Computing in Cantor's Paradise With λ_{ZFC}

or

How to Make an Infinitary λ-Calculus in κ Easy Steps

(and Why)

FLOPS 2012

Neil Toronto and Jay McCarthy

PLT @ Brigham Young University

"No one shall expel us from the Paradise that Cantor has created."

David Hilbert

"No one shall expel us from the Paradise that Cantor has created."

David Hilbert

Cantor's Paradise (set theory) is characterized by mind-boggling orders of ever-increasing infinities...

"No one shall expel us from the Paradise that Cantor has created."

David Hilbert

Cantor's Paradise (set theory) is characterized by mind-boggling orders of ever-increasing infinities...

... but mathematicians still want to use computers to answer questions!

"No one shall expel us from the Paradise that Cantor has created."

David Hilbert

Cantor's Paradise (set theory) is characterized by mind-boggling orders of ever-increasing infinities...

... but mathematicians still want to use computers to answer questions!

• Simple example: $\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)$

Options for Domain Specific Languages

- Option 1: Write theorems and proofs in a proof assistant, extract programs
 - Problem: Re-proving theorems takes a long time!
 - Hurd 2002: Dissertation half comprised of convincing HOL of theorems from early-1900s measure theory
 - O'Connor 2008: Five months to convince Coq of his own theorems (which had detailed, published proofs)

Options for Domain Specific Languages

- Option 1: Write theorems and proofs in a proof assistant, extract programs
 - Problem: Re-proving theorems takes a long time!
 - Hurd 2002: Dissertation half comprised of convincing HOL of theorems from early-1900s measure theory
 - O'Connor 2008: Five months to convince Coq of his own theorems (which had detailed, published proofs)
- Option 2: Write semantics in contemporary math
 - Problem: Higher-order anything is difficult
 - Problem: No connection to implementation

Options for Domain Specific Languages

- Option 1: Write theorems and proofs in a proof assistant, extract programs
 - Problem: Re-proving theorems takes a long time!
 - Hurd 2002: Dissertation half comprised of convincing HOL of theorems from early-1900s measure theory
 - O'Connor 2008: Five months to convince Coq of his own theorems (which had detailed, published proofs)
- Option 2: Write semantics in contemporary math
 - Problem: Higher-order anything is difficult
 - Problem: No connection to implementation
- 3n. Option n is a middle ground?

Example: Beautiful Differentiation

 Elliot 2010: Derives an automatic differentiation implementation from this exact specification:

$$d f x := \lim_{h \to 0} \frac{f (x+h) - f x}{h}$$

Example: Beautiful Differentiation

 Elliot 2010: Derives an automatic differentiation implementation from this exact specification:

$$d f x := \lim_{h \to 0} \frac{f (x+h) - f x}{h}$$

• Unimplementable because of $\lim_{h \to 0}$

Example: Beautiful Differentiation

 Elliot 2010: Derives an automatic differentiation implementation from this exact specification:

$$d f x := \lim_{h \to 0} \frac{f (x+h) - f x}{h}$$

- Unimplementable because of $\lim_{h \to 0}$
- How Elliot does it:
 - 1. Reformulates differentiation in terms of *toD* to hide use of *d*
 - 2. Uses differentiation theorems and **Functor** and **Applicative** instance definitions to derive *d*-free functions
 - 3. Implements using floating-point to approximate reals

Beautiful Derivations

toD (sin u)

- $\equiv liftA_2 D (sin u) (d (sin u))$
- $\equiv liftA_2 D (sin u) (d u * cos u)$
- $\equiv \lambda x \to D ((sin \ u) \ x) ((d \ u * cos \ u) \ x) \quad \text{definition of } liftA_2$

definition of toD d (sin u) = d u * cos udefinition of $liftA_2$

 $\equiv \cdots$

 $\equiv sin (toD u)$

Beautiful Derivations

 Problem: To elegantly derive the implementation, the derivations have to be done in a language that doesn't exist! "We have no implementation of *d*, so this definition of *toD* will serve as a specification, not an implementation."

"This **definition is not executable**, however, since *d* is not."

"Every remaining use of *d* is applied to a function whose derivative is known, so we can replace each use.... Now we have **an executable implementation again**."

"Again, this definition can be refactored, followed by replacing the **non-effective [unimplementable] applications** of *d* with known derivatives."

Example: From Bayesian Notation to Pure Racket

 Toronto and McCarthy 2010: Derive implementation of Bayesian modeling language from an exact specification using

$$\begin{array}{rcl} \mathsf{sum}\;\mathsf{f}\;\mathsf{A}\;:=&\sum\limits_{\omega\in\mathsf{A}}\mathsf{f}\;\omega\\ \mathsf{preimage}\;\mathsf{A}\;\mathsf{f}\;\mathsf{B}\;:=&\{\mathsf{x}\in\mathsf{A}\,|\,\mathsf{f}\;\mathsf{x}\in\mathsf{B}\}\end{array}$$

Example: From Bayesian Notation to Pure Racket

 Toronto and McCarthy 2010: Derive implementation of Bayesian modeling language from an exact specification using

$$\begin{array}{rcl} \mathsf{sum}\;\mathsf{f}\;\mathsf{A}\;:=&\sum_{\omega\in\mathsf{A}}\mathsf{f}\;\omega\\ \mathsf{preimage}\;\mathsf{A}\;\mathsf{f}\;\mathsf{B}\;:=&\{\mathsf{x}\in\mathsf{A}\,|\,\mathsf{f}\;\mathsf{x}\in\mathsf{B}\}\end{array}$$

Unimplementable because A may be a countable set

Example: From Bayesian Notation to Pure Racket

 Toronto and McCarthy 2010: Derive implementation of Bayesian modeling language from an exact specification using

sum f A :=
$$\sum_{\omega \in A} f \omega$$

preimage A f B := $\{x \in A | f x \in B\}$

- Unimplementable because A may be a countable set
- How we did it:
 - 1. Assume a very powerful lambda calculus (λ_{ZFC}) exists
 - 2. Define exact meaning of Bayesian notation in this language
 - 3. Derive implementable approximation, prove convergence

"[Sketch of λ_{ZFC} features.] We intend λ_{ZFC} to be contemporary mathematics with well-defined lambdas, or a practical lambda calculus with infinite sets."

