
Computing in Cantor's Paradise With λZFC

or

How to Make an Infinitary λ-Calculus in κ Easy Steps

(and Why)

FLOPS 2012

Neil Toronto and Jay McCarthy

PLT @ Brigham Young University

Living in Cantor’s Paradise

David Hilbert

“No one shall expel us from the Paradise that
Cantor has created.”

11111

Living in Cantor’s Paradise

David Hilbert

“No one shall expel us from the Paradise that
Cantor has created.”

Cantor’s Paradise (set theory) is characterized by mind-boggling
orders of ever-increasing infinities...

11111

Living in Cantor’s Paradise

David Hilbert

“No one shall expel us from the Paradise that
Cantor has created.”

Cantor’s Paradise (set theory) is characterized by mind-boggling
orders of ever-increasing infinities...

... but mathematicians still want to use computers to answer
questions!

11111

Living in Cantor’s Paradise

David Hilbert

“No one shall expel us from the Paradise that
Cantor has created.”

Cantor’s Paradise (set theory) is characterized by mind-boggling
orders of ever-increasing infinities...

... but mathematicians still want to use computers to answer
questions!

• Simple example:

11111

Options for Domain Specific Languages

• Option 1: Write theorems and proofs in a proof assistant, extract
programs

Problem: Re-proving theorems takes a long time!

Hurd 2002: Dissertation half comprised of convincing HOL of
theorems from early-1900s measure theory

O’Connor 2008: Five months to convince Coq of his own
theorems (which had detailed, published proofs)

22222

Options for Domain Specific Languages

• Option 1: Write theorems and proofs in a proof assistant, extract
programs

Problem: Re-proving theorems takes a long time!

Hurd 2002: Dissertation half comprised of convincing HOL of
theorems from early-1900s measure theory

O’Connor 2008: Five months to convince Coq of his own
theorems (which had detailed, published proofs)

• Option 2: Write semantics in contemporary math

Problem: Higher-order anything is difficult

Problem: No connection to implementation

22222

Options for Domain Specific Languages

• Option 1: Write theorems and proofs in a proof assistant, extract
programs

Problem: Re-proving theorems takes a long time!

Hurd 2002: Dissertation half comprised of convincing HOL of
theorems from early-1900s measure theory

O’Connor 2008: Five months to convince Coq of his own
theorems (which had detailed, published proofs)

• Option 2: Write semantics in contemporary math

Problem: Higher-order anything is difficult

Problem: No connection to implementation

• ∃n. Option n is a middle ground?
22222

Example: Beautiful Differentiation

• Elliot 2010: Derives an automatic differentiation implementation
from this exact specification:

33333

Example: Beautiful Differentiation

• Elliot 2010: Derives an automatic differentiation implementation
from this exact specification:

• Unimplementable because of

33333

Example: Beautiful Differentiation

• Elliot 2010: Derives an automatic differentiation implementation
from this exact specification:

• Unimplementable because of

• How Elliot does it:

1. Reformulates differentiation in terms of toD to hide use of d

2. Uses differentiation theorems and Functor and Applicative
instance definitions to derive d-free functions

3. Implements using floating-point to approximate reals

33333

Beautiful Derivations

44444

Beautiful Derivations

• Problem: To elegantly derive the implementation, the derivations
have to be done in a language that doesn’t exist!

44444

Apologies

“We have no implementation of d, so this definition of toD will
serve as a specification, not an implementation.”

“This definition is not executable, however, since d is not.”

“Every remaining use of d is applied to a function whose
derivative is known, so we can replace each use.... Now we have
an executable implementation again.”

“Again, this definition can be refactored, followed by replacing the
non-effective [unimplementable] applications of d with known
derivatives.”

55555

Example: From Bayesian Notation to Pