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Living in Cantor’s Paradise

David Hilbert

“No one shall expel us from the Paradise that
Cantor has created.”

Cantor’s Paradise (set theory) is characterized by mind-boggling
orders of ever-increasing infinities...

... but mathematicians still want to use computers to answer
questions!

• Simple example: 
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Options for Domain Specific Languages

• Option 1: Write theorems and proofs in a proof assistant, extract
programs

Problem: Re-proving theorems takes a long time!

Hurd 2002: Dissertation half comprised of convincing HOL of
theorems from early-1900s measure theory

O’Connor 2008: Five months to convince Coq of his own
theorems (which had detailed, published proofs)
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Options for Domain Specific Languages

• Option 1: Write theorems and proofs in a proof assistant, extract
programs

Problem: Re-proving theorems takes a long time!

Hurd 2002: Dissertation half comprised of convincing HOL of
theorems from early-1900s measure theory

O’Connor 2008: Five months to convince Coq of his own
theorems (which had detailed, published proofs)

• Option 2: Write semantics in contemporary math

Problem: Higher-order anything is difficult

Problem: No connection to implementation

• ∃n. Option n is a middle ground?
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Example: Beautiful Differentiation

• Elliot 2010: Derives an automatic differentiation implementation
from this exact specification:

• Unimplementable because of

• How Elliot does it:

1. Reformulates differentiation in terms of toD to hide use of d

2. Uses differentiation theorems and Functor and Applicative
instance definitions to derive d-free functions

3. Implements using floating-point to approximate reals
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Beautiful Derivations

• Problem: To elegantly derive the implementation, the derivations
have to be done in a language that doesn’t exist!
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Apologies

“We have no implementation of d, so this definition of toD will
serve as a specification, not an implementation.”

“This definition is not executable, however, since d is not.”

“Every remaining use of d is applied to a function whose
derivative is known, so we can replace each use.... Now we have
an executable implementation again.”

“Again, this definition can be refactored, followed by replacing the
non-effective [unimplementable] applications of d with known
derivatives.”
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• Toronto and McCarthy 2010: Derive implementation of Bayesian
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Example: From Bayesian Notation to Pure Racket

• Toronto and McCarthy 2010: Derive implementation of Bayesian
modeling language from an exact specification using

• Unimplementable because may be a countable set

• How we did it:

1. Assume a very powerful lambda calculus (λZFC) exists

2. Define exact meaning of Bayesian notation in this language

3. Derive implementable approximation, prove convergence
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mathematics with well-defined lambdas, or a practical lambda
calculus with infinite sets.”
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Apologies

“[Sketch of λZFC features.] We intend λZFC to be contemporary
mathematics with well-defined lambdas, or a practical lambda
calculus with infinite sets.”

Our Vision:

λ calculus

+

Infinite Sets and Set Operations

=

λZFC

• “Computing in Cantor’s Paradise With λZFC” realizes this vision
77777
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Lambda-ZFC Requirements

• Must be similar to implementation language

Higher-order functions and lambdas

Computable sublanguage

Call-by-value reduction semantics

• Must have infinite sets

Operations expressive enough to do measure theory

Apply well-known theorems with only trivial translation

• Should treat values uniformly (all values first-class)

Specifically allow lambdas in sets:

For minimalism: want to use
88888
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Building Lambda-ZFC- From the ZFC Axioms (1)

Axiom λ–
ZFC

Empty set. There is a set with no
elements.

(value symbol)

Powerset. The subsets of a set
comprise a set .

Union. The union of a set of sets is a set.

Example: 

Example: 

Cardinality. Every set has a unique
cardinality .
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Replacement. The image of a set
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1010101010



Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then

1010101010



Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then Ex.: 

1010101010



Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then Ex.: 

Ex.: let ; then the
unique set such that is

1010101010



Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then Ex.: 

Ex.: let ; then the
unique set such that is

none
(hasn't been a problem)

1010101010



Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then Ex.: 

Ex.: let ; then the
unique set such that is

none
(hasn't been a problem)

Infinity. The language  of 
 is a set, where

and .

1010101010



Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then Ex.: 

Ex.: let ; then the
unique set such that is

none
(hasn't been a problem)

Infinity. The language  of 
 is a set, where

and .

(value symbol)
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Grammar of Finite Terms

• Final λ–
ZFC grammar:

• Computable sublanguage: Remove

• Problem: What should reduce to? isn’t a value...

1111111111
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An Easy (???) Solution

Solution: Include all the sets as values!