"[Sketch of λ_{ZFC} features.] We intend λ_{ZFC} to be contemporary mathematics with well-defined lambdas, or a practical lambda calculus with infinite sets."

Our Vision:

λ calculus

"[Sketch of λ_{ZFC} features.] We intend λ_{ZFC} to be contemporary mathematics with well-defined lambdas, or a practical lambda calculus with infinite sets."

Our Vision:

λ calculus

Infinite Sets and Set Operations

"[Sketch of λ_{ZFC} features.] We intend λ_{ZFC} to be contemporary mathematics with well-defined lambdas, or a practical lambda calculus with infinite sets."

Infinite Sets and Set Operations

"[Sketch of λ_{ZFC} features.] We intend λ_{ZFC} to be contemporary mathematics with well-defined lambdas, or a practical lambda calculus with infinite sets."

λ calculus

Infinite Sets and Set Operations

 λ_{ZFC}

"Computing in Cantor's Paradise With λ_{ZFC}" realizes this vision

Lambda-ZFC Requirements

- Must be similar to implementation language
 - Higher-order functions and lambdas
 - Computable sublanguage
 - Call-by-value reduction semantics

Lambda-ZFC Requirements

- Must be similar to implementation language
 - Higher-order functions and lambdas
 - Computable sublanguage
 - Call-by-value reduction semantics
- Must have infinite sets
 - Operations expressive enough to do measure theory
 - Apply well-known theorems with only trivial translation

Lambda-ZFC Requirements

- Must be similar to implementation language
 - Higher-order functions and lambdas
 - Computable sublanguage
 - Call-by-value reduction semantics
- Must have infinite sets
 - Operations expressive enough to do measure theory
 - Apply well-known theorems with only trivial translation
- Should treat values uniformly (all values first-class)
 - Specifically allow lambdas in sets: $\{\lambda x. x, \lambda x. x + x, ...\}$
 - For minimalism: want to use $\langle a, b \rangle := \{\{a\}, \{a, b\}\}$

Axiom

 λ_{ZFC}^{-}

 \varnothing (value symbol)

Empty set. There is a set \varnothing with no elements.

9

Axiom

Empty set. There is a set \varnothing with no elements.

Powerset. The subsets of a set A comprise a set $\mathcal{P}(A)$.

 λ_{ZFC} \varnothing (value symbol) Pe

Empty set. There is a set \varnothing with no elements.

Powerset. The subsets of a set A P e comprise a set $\mathcal{P}(A)$.

Union. The union of a set of sets is a set.

Axiom

λ_{ZFC}

Replacement. The image of a set

under a binary predicate is a set.

Axiom

 λ_{ZFC}^{-}

Replacement. The image of a set under a binary predicate is a set.

Ex.: let $R(n,m) \iff m = n + 1$; then $\mathbb{N}^+ = \{m \mid n \in \mathbb{N} \land R(n,m)\}$

Axiom

λ_{ZFC}

Replacement. The image of a set under a binary predicate is a set.

Ex.: let $R(n,m) \iff m = n + 1$; then $\mathbb{N}^+ = \{m \mid n \in \mathbb{N} \land R(n,m)\}$

image $e_f e_A$ Ex.: image $(\lambda n. n + 1) \mathbb{N}$

Axiom

λ_{ZFC}

Replacement. The image of a set under a binary predicate is a set.

Ex.: let $R(n,m) \iff m = n + 1$; then $\mathbb{N}^+ = \{m \mid n \in \mathbb{N} \land R(n,m)\}$

Ex.: let $R(x, y) \iff Q(y)$; then the unique set y such that Q(y) is $\bigcup \{ y \, | \, x \in \mathcal{P}(\emptyset) \land R(x, y) \}$ image $e_f e_A$ Ex.: image $(\lambda n. n + 1) \mathbb{N}$

 λ_{ZFC}^{-}

Axiom

Replacement. The image of a set under a binary predicate is a set.

Ex.: let $R(n,m) \iff m = n + 1$; then $\mathbb{N}^+ = \{m \mid n \in \mathbb{N} \land R(n,m)\}$

Ex.: let $R(x, y) \iff Q(y)$; then the unique set y such that Q(y) is $\bigcup \{ y \mid x \in \mathcal{P}(\emptyset) \land R(x, y) \}$ image $e_f e_A$ Ex.: image $(\lambda n. n + 1) \mathbb{N}$

none (hasn't been a problem)
Building Lambda-ZFC- From the ZFC Axioms (2)

 λ_{ZFC}^{-}

Axiom

Replacement. The image of a set under a binary predicate is a set.

Ex.: let $R(n,m) \iff m = n + 1$; then $\mathbb{N}^+ = \{m \mid n \in \mathbb{N} \land R(n,m)\}$

Ex.: let $R(x, y) \iff Q(y)$; then the unique set y such that Q(y) is $\bigcup \{ y \, | \, x \in \mathcal{P}(\emptyset) \land R(x, y) \}$

image $e_f e_A$ Ex.: image $(\lambda n. n + 1) \mathbb{N}$

none (hasn't been a problem)

Infinity. The language ω of $n ::= 0 \mid n + 1$ is a set, where $0 = \emptyset$ and $n + 1 = n \cup \{n\}$.

Building Lambda-ZFC- From the ZFC Axioms (2)

 λ_{ZFC}^{-}

Axiom

Replacement. The image of a set under a binary predicate is a set.

Ex.: let $R(n,m) \iff m = n + 1$; then $\mathbb{N}^+ = \{m \mid n \in \mathbb{N} \land R(n,m)\}$

Ex.: let $R(x, y) \iff Q(y)$; then the unique set y such that Q(y) is $\bigcup \{ y \, | \, x \in \mathcal{P}(\emptyset) \land R(x, y) \}$ image $e_f e_A$ Ex.: image $(\lambda n. n + 1) \mathbb{N}$

none (hasn't been a problem)

Infinity. The language ω of $n ::= 0 \mid n + 1$ is a set, where $0 = \emptyset$ and $n + 1 = n \cup \{n\}$.

 ω (value symbol)

• Final λ_{ZFC}^{-} grammar:

• Final λ_{ZFC}^{-} grammar:

• Final λ_{ZFC} grammar:

e ::= x | v | e e | if e e e | $e \in e | U e | \text{ take } e | P e | \text{ image } e e | \text{ card } e$ $v ::= \text{ false } | \text{ true } | \lambda . e | \emptyset | \omega$

• Final λ_{ZFC} grammar:

$$e ::= x | v | e e | \text{ if } e e e |$$
$$e \in e | U e | \text{ take } e | P e | \text{ image } e e | \text{ card } e$$
$$v ::= \text{ false } | \text{ true } | \lambda . e | \varnothing | \omega$$
$$x ::= 0 | 1 | 2 | \cdots$$

• Final λ_{ZFC}^{-} grammar:

$$e ::= x | v | e e | \text{ if } e e e |$$
$$e \in e | U e | \text{ take } e | P e | \text{ image } e e | \text{ card } e$$
$$v ::= \text{ false } | \text{ true } | \lambda . e | \varnothing | \omega$$
$$x ::= 0 | 1 | 2 | \cdots$$

- Computable sublanguage: Remove ω

• Final λ_{ZFC}^{-} grammar:

$$e ::= x | v | e e | \text{ if } e e e |$$
$$e \in e | U e | \text{ take } e | P e | \text{ image } e e | \text{ card } e$$
$$v ::= \text{ false } | \text{ true } | \lambda . e | \varnothing | \omega$$
$$x ::= 0 | 1 | 2 | \cdots$$

- Computable sublanguage: Remove ω
- Problem: What should P \varnothing reduce to? { \varnothing } isn't a value...

An Easy (???) Solution

Solution: Include all the sets as values!

Solution: Include all the sets as values!

- Problem 1: Set theory (the metalanguage) is single-sorted
- Solution 1: Recursively encode expressions as sets using tags (i.e. SICP-style records)

 $\circ \langle t_{\lambda}, e \rangle$ (equivalently $\{\{t_{\lambda}\}, \{t_{\lambda}, e\}\}$) is a lambda with body e

 $\langle t_{set}, A \rangle$ is a set containing the members of A (e.g. the encoding of $\{\emptyset\}$ is $\langle t_{set}, \{\langle t_{set}, \emptyset \rangle\}\rangle$)

Solution: Include all the sets as values!

- Problem 1: Set theory (the metalanguage) is single-sorted
- Solution 1: Recursively encode expressions as sets using tags (i.e. SICP-style records)

 $\circ \langle t_{\lambda}, e \rangle$ (equivalently $\{\{t_{\lambda}\}, \{t_{\lambda}, e\}\}$) is a lambda with body e

- $\langle t_{set}, A \rangle$ is a set containing the members of A (e.g. the encoding of $\{\emptyset\}$ is $\langle t_{set}, \{\langle t_{set}, \emptyset \rangle\}\rangle$)
- Problem 2: "All the sets" is not a set
- Solution 2: Find a set that acts enough like "all the sets"

• Curious fact: unfolding \mathcal{P} generates the **hereditarily finite** sets

$$\mathcal{V}(0) = \varnothing$$

 $\mathcal{V}(n+1) = \mathcal{P}(\mathcal{V}(n))$ successor ordinal $n+1$

• Curious fact: unfolding ${\cal P}$ generates the **hereditarily finite** sets

$$\mathcal{V}(0) = \emptyset$$
$$\mathcal{V}(n+1) = \mathcal{P}(\mathcal{V}(n))$$
$$\mathcal{V}(\omega) = \bigcup_{n \in \omega} \mathcal{V}(n)$$

successor ordinal n+1

• Curious fact: unfolding $\mathcal P$ generates the **hereditarily finite** sets

$$\mathcal{V}(0) = \emptyset$$

$$\mathcal{V}(n+1) = \mathcal{P}(\mathcal{V}(n)) \quad \text{successor ordinal } n+1$$

$$\mathcal{V}(\omega) = \bigcup_{n \in \omega} \mathcal{V}(n)$$

• Curious fact: ω is also a number: the **first countable ordinal**

 $\begin{array}{ll} 0 = \varnothing & \omega = \{0, 1, 2, \ldots\} \\ 1 = \{0\} & \omega + 1 = \{0, 1, 2, \ldots, \omega\} \\ 2 = \{0, 1\} & \omega + 2 = \{0, 1, 2, \ldots, \omega, \omega + 1\} \\ 3 = \{0, 1, 2\} & \omega + \omega = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots\} \end{array}$

• Curious fact: unfolding ${\cal P}$ generates the **hereditarily finite** sets

$$\mathcal{V}(0) = \emptyset$$

$$\mathcal{V}(n+1) = \mathcal{P}(\mathcal{V}(n)) \quad \text{successor ordinal } n+1$$

$$\mathcal{V}(\omega) = \bigcup_{n \in \omega} \mathcal{V}(n)$$

• Curious fact: ω is also a number: the **first countable ordinal**

 $\begin{array}{ll} 0 = \varnothing & \omega = \{0, 1, 2, \ldots\} \\ 1 = \{0\} & \omega + 1 = \{0, 1, 2, \ldots, \omega\} \\ 2 = \{0, 1\} & \omega + 2 = \{0, 1, 2, \ldots, \omega, \omega + 1\} \\ 3 = \{0, 1, 2\} & \omega + \omega = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots\} \end{array}$

