈tapp, s, 0〉〉 , ...}〉 should reduce to set(ω).
The (set) rule’s premises require each of t’s subterms to reduce—using at least Fω

⇓
because each subterm requires a finite, unbounded number of (ap) derivations.
Though F

s(ω)
⇓ reduces t, for larger terms, we must iterate F⇓ much further. ♦

Theorem 3. ⇓ := Fκ
⇓ is the least fixpoint of F⇓.

Proof. Fixpoint by Aczel [2, Theorem 1.3.4]; least fixpoint by Theorem 1. ut

Lastly, ZFC theorems that do not depend on κ can be applied to λZFC terms.

Theorem 4. λZFC’s set values and 〈t∈, ·, ·〉 are a model of ZFC-κ.

Proof. V(κ), a model of ZFC-κ, is isomorphic to v ::= 〈tset, {v∗κ}〉. ut

5 Syntactic Sugar and a Small Set Library

From here on, we write only λ−ZFC terms, assume FJ·K is applied, and no longer
distinguish λ−ZFC from λZFC.

We use names instead of De Bruijn indexes and assume names are converted.
We get alpha equivalence for free; for example, λx. x = 〈tλ, 〈tvar, 0〉〉 = λy. y.

λZFC does not contain terms with free variables. To get around this technical
limitation, we assume free variables are metalanguage names for closed terms.
1 D is definable in first-order logic, but its definition does not aid understanding much.

We allow the primitives ‘∈’,
⋃
, take, P, image and card to be used as if they

were functions. Enclosing infix operators in parenthesis refers to them as func-
tions, as in (∈). We partially apply infix functions using Haskell-like sectioning
rules, so (x ∈) means λA. x ∈ A and (∈ A) means λx. x ∈ A.

We define first-order objects using ‘:=’, as in 0 := ∅, and syntax with ‘:≡’, as
in λx1 x2 ... xn. e :≡ λx1.λx2 ... xn. e to automatically curry. Function definitions
expand to lambdas (using fixpoint combinators for recursion); for example, x = y
:= x ∈ {y} and (=) := λx y. x ∈ {y} equivalently define (=) in terms of (∈). We
destructure pairs implicitly in binding patterns, as in λ〈x, y〉. f x y.

To do anything useful, we need a small set library. The definitions are similar
to the metalanguage definitions we omitted in Section 2, and we similarly elide
most of the λZFC definitions. However, some deserve special mention.

Because λZFC has only functional replacement, we cannot define unbounded
∀ and ∃. But we can define bounded quantifiers in terms of bounded selection, or
select f A :=

⋃
(image (λx. if (f x) {x} ∅) A). We also define a bounded descrip-

tion operator ι x ∈ eA. ef :≡ take (select (λx. ef) eA). Note ι x ∈ eA. ef reduces
only if ef ⇓ true for exactly one x ∈ eA .

Thus, converting a predicate to an object requires both unique existence and
a bounding set. For example, if 〈ex , ey〉 :≡ {{ex}, {ex , ey}} defines ordered pairs,
then fst p := ι x ∈ (

⋃
p).∃ y ∈ (

⋃
p). p = 〈x, y〉 takes the first element.

The set monad simulates nondeterministic choice. We define it by

returnset a := {a} bindset A f :=
⋃

(image f A) (10)

Using bind m f = join (lift f m), evidently liftset := image and joinset :=
⋃
. The

proofs of the monad laws follow the proofs for the list monad. We also define
{x ∈ eA}. ef :≡ bindset (λx. ef) eA , read “choose x in eA, then ef .” For example,
binary cartesian product is A× B := {x ∈ A}. {y ∈ B}. returnset 〈x, y〉.

Every f ∈ A→ B is shaped f = {〈x1, y1〉 , 〈x2, y2〉 , ...} and is total on A. To
distinguish these hash tables from lambdas, we call them mappings. They can
be applied by ap f x := ι y ∈ (range f). 〈x, y〉 ∈ f , but we write just f x. We define
ef |eA :≡ image (λx. 〈x, ef x〉) eA to convert a lambda or to restrict a mapping to
eA. We usually use λx ∈ eA. ey :≡ (λx. ey)|eA to define mappings.

A sequence of A is a mapping xs ∈ α→ A for some ordinal α. For example,
ns := λn ∈ ω. n is a countable sequence in ω→ ω of increasing finite ordinals.
We assume useful sequence functions like map, map2 and drop are defined.