• Problem 1: Set theory (the metalanguage) is single-sorted

• Solution 1: Recursively encode expressions as sets using tags
(i.e. SICP-style records)

(equivalently ) is a lambda with body

is a set containing the members of (e.g. the
encoding of is )

• Problem 2: “All the sets” is not a set

• Solution 2: Find a set that acts enough like “all the sets”

1212121212
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All the Sets (1)

• Curious fact: unfolding generates the hereditarily finite sets

• Curious fact: is also a number: the first countable ordinal

• Can define more limit ordinals , ,
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All the Sets (2)

• Curious fact: unfolding actually generates all the sets

Every set first appears in some ; e.g.

• Can we stop unfolding at some ordinal and have a set of sets
that is closed under set primitives?

Yes: is closed under set primitives; it’s called a
Grothendieck universe

• Is there a Grothendieck universe that contains ? Undecidable.
1414141414
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Inaccessible Cardinal Axiom

Axiom (inaccessible cardinal). There exists an ordinal such
that contains and is closed under , , and replacement.

• Call sets in hereditarily accessible sets

• Uncontroversial extension to ZFC, relatively mild (c.f. HOL, Coq)

• No corresponding λ–
ZFC or λZFC expression

1515151515



The Hierarchy of Sets
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New BNF rule: means “sets of with less than elements”
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An Infinite Set Rule For Finite Grammars

New BNF rule: means “sets of with less than elements”

• Example: 

Equivalent to 

Language is (the hereditarily finite sets)

• Example: 

Language is (the hereditarily accessible sets)

• Example: 

Language is every set in , recursively tagged

1717171717
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Finite Grammar of Infinite Terms

• Final λZFC grammar:

• Contains encodings of all the sets in

• Computable sublanguage: replace with

• Ugly! Write in λ–
ZFC with heaps of syntactic sugar; assume

transformation to λZFC before reduction

1818181818
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Defines a -sized, big-step reduction relation :
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Lambda-ZFC’s Reduction Semantics

Defines a -sized, big-step reduction relation :

Theorem. λZFC’s set values and are a model of ZFC- .

(i.e. theorems that don’t depend on are true of λZFC’s sets) 1919191919
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Expressive Enough?

• Implementable in λZFC:

Bounded logic, pairs, naturals, integers, rationals, arithmetic

Reals and real limits (in the paper)

Set-theoretic , general closure operators, metric
universes, limits on metric spaces

Measure theory: Borel σ-algebras, arbitrary products of
σ-algebras, product measures, Lebesgue measure,
Lebesgue integration, conditional probability measures

2020202020
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Uncomputable Limit Monad

• Defining functions:

• Example: 

• Wish for: limit-free, drop-in replacement for

Reality says: Sorry Bucko, only under limited conditions

• Step 1: Factor using monad identities and topological theorems
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Continuity
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Computable Limit Monad

• Step 2: Collapse limits using topological theorems

Identity Condition (per-instance)

Continuity

Uniform Convergence

• Limit-free replacement for :

• Prove conditions for use of in ; then redefine

2323232323
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Limit Monad Example: Computing π

Machin’s formula (1706): 
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(+ (* n 2) 1)))))
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(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

Continuity
Unif. conv.

(define (atan-lim ys)
(bind ys atan-seq))
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Limit Monad Example: Computing π

Machin’s formula (1706): 

λZFC Proof Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

Continuity
Unif. conv.

(define (atan-lim ys)
(bind ys atan-seq))

None (define pi-lim
(-lim (*lim (r 16) (atan-lim (r 1/5)))

(*lim (r 4) (atan-lim (r 1/239)))))
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Limit Monad Example: Computing π

Machin’s formula (1706): 

λZFC Proof Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

Continuity
Unif. conv.

(define (atan-lim ys)
(bind ys atan-seq))

None (define pi-lim
(-lim (*lim (r 16) (atan-lim (r 1/5)))

(*lim (r 4) (atan-lim (r 1/239)))))

> (real->decimal-string (time (pi-lim 141)) 200)
cpu time: 10 real time: 18 gc time: 0
"3.1415926535897932384626433832795028841971693993751058[...]"
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Conclusions and Future Work

• We did awesome things

Defined λZFC, which can express anything “constructive”;
proved almost all theorems apply directly to λZFC terms

Defined the limit monad, defined π in it, derived an
implementation, transliterated it into Racket
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Conclusions and Future Work

• We did awesome things

Defined λZFC, which can express anything “constructive”;
proved almost all theorems apply directly to λZFC terms

Defined the limit monad, defined π in it, derived an
implementation, transliterated it into Racket

• We will do more awesome things

• Bonus Questions!

How much deep set theory do I need to know to use λZFC?

Can proofs about λZFC terms be used in contemporary math?

How would one make a call-by-name version of λZFC?

Why is ? 2525252525