• Can define more limit ordinals $\omega \cdot \omega, \ \omega^{\omega}, \ \omega^{\omega'}$

- Curious fact: unfolding ${\mathcal P}$ actually generates all the sets

$$\begin{aligned} \mathcal{V}(0) &= \varnothing \\ \mathcal{V}(\alpha + 1) &= \mathcal{P}(\mathcal{V}(\alpha)) & \text{successor ordinal } \alpha + 1 \\ \mathcal{V}(\beta) &= \bigcup_{\alpha \in \beta} \mathcal{V}(\alpha) & \text{limit ordinal } \beta \end{aligned}$$

 \circ Every set first appears in some $\mathcal{V}(\alpha)$; e.g. $\mathbb{R} \in \mathcal{V}(\omega + 11)$

- Curious fact: unfolding ${\mathcal P}$ actually generates all the sets

$$\begin{aligned} \mathcal{V}(0) &= \varnothing \\ \mathcal{V}(\alpha + 1) &= \mathcal{P}(\mathcal{V}(\alpha)) & \text{successor ordinal } \alpha + 1 \\ \mathcal{V}(\beta) &= \bigcup_{\alpha \in \beta} \mathcal{V}(\alpha) & \text{limit ordinal } \beta \end{aligned}$$

 \circ Every set first appears in some $\mathcal{V}(lpha)$; e.g. $\mathbb{R} \in \mathcal{V}(\omega+11)$

- Can we stop unfolding at some ordinal and have a set of sets that is closed under set primitives?
 - \circ Yes: $\mathcal{V}(\omega)$ is closed under set primitives; it's called a Grothendieck universe

- Curious fact: unfolding ${\mathcal P}$ actually generates all the sets

 $\mathcal{V}(0) = \alpha$

$$\mathcal{V}(\alpha) = \mathcal{D}$$

$$\mathcal{V}(\alpha + 1) = \mathcal{P}(\mathcal{V}(\alpha)) \quad \text{successor ordinal } \alpha + 1$$

$$\mathcal{V}(\beta) = \bigcup_{\alpha \in \beta} \mathcal{V}(\alpha) \quad \text{limit ordinal } \beta$$

 \circ Every set first appears in some $\mathcal{V}(lpha)$; e.g. $\mathbb{R} \in \mathcal{V}(\omega+11)$

- Can we stop unfolding at some ordinal and have a set of sets that is closed under set primitives?
 - \circ Yes: $\mathcal{V}(\omega)$ is closed under set primitives; it's called a Grothendieck universe
- Is there a Grothendieck universe that contains ω ? Undecidable.

Axiom (inaccessible cardinal). There exists an ordinal κ such that $\mathcal{V}(\kappa)$ contains ω and is closed under \mathcal{P} , \bigcup , and replacement.

- Call sets in $\mathcal{V}(\kappa)$ hereditarily accessible sets

Axiom (inaccessible cardinal). There exists an ordinal κ such that $\mathcal{V}(\kappa)$ contains ω and is closed under \mathcal{P} , \bigcup , and replacement.

- Call sets in $\mathcal{V}(\kappa)$ hereditarily accessible sets
- Uncontroversial extension to ZFC, relatively mild (c.f. HOL, Coq)

Axiom (inaccessible cardinal). There exists an ordinal κ such that $\mathcal{V}(\kappa)$ contains ω and is closed under \mathcal{P} , \bigcup , and replacement.

- Call sets in $\mathcal{V}(\kappa)$ hereditarily accessible sets
- Uncontroversial extension to ZFC, relatively mild (c.f. HOL, Coq)
- No corresponding λ_{ZFC}^- or λ_{ZFC} expression

The Hierarchy of Sets

An Infinite Set Rule For Finite Grammars

New BNF rule: $\{y^{*\alpha}\}$ means "sets of y with less than α elements"

New BNF rule: $\{y^{*\alpha}\}$ means "sets of y with less than α elements"

- Example: $h ::= \{h^{*\omega}\}$
 - Equivalent to $h ::= \{\} | \{h\} | \{h,h\} | \{h,h,h\} | \cdot \cdot \cdot$
 - \circ Language is $\mathcal{V}(\omega)$ (the hereditarily finite sets)

New BNF rule: $\{y^{*\alpha}\}$ means "sets of y with less than α elements"

- Example: $h ::= \{h^{*\omega}\}$
 - Equivalent to $h ::= \{\} | \{h\} | \{h,h\} | \{h,h,h\} | \cdot \cdot \cdot$

 \circ Language is $\mathcal{V}(\omega)$ (the hereditarily finite sets)

• Example: $a ::= \{a^{*\kappa}\}$

 $^{\circ}$ Language is $\mathcal{V}(\kappa)$ (the hereditarily accessible sets)

New BNF rule: $\{y^{*\alpha}\}$ means "sets of y with less than α elements"

- Example: $h ::= \{h^{*\omega}\}$
 - Equivalent to $h ::= \{\} | \{h\} | \{h,h\} | \{h,h,h\} | \cdot \cdot \cdot$

 \circ Language is $\mathcal{V}(\omega)$ (the hereditarily finite sets)

• Example: $a ::= \{a^{*\kappa}\}$

 $^{\circ}$ Language is $\mathcal{V}(\kappa)$ (the hereditarily accessible sets)