6 Example: The Reals From the Rationals

Here, we demonstrate that λZFC is computationally powerful enough to construct
the real numbers. For a clear, well-motivated, rigorous treatment in first-order set
theory without lambdas, we recommend Abbott’s excellent introductory text [1].

Assume we have a model Q,+Q,−Q,×Q,÷Q of the rationals and rational
arithmetic.2 To get the reals, we close the rationals under countable limits.
2 Though the λZFC development of Q is short and elegant, it does not fit in this paper.

We represent limits of rationals with sequences in ω→ Q. To select only
the converging ones, we must define what convergence means. We start with
convergence to zero and equivalence. Given Q+ , ‘<Q ’ and | · |Q , define

conv-zero?R xs := ∀ ε ∈ Q+.∃N ∈ ω.∀ n ∈ ω. (N ∈ n⇒ |xs n|Q <Q ε)
xs =R ys := conv-zero?R (map2 (−Q) xs ys)

(11)

So a sequence xs ∈ ω→ Q converges to zero if, for any positive ε, there is some
index N after which all xs are smaller than ε. Two sequences are equivalent (=R)
if their pointwise difference converges to zero.

We should be able to drop finitely many elements from a converging sequence
without changing its limit. Therefore, a sequence of rationals converges to some-
thing when it is equivalent to all of its suffixes. We thus define an equivalent to
the Cauchy convergence test, and use it to select the converging sequences:

conv?R xs := ∀ n ∈ ω. xs =R (drop n xs)
R := select conv?R (ω→ Q) (12)

But R (equipped with the equivalence relation =R) is not the real numbers as
they are normally defined: converging sequences in R may be equivalent but not
equal. To decide real equality using λZFC’s ‘=’, we partition R into disjoint sets
of equivalent sequences—we make a quotient space. Thus,

quotient A (=A) := image (λx. select (=A x) A) A
R := quotient R (=R)

(13)

defines the reals with extensional equality.
To define real arithmetic, we must lift rational arithmetic to sequences and

then to sets of sequences. The map2 function lifts, say, +Q to sequences, as in
(+R) := map2 (+Q). To lift +R to sets of sequences, note that sets of sequences
are models of nondeterministic sequences, suggesting the set monad. We define
lift2set f A B := {a ∈ A}. {b ∈ B}. returnset (f a b) to lift two-argument functions
to the set monad. Now (+) := lift2set (+R), and similarly for the other operators.

Using lift2set is atypical, so we prove that A + B ∈ R when A ∈ R and B ∈ R,
and similarly for the other operators. It follows from the fact that the rational
operators lifted to sequences are surjective morphisms, and this theorem:

Theorem 5. Suppose =X is an equivalence relation on X, and define its quo-
tient X := quotient X (=X). If op is surjective on X and a binary morphism for
=X , then (lift2set op A B) ∈ X for all A ∈ X and B ∈ X.

Proof. Reduce to an equality. Case ‘⊆’ by morphism; case ‘⊇’ by surjection. ut

Now for real limits. If R+ , ‘<’, and | · | are defined, we can define conv-zero?R ,
which is like (11) but operates on real sequences xs ∈ ω→ R. We then define
limitR xs := ι y ∈ R. conv-zero?R (map (− y) xs) to calculate their limits.

From here, it is not difficult to treat Q and R uniformly by redefining Q ⊂ R.

7 Example: Computable Real Limits

Exact real computation has been around since Turing’s seminal paper [18]. The
novelty here is how we do it. We define the limit monad in λZFC for expressing
calculations involving limits, with bindlim defined in terms of a general limit.
We then derive a limit-free, computable replacement bind′lim . Replacing bindlim
with bind′lim in a λZFC term incurs proof obligations. If they can be met, the
computable λZFC term has the same limit as the original, uncomputable term.

In other words, entirely in λZFC, we define uncomputable things, and grad-
ually turn them into computable, directly implementable approximations.

The proof obligations are related to topological theorems [12] that we will
import as lemmas. By Theorem 4, we are allowed to use them directly.

At this point, it is helpful to have a simple, informal type system, which we
can easily add to the untyped λZFC. A⇒ B is a lambda or mapping type. A→ B
is the set of total mappings from A to B. A set is a membership proposition.