• Example: $v ::= \langle t_{\text{set}}, \{v^{*\kappa}\} \rangle$

 \circ Language is every set in $\mathcal{V}(\kappa)$, recursively tagged

• Final λ_{ZFC} grammar:

$$e ::= n | v | \langle t_{app}, e, e \rangle | \langle t_{if}, e, e, e \rangle | \langle t_{\in}, e, e \rangle | \langle t_{\cup}, e \rangle | \langle t_{take}, e \rangle | \langle t_{\mathcal{P}}, e \rangle | \langle t_{image}, e, e \rangle | \langle t_{card}, e \rangle | \langle t_{set}, \{e^{*\kappa}\} \rangle v ::= \langle t_{atom}, t_{false} \rangle | \langle t_{atom}, t_{true} \rangle | \langle t_{\lambda}, e \rangle | \langle t_{set}, \{v^{*\kappa}\} \rangle n ::= \langle t_{var}, 0 \rangle | \langle t_{var}, 1 \rangle | \langle t_{var}, 2 \rangle | \cdots$$

• Final λ_{ZFC} grammar:

$$e ::= n | v | \langle t_{app}, e, e \rangle | \langle t_{if}, e, e, e \rangle | \langle t_{\in}, e, e \rangle | \langle t_{\cup}, e \rangle | \langle t_{take}, e \rangle | \langle t_{\mathcal{P}}, e \rangle | \langle t_{image}, e, e \rangle | \langle t_{card}, e \rangle | \langle t_{set}, \{e^{*\kappa}\} \rangle v ::= \langle t_{atom}, t_{false} \rangle | \langle t_{atom}, t_{true} \rangle | \langle t_{\lambda}, e \rangle | \langle t_{set}, \{v^{*\kappa}\} \rangle n ::= \langle t_{var}, 0 \rangle | \langle t_{var}, 1 \rangle | \langle t_{var}, 2 \rangle | \cdots$$

• Contains encodings of all the sets in $\mathcal{V}(\kappa)$

• Final λ_{ZFC} grammar:

$$e ::= n | v | \langle t_{app}, e, e \rangle | \langle t_{if}, e, e, e \rangle | \langle t_{\in}, e, e \rangle | \langle t_{\cup}, e \rangle | \langle t_{take}, e \rangle | \langle t_{\mathcal{P}}, e \rangle | \langle t_{image}, e, e \rangle | \langle t_{card}, e \rangle | \langle t_{set}, \{e^{\ast \kappa}\} \rangle v ::= \langle t_{atom}, t_{false} \rangle | \langle t_{atom}, t_{true} \rangle | \langle t_{\lambda}, e \rangle | \langle t_{set}, \{v^{\ast \kappa}\} \rangle n ::= \langle t_{var}, 0 \rangle | \langle t_{var}, 1 \rangle | \langle t_{var}, 2 \rangle | \cdots$$

- Contains encodings of all the sets in $\mathcal{V}(\kappa)$
- Computable sublanguage: replace $*\kappa$ with $*\omega$

- Final λ_{ZFC} grammar:
- $e ::= n | v | \langle t_{app}, e, e \rangle | \langle t_{if}, e, e, e \rangle | \langle t_{\in}, e, e \rangle | \langle t_{\cup}, e \rangle |$ $\langle t_{take}, e \rangle | \langle t_{\mathcal{P}}, e \rangle | \langle t_{image}, e, e \rangle | \langle t_{card}, e \rangle | \langle t_{set}, \{e^{*\kappa}\} \rangle$ $v ::= \langle t_{atom}, t_{false} \rangle | \langle t_{atom}, t_{true} \rangle | \langle t_{\lambda}, e \rangle | \langle t_{set}, \{v^{*\kappa}\} \rangle$ $n ::= \langle t_{var}, 0 \rangle | \langle t_{var}, 1 \rangle | \langle t_{var}, 2 \rangle | \cdots$
- Contains encodings of all the sets in $\mathcal{V}(\kappa)$
- Computable sublanguage: replace $*\kappa$ with $*\omega$
- Ugly! Write in λ_{ZFC}^{-} with heaps of syntactic sugar; assume transformation to λ_{ZFC} before reduction

Lambda-ZFC's Reduction Semantics

Defines a κ -sized, big-step reduction relation ' \Downarrow ':

$$\frac{e_{f} \Downarrow \langle t_{\lambda}, e_{y} \rangle - e_{x} \Downarrow v_{x} - e_{y}[0 \setminus v_{x}] \Downarrow v_{y}}{\langle t_{app}, e_{f}, e_{x} \rangle \Downarrow v_{y}} (ap) = \frac{e_{c} \Downarrow a_{true} - e_{t} \Downarrow v_{t}}{\langle t_{if}, e_{c}, e_{t}, e_{f} \rangle \Downarrow v_{t}} \frac{e_{c} \Downarrow a_{false} - e_{f} \Downarrow v_{f}}{\langle t_{if}, e_{c}, e_{t}, e_{f} \rangle \Downarrow v_{t}} (if)$$

$$\frac{e_{A} \Downarrow v_{A} - V_{set}(v_{A}) - e_{x} \Downarrow v_{x} - v_{x} \in snd(v_{A})}{\langle t_{\varepsilon}, e_{x}, e_{A} \rangle \Downarrow a_{true}} = \frac{e_{A} \Downarrow v_{A} - V_{set}(v_{A}) - e_{x} \Downarrow v_{x} - v_{x} \notin snd(v_{A})}{\langle t_{\varepsilon}, e_{x}, e_{A} \rangle \Downarrow a_{false}} (in)$$

$$\frac{e_{A} \Downarrow v_{A} - V_{set}(v_{A}) - \forall v_{x} \in snd(v_{A}) \cdot V_{set}(v_{x})}{\langle t_{0}, e_{A} \rangle \Downarrow \widehat{U}(v_{A})} (union) = \frac{e_{A} \Downarrow v_{A} - V_{set}(v_{A})}{\langle t_{p}, e_{A} \rangle \Downarrow \widehat{P}(v_{A})} (pow)$$

$$\frac{e_{A} \Downarrow v_{A} - V_{set}(v_{A}) - e_{f} \Downarrow \langle t_{\lambda}, e_{y} \rangle - \widehat{I}(\langle t_{\lambda}, e_{y} \rangle, v_{A}) \Downarrow v_{y}}{\langle t_{image}, e_{f}, e_{A} \rangle \Downarrow v_{y}} (image) = \frac{e_{A} \Downarrow v_{A} - V_{set}(v_{A})}{\langle t_{card}, e_{A} \rangle \Downarrow \widehat{C}(v_{A})} (card)$$

$$\frac{E_{set}(e_{A}) - \forall e_{x} \in snd(e_{A}) \cdot \exists v_{x} \cdot e_{x} \Downarrow v_{x}}{\langle t_{set} \rangle \vee v_{x}} (set) - \frac{e_{A} \Downarrow \langle t_{set}, \{v_{x}\} \rangle}{\langle t_{take}, e_{A} \rangle \Downarrow v_{x}} (take)$$

Lambda-ZFC's Reduction Semantics

Defines a κ -sized, big-step reduction relation ' \Downarrow ':

$$\frac{e_{f} \Downarrow \langle t_{\lambda}, e_{y} \rangle e_{x} \Downarrow v_{x} e_{y}[0 \land v_{x}] \Downarrow v_{y}}{\langle t_{app}, e_{f}, e_{x} \rangle \Downarrow v_{y}} (ap) \frac{e_{c} \Downarrow a_{true} e_{t} \Downarrow v_{t}}{\langle t_{if}, e_{c}, e_{t}, e_{f} \rangle \Downarrow v_{t}} \frac{e_{c} \Downarrow a_{false} e_{f} \Downarrow v_{f}}{\langle t_{if}, e_{c}, e_{t}, e_{f} \rangle \Downarrow v_{t}} (if)$$

$$\frac{e_{A} \Downarrow v_{A} \lor v_{set}(v_{A}) e_{x} \Downarrow v_{x} v_{x} \in snd(v_{A})}{\langle t_{\in}, e_{x}, e_{A} \rangle \Downarrow a_{true}} \frac{e_{A} \Downarrow v_{A} \lor v_{set}(v_{A}) e_{x} \Downarrow v_{x} v_{x} \notin snd(v_{A})}{\langle t_{e}, e_{x}, e_{A} \rangle \Downarrow a_{true}} (in)$$

$$\frac{e_{A} \Downarrow v_{A} \lor v_{set}(v_{A}) \lor v_{x} \in snd(v_{A}) \lor v_{set}(v_{x})}{\langle t_{\cup}, e_{A} \rangle \Downarrow \widehat{U}(v_{A})} (union)$$

$$\frac{e_{A} \Downarrow v_{A} \lor v_{set}(v_{A}) \lor v_{x} \in snd(v_{A}) \lor v_{set}(v_{x})}{\langle t_{image}, e_{f}, e_{A} \rangle \Downarrow \widehat{U}(v_{A})} (in)$$

$$\frac{e_{A} \Downarrow v_{A} \lor v_{set}(v_{A}) e_{f} \Downarrow \langle t_{\lambda}, e_{y} \rangle \widehat{I}(\langle t_{\lambda}, e_{y} \rangle, v_{A}) \Downarrow v_{y}}{\langle t_{image}, e_{f}, e_{A} \rangle \Downarrow v_{y}} (image)$$

$$\frac{e_{A} \Downarrow v_{A} \lor v_{set}(v_{A})}{\langle t_{card}, e_{A} \rangle \Downarrow \widehat{U}(v_{A})} (card)$$

$$\frac{e_{A} \Downarrow v_{A} \lor v_{set}(v_{A}) e_{f} \Downarrow \langle t_{\lambda}, e_{y} \rangle \widehat{I}(\langle t_{\lambda}, e_{y} \rangle, v_{A}) \Downarrow v_{y}}{\langle t_{image}, e_{f}, e_{A} \rangle \Downarrow v_{y}} (image)$$

$$\frac{e_{A} \Downarrow v_{A} \lor v_{set}(v_{A}) e_{f} \lor \langle t_{\lambda}, e_{y} \rangle \widehat{I}(\langle t_{\lambda}, e_{y} \rangle, v_{A}) \Downarrow v_{y}}{\langle t_{image}, e_{f}, e_{A} \rangle \Downarrow \widehat{U}(v_{A})} (card)$$

Theorem. λ_{ZFC} 's set values and $\langle t_{\in}, \cdot, \cdot \rangle$ are a model of ZFC- κ . (i.e. theorems that don't depend on κ are true of λ_{ZFC} 's sets)

- Implementable in λ_{ZFC} :
 - Bounded logic, pairs, naturals, integers, rationals, arithmetic

- Implementable in λ_{ZFC} :
 - Bounded logic, pairs, naturals, integers, rationals, arithmetic
 - Reals and real limits (in the paper)

- Implementable in λ_{ZFC} :
 - Bounded logic, pairs, naturals, integers, rationals, arithmetic
 - Reals and real limits (in the paper)
 - Set-theoretic unfold, general closure operators, metric universes, limits on metric spaces

- Implementable in λ_{ZFC} :
 - Bounded logic, pairs, naturals, integers, rationals, arithmetic
 - Reals and real limits (in the paper)
 - Set-theoretic unfold, general closure operators, metric universes, limits on metric spaces
 - Measure theory: Borel σ-algebras, arbitrary products of σ-algebras, product measures, Lebesgue measure, Lebesgue integration, conditional probability measures
• Values: language \mathbb{U} of $u:=\mathbb{R}~|~\omega \rightarrow u$

- Values: language \mathbb{U} of $u:=\mathbb{R}~|~\omega\rightarrow u$
- Computations: $\omega \to \mathbb{U}$ (converging sequences of values)

- Values: language \mathbb{U} of $u:=\mathbb{R}~|~\omega \rightarrow u$
- Computations: $\omega \to \mathbb{U}$ (converging sequences of values)
- Run function: limit : $(\omega \to \mathbb{U}) \to \mathbb{U}$