7.1 The Limit Monad
We first need a universe U of values that is closed under sequencing; i.e. if A ⊂ U
then so is ω→ A. Define U as the language of u ::= R | ω → u. A complete
product metric δ : U⇒ U⇒ R exists; therefore, a function limit : (ω→ U)⇒ U
similar to limitR exists that calculates limits. These are all λZFC-definable.

The limit monad’s computations are of type ω→ U. The type does not imply
convergence, which must be proved separately. Its run function is limit.

Example 9 (infinite series). Define partial-sums : (ω→ R)⇒ (ω→ R) first by
partial-sums′ xs := λn. if (n = 0) (xs 0) ((xs n) + (partial-sums′ xs (n− 1))). (The
sequence is recursively defined, so we cannot use λn ∈ ω. e to immediately create
it.) Then restrict its output: partial-sums xs := (partial-sums′ xs)|ω .

Now
∑

n∈ω e :≡ limit (partial-sums λn ∈ ω. e), or the limit of partial sums.
Even if xs converges, partial-sums xs may not; e.g. if xs = λn ∈ ω. 1

n+1 . ♦

The limit monad’s returnlim : U⇒ (ω→ U) creates constant sequences, and
its bindlim : (ω→ U)⇒ (U⇒ (ω→ U))⇒ (ω→ U) simply takes a limit:

returnlim x := λn ∈ ω. x bindlim xs f := f (limit xs) (14)

The left identity and associativity monad laws hold using ‘=’ for equivalence.
However, right identity holds only in the limit, so we define equivalence by
xs =lim ys := limit xs = limit ys.

Example 10 (lifting). Define liftlim f xs := bindlim xs λx. returnlim (f x), as is typi-
cal. Substituting bindlim and reducing reveals that f (limit xs) = limit (liftlim f xs).
That is, using liftlim pulls limit out of f ’s argument. ♦

Example 11 (exponential). The Taylor series expansion of the exponential func-
tion is exp-seq : R⇒ (ω→ R), defined by exp-seq x := partial-sums λn ∈ ω. xn

n! .
It always converges, so limit (exp-seq x) =

∑
n∈ω

xn

n! = exp x for x ∈ R. To expo-
nentiate converging sequences, define explim xs := bindlim xs exp-seq. ♦

7.2 The Computable Limit Monad

We derive the computable limit monad in two steps. In the first, longest step,
we replace the limit monad’s defining functions with those that do not use limit.
But computations will still have type ω→ U, whose inhabitants are not directly
implementable, so in the second step, we give them a lambda type.

We define return′lim := returnlim . A drop-in, limit-free replacement for bindlim
does not exist, but there is one that incurs three proof obligations. Without
imposing rigid constraints on using bindlim , we cannot meet them automatically.
But we can separate them by factoring bindlim into liftlim and joinlim .

Limit-Free Lift. Substituting to get liftlim f xs = returnlim (f (limit xs)) exposes
the use of limit. Removing it requires continuity and definedness.

Lemma 1 (continuity in metric spaces). Let f : A⇒ B with A a metric
space. Then f is continuous at x ∈ A if and only if for all xs ∈ ω→ A for which
limit xs = x and f is defined on all elements of xs, f (limit xs) = limit (map f xs).

So if f : U⇒ U is continuous at limit xs, and f is defined on all xs, then

limit (liftlim f xs) = limit (returnlim (f (limit xs)))
= limit (returnlim (limit (map f xs)))
= limit (map f xs)

(15)

Thus, liftlim f xs =lim map f xs, so lift′lim f xs := map f xs. Using liftlim f xs instead
of lift′lim f xs requires f to be continuous at limit xs and defined on all xs.

Limit-Free Join. Using join m = bind m λx. x results in joinlim = limit. Remov-
ing limit might seem hopeless—until we distribute it pointwise over xss.

Lemma 2 (limits of sequences). Let f ∈ ω→ ω→ A, where ω→ A has a
product topology. Then limit f = λn ∈ ω. limit (flip f n), where flip f x y := f y x.

A countable product metric defines a product topology, so joinlim xss :=
λn ∈ ω. limit (flip xss n). Now we can remove limit by restricting joinlim ’s input.

Definition 1 (uniform convergence). A sequence f ∈ ω→ ω→ U converges
uniformly if ∀ ε ∈ R+.∃N ∈ ω.∀ n,m > N. (δ (f n m) (limit (f n))) < ε.

Lemma 3 (collapsing limits). If f ∈ ω→ ω→ U converges uniformly, and
r, s : ω⇒ ω increase, then limit λn ∈ ω. limit (f n) = limit λn ∈ ω. f (r n) (s n).