- Values: language \mathbb{U} of $u:=\mathbb{R}~|~\omega\rightarrow u$
- Computations: $\omega \to \mathbb{U}$ (converging sequences of values)
- Run function: limit : $(\omega \rightarrow \mathbb{U}) \rightarrow \mathbb{U}$

Example: sums : $(\omega \to \mathbb{R}) \to (\omega \to \mathbb{R})$

sums xs := λ n. if (n = 0) (xs 0) ((xs n) + (sums xs (n - 1))) $\sum_{n \in \omega} e :\equiv \text{ limit (sums } \lambda n. e)$

- Values: language \mathbb{U} of $u:=\mathbb{R}~|~\omega\rightarrow u$
- Computations: $\omega \to \mathbb{U}$ (converging sequences of values)
- Run function: limit : $(\omega \rightarrow \mathbb{U}) \rightarrow \mathbb{U}$

Example: sums : $(\omega \to \mathbb{R}) \to (\omega \to \mathbb{R})$ sums xs := λ n. if (n = 0) (xs 0) ((xs n) + (sums xs (n - 1))) $\sum_{n \in \omega} e$:= limit (sums λ n. e)

Example: exp-seq : $\mathbb{R} \to (\omega \to \mathbb{R})$

exp-seq x := sums $\lambda n.x^n/n!$ exp x := limit (exp-seq x)

• Defining functions:

return x := $\lambda n.x$ bind xs f := f (limit xs)

• Defining functions:

return x := λ n.x bind xs f := f (limit xs) • Example: exp_{lim} : ($\omega \rightarrow \mathbb{R}$) \rightarrow ($\omega \rightarrow \mathbb{R}$)

exp_{lim} xs := bind xs exp-seq

• Defining functions:

return x := $\lambda n.x$ bind xs f := f (limit xs)

• Example: $\exp_{\lim} : (\omega \to \mathbb{R}) \to (\omega \to \mathbb{R})$

exp_{lim} xs := bind xs exp-seq

- Wish for: limit-free, drop-in replacement for bind
 - Reality says: Sorry Bucko, only under limited conditions

• Defining functions:

return x := $\lambda n.x$ bind xs f := f (limit xs)

• Example: $\exp_{\lim} : (\omega \to \mathbb{R}) \to (\omega \to \mathbb{R})$

exp_{lim} xs := bind xs exp-seq

- Wish for: limit-free, drop-in replacement for bind
 - Reality says: Sorry Bucko, only under limited conditions
- Step 1: Factor using monad identities and topological theorems

bind xs f = join (lift f xs)
lift f xs := return (f (limit xs))
join xss :=
$$\lambda$$
 n. limit (flip xss n)

Step 2: Collapse limits using topological theorems

Identity

Condition (per-instance)

Continuity

limit (lift f xs) = limit (f \circ xs)

23

• Step 2: Collapse limits using topological theorems

Identity

Condition (per-instance)

 $\mathsf{limit} (\mathsf{lift} f \mathsf{xs}) = \mathsf{limit} (f \circ \mathsf{xs}) \qquad \qquad \mathsf{Continuity}$

limit (join xss) = limit (λ n. xss n n) Uniform Convergence

• Step 2: Collapse limits using topological theorems

Identity

Condition (per-instance)

Continuity

limit (lift f xs) = limit (f \circ xs)

limit (join xss) = limit (λ n. xss n n) Uniform Convergence

• Limit-free replacement for bind:

lift' f xs := $f \circ xs$ join' xss := $\lambda n. xss n n$ bind' xs f := join' (lift' f xs) • Step 2: Collapse limits using topological theorems

Identity

Condition (per-instance)

Continuity

limit (lift f xs) = limit (f \circ xs)

limit (join xss) = limit (λ n. xss n n) Uniform Convergence

• Limit-free replacement for bind:

lift' f xs := $f \circ xs$ join' xss := $\lambda n. xss n n$ bind' xs f := join' (lift' f xs)

• Prove conditions for use of bind in explim; then redefine

 $exp_{lim} xs := bind' xs exp-seq$

Machin's formula (1706): $\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)$

Machin's formula (1706): $\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)$

λ_{ZFC}

atan-seq y := sums λ n. $\frac{-1^{n} \times y^{2 \times n+1}}{2 \times n+1}$

Machin's formula (1706):
$$\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)$$

λ_{ZFC}

atan-seq y := sums λ n. $\frac{-1^{n} \times y^{2 \times n+1}}{2 \times n+1}$

Racket

Machin's formula (1706):
$$\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)$$

λ_{ZFC}

atan-seq y := sums
$$\lambda$$
 n. $rac{-1^{\mathsf{n}} imes \mathsf{y}^{2 imes \mathsf{n}+1}}{2 imes \mathsf{n}+1}$

Racket

(define	(a1	an-s	seq	y)	
(sums	(λ	(n)	(/	(*	(expt -1 n)
					(expt y (+ (* n 2) 1)))
				(+	(* n 2) 1)))))

Racket

Machin's formula (1706):
$$\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)$$

$\begin{array}{ll} \boldsymbol{\lambda}_{ZFC} & \boldsymbol{Proof} \\ \text{atan-seq y} := & \\ & \text{sums } \lambda \text{ n. } \frac{-1^{n} \times y^{2 \times n+1}}{2 \times n+1} \\ & \text{atan}_{\text{lim}} \text{ ys} := & \\ \end{array}$

```
bind ys atan-seq
```

Continuity Unif. conv.

(define (atan-seq y) (sums (λ (n) (/ (* (expt -1 n) (expt y (+ (* n 2) 1))) (+ (* n 2) 1))))

Machin's formula (1706):
$$\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)$$

λ _{zfc}	Proof	Racket
$egin{array}{l} { ext{atan-seq y}} := \ { ext{sums }} \lambda { ext{n}}. \ \displaystyle rac{-1^{ ext{n}} imes ext{y}^{2 imes ext{n}+1}}{2 imes ext{n}+1} \end{array}$		<pre>(define (atan-seq y) (sums (λ (n) (/ (* (expt -1 n)</pre>
atan _{lim} ys := bind ys atan-seq	Continuity Unif. conv.	
atan _{lim} ys := bind' ys atan-seq		

1)))

Machin's formula (1706):
$$\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)$$

λ_{ZFC} ProofRacketatan-seq y :=
sums $\lambda n. \frac{-1^n \times y^{2 \times n+1}}{2 \times n+1}$ (define (atan-seq y)
(sums (λ (n) (/ (*
(+atan_lim ys :=
bind ys atan-seqContinuity
Unif. conv.atan_lim ys :=
bind' ys atan-seq(define (atan-lim ys)
(bind ys atan-seq))

Machin's formula (1706):
$$\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)$$

λ _{ZFC}	Proof	Racket
$egin{aligned} atan-seq \ y := \ sums \ \lambda n. rac{-1^n imes y^{2 imes n+1}}{2 imes n+1} \end{aligned}$		<pre>(define (atan-seq y) (sums (λ (n) (/ (* (expt -1 n)</pre>
atan _{lim} ys := bind ys atan-seq	Continuity Unif. conv.	
atan _{lim} ys := bind' ys atan-seq		<pre>(define (atan-lim ys) (bind ys atan-seq))</pre>
$egin{aligned} \pi_{lim} &:= \ (r \ 16) imes_{lim} (atan_{lim} \ (r \ rac{1}{5})) \{lim} \ (r \ 4) imes_{lim} (atan_{lim} \ (r \ rac{1}{239})) \end{aligned}$		

Machin's formula (1706):
$$\pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)$$

λ _{ZFC}	Proof	Racket
$egin{aligned} atan-seq \ y := \ sums \ \lambda n. rac{-1^n imes y^{2 imes n+1}}{2 imes n+1} \end{aligned}$		<pre>(define (atan-seq y) (sums (λ (n) (/ (* (expt -1 n)</pre>
atan _{lim} ys := bind ys atan-seq	Continuity Unif. conv.	
atan _{lim} ys := bind' ys atan-seq		<pre>(define (atan-lim ys) (bind ys atan-seq))</pre>
$egin{aligned} \pi_{lim} &:= \ (r \ 16) imes_{lim} (atan_{lim} \ (r \ rac{1}{5})) \{lim} \ (r \ 4) imes_{lim} (atan_{lim} \ (r \ rac{1}{239})) \end{aligned}$	None	

```
Machin's formula (1706): \pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)
```

λ _{zfc}	Proof	Racket
atan-seq y := sums λ n. $\frac{-1^{n} \times y^{2 \times n+1}}{2 \times n+1}$		<pre>(define (atan-seq y) (sums (λ (n) (/ (* (expt -1 n)</pre>
atan _{lim} ys := bind ys atan-seq	Continuity Unif. conv.	
atan _{lim} ys := bind' ys atan-seq		<pre>(define (atan-lim ys) (bind ys atan-seq))</pre>
$egin{aligned} \pi_{lim} &:= \ (r \ 16) imes_{lim} (atan_{lim} \ (r \ rac{1}{5})) \{lim} \ (r \ 4) imes_{lim} (atan_{lim} \ (r \ rac{1}{239})) \end{aligned}$	None	(define pi-lim (-lim (*lim (r 16) (atan-lim (r 1/5))) (*lim (r 4) (atan-lim (r 1/239)))))

```
Machin's formula (1706): \pi = 16 \tan^{-1} \left(\frac{1}{5}\right) - 4 \tan^{-1} \left(\frac{1}{239}\right)
```

λ _{zfc}	Proof	Racket
atan-seq y := sums λ n. $\frac{-1^{n} \times y^{2 \times n+1}}{2 \times n+1}$		<pre>(define (atan-seq y) (sums (λ (n) (/ (* (expt -1 n)</pre>
atan _{lim} ys := bind ys atan-seq	Continuity Unif. conv.	
atan _{lim} ys := bind' ys atan-seq		<pre>(define (atan-lim ys) (bind ys atan-seq))</pre>
$egin{aligned} \pi_{lim} &:= \ (r \ 16) imes_{lim} (atan_{lim} \ (r \ rac{1}{5})) \{lim} \ (r \ 4) imes_{lim} (atan_{lim} \ (r \ rac{1}{239})) \end{aligned}$	None	(define pi-lim (-lim (*lim (r 16) (atan-lim (r 1/5))) (*lim (r 4) (atan-lim (r 1/239)))))
<pre>> (real->decimal-string (tim cpu time: 10 real time: 18 g "3.1415926535897932384626433</pre>	n <mark>e (pi-lim 1</mark> Jc time: 0 883279502884	41)) 200) 1971693993751058[]"

Conclusions and Future Work

- We did awesome things
 - \circ Defined λ_{ZFC} , which can express anything "constructive"; proved almost all theorems apply directly to λ_{ZFC} terms
 - \circ Defined the limit monad, defined π in it, derived an implementation, transliterated it into Racket

Conclusions and Future Work

- We did awesome things
 - \circ Defined λ_{ZFC} , which can express anything "constructive"; proved almost all theorems apply directly to λ_{ZFC} terms
 - \circ Defined the limit monad, defined π in it, derived an implementation, transliterated it into Racket
- We will do more awesome things

Conclusions and Future Work

- We did awesome things
 - Defined λ_{ZFC} , which can express anything "constructive"; proved almost all theorems apply directly to λ_{ZFC} terms
 - \circ Defined the limit monad, defined π in it, derived an implementation, transliterated it into Racket
- We will do more awesome things
- Bonus Questions!
 - How much deep set theory do I need to know to use λ_{ZFC} ?
 - Can proofs about λ_{ZFC} terms be used in contemporary math?
 - How would one make a call-by-name version of λ_{ZFC} ?
 - \circ Why is $\mathbb{R} \in \mathcal{V}(\omega+11)$?