So if flip xss converges uniformly, then

limit (joinlim xss) = limit λn ∈ ω. limit (flip xss n)
= limit λn ∈ ω. flip xss (r n) (s n) (16)

We define join′lim : (ω→ ω→ U)⇒ (ω→ U) by join′lim xss := λn ∈ ω. xss n n.
Replacing joinlim xss with join′lim xss requires that flip xss converge uniformly.

Limit-Free Bind. Define bind′lim xs f := join′lim (lift′lim f xs). It inherits obliga-
tions to prove that f is continuous at limit xs and defined on all xs, and to prove
that flip (map f xs) converges uniformly.

Example 12 (exponential cont.). Define exp′lim by replacing bindlim by bind′lim in
explim , so exp′lim xs := bind′lim xs exp-seq. We now meet the proof obligations.

Lemma 4. Let f : A⇒ (ω→ B). If ω→ B has a product topology, then f is
continuous if and only if (flip f) n is continuous for every n ∈ ω.

We have a product topology, so for the first obligation, pointwise continu-
ity is enough. Let g := flip exp-seq. Every g n is a finite polynomial, and thus
continuous. The second obligation, that exp-seq is defined on all xs, is obvious.
The third, that flip (map exp-seq xs) converges uniformly, can be proved using
the Weierstrass M test [1, Theorem 6.4.5]. ♦

Example 13 (π). The definition of arctanlim is like explim ’s. Defining arctan′lim ,
including proving correctness, is like defining exp′lim . To compute π , we use

πlim := ((returnlim 16)×lim (arctanlim (returnlim
1
5))) −lim

((returnlim 4)×lim (arctanlim (returnlim
1

239)))
(17)

where (·)lim are lifted arithmetic operators. Because (17) does not directly use
bindlim , defining the limit-free π′

lim imposes no proof obligations. ♦

In general, using functions defined in terms of bind′lim requires little more work
than using functions on finite values. The implicit limits are pulled outward and
collapse on their own, hidden within monadic computations.

Computable Sequences. Lambdas are the simplest model of ω→ U. Af-
ter manipulating some terms, we define the final, computable limit monad by
return′lim x := λn. x and bind′lim xs f := λn. f (xs n) n. Computations have type
ω⇒ U′ , where U′ contains countable sequences of rationals.

Implementation. We have transliterated return′lim , bind′lim , exp′lim , arctan′lim and
π′

lim into Racket [7], using its built-in models of ω and Q. Even without optimiza-
tions, π′

lim 141 yields a rational approximation in a few milliseconds that is cor-
rect to 200 digits. More importantly, exp′lim , arctan′lim and π′

lim are almost identi-
cal to their counterparts in the uncomputable limit monad, and meet their proof
obligations. The code is clean, short, correct and reasonably fast, and resides in
a directory named flops2012 at https://github.com/ntoronto/plt-stuff/.

8 Related Work

O’Connor’s completion monad [13] is quite similar to the limit monad. Both
operate on general metric spaces and compute to arbitrary precision. O’Connor

starts with computable approximations and completes them using a monad.
Implementing it in Coq took five months. It is certainly correct.

We start with a monad for exact values and define a computable replace-
ment. It was two weeks from conception to implementation. Between directly
using well-known theorems, and deriving the computable monad from the un-
computable monad without switching languages, we are as certain as we can be
without mechanically verifying it. We have found our middle ground.

Higher-order logics such as HOL [11], CIC [5], MT [4] (Map Theory) and
EFL* [6] continue Church’s programme to found mathematics on the lambda
calculus. Like λZFC, interpreting them in set theory seems to require a slightly
stronger theory than plain ZFC. HOL and CIC ensure consistency using types,
and use the Curry-Howard correspondence to extract programs.

MT and EFL* are more like λZFC in that they are untyped. MT ensures
consistency partly by making nontermination a truth value, and EFL* partly
by tagging propositions. Both support classical reasoning. MT and EFL* are
interpreted in set theory using a straightforward extension of Scott-style deno-
tational semantics to κ-sized domains, while λZFC is interpreted in set theory
using a straightforward extension of operational semantics to κ-sized relations.

The key difference between λZFC and these higher-order logics is that λZFC
is not a logic. It is a programming language with infinite terms, which by design
includes a transitive model of set theory (Theorem 4). Therefore, ZFC theorems
can be applied to its set-valued terms with only trivial interpretation, whereas
the interpretation it takes to apply ZFC theorems to lambda terms that represent
sets in MT or EFL* can be highly nontrivial. Applying a ZFC theorem in HOL
or CIC requires re-proving it to the satisfaction of a type checker.

The infinitary lambda calculus [10] has “infinitely deep” terms. Although it
exists for investigating laziness, cyclic data, and undefinedness in finitary lan-
guages, it is possible to encode uncomputable mathematics in it. In λZFC, such
up-front encodings are unnecessary.

Hypercomputation [14] describes many Turing machine extensions, including
completion of transfinite computations. Much of the research is for discovering
the properties of computation in physically plausible extensions. While λZFC
might offer a civilized way to program such machines, we do not think of our
work as hypercomputation, but as approaching computability from above.

9 Conclusions and Future Work

We defined λZFC, which can express essentially anything constructible in contem-
porary mathematics, in a way that makes it compatible with existing first-order
theorems. We demonstrated that it makes deriving computational meaning eas-
ier by defining the limit monad in it, deriving a computable replacement, and
computing real numbers to arbitrary accuracy with acceptable speed.

Our main future work is using λZFC to define languages for Bayesian infer-
ence, then deriving implementations that compute converging probabilities. We

have already done this successfully for countable Bayesian models [17]. Having
built our previous work’s foundation, we can now proceed with it.

Overall, we no longer have to hold back when a set-theoretic construction
could be defined elegantly with untyped lambdas or recursion, or generalized pre-
cisely with higher-order functions. If we can derive a computable replacement, we
might help someone in Cantor’s Paradise compute the apparently uncomputable.

References
1. Abbott, S.: Understanding Analysis. Springer (2001)
2. Aczel, P.: An introduction to inductive definitions. Studies in Logic and the Foun-

dations of Mathematics 90, 739–782 (1977)
3. Barras, B.: Sets in Coq, Coq in sets. Journal of Formalized Reasoning 3(1) (2010)
4. Berline, C., Grue, K.: A κ-denotational semantics for Map Theory in ZFC+SI.

Theoretical Computer Science 179(1–2), 137–202 (1997)
5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science, Springer Verlag (2004), http://www.labri.fr/publications/l3a/2004/BC04

6. Flagg, R.C., Myhill, J.: A type-free system extending ZFC. Annals of Pure and
Applied Logic 43, 79–97 (1989)

7. Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Inc. (2010),
http://racket-lang.org/tr1/

8. Hrbacek, K., Jech, T.: Introduction to set theory. Pure and Applied Mathematics,
M. Dekker (1999)

9. Hurd, J.: Formal Verification of Probabilistic Algorithms. Ph.D. thesis, University
of Cambridge (2002)

10. Kennaway, R., Klop, J.W., Sleep, M.R., jan De Vries, F.: Infinitary lambda calcu-
lus. Theoretical Computer Science 175, 93–125 (1997)

11. Leivant, D.: Higher order logic. In: In Handbook of Logic in Artificial Intelligence
and Logic Programming. pp. 229–321. Clarendon Press (1994)

12. Munkres, J.R.: Topology. Prentice Hall, second edn. (2000)
13. O’Connor, R.: Certified exact transcendental real number computation in Coq. In:

TPHOLs’08. pp. 246–261 (2008)
14. Ord, T.: The many forms of hypercomputation. Applied Mathematics and Com-

putation 178, 143–153 (2006)
15. Paulson, L.C.: Set theory for verification: II. Induction and recursion. Journal of

Automated Reasoning 15, 167–215 (1995)
16. Paulson, L.C.: Set theory for verification: I. From foundations to functions. Journal

of Automated Reasoning 11, 353–389 (1993)
17. Toronto, N., McCarthy, J.: From Bayesian notation to pure Racket, via measure-

theoretic probability in λZFC. In: Implementation and Application of Functional
Languages (2010)

18. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. In: Proceedings of the London Mathematical Society. vol. 42, pp.
230–265 (1936)

19. Tzouvaras, A.: Cardinality without enumeration. Studia Logica: An International
Journal for Symbolic Logic 80(1), 121–141 (June 2005)

20. Uzquiano, G.: Models of second-order Zermelo set theory. The Bulletin of Symbolic
Logic 5(3), 289–302 (1999)

21. Werner, B.: Sets in types, types in sets. In: TACS’97. pp. 530–546 (1997)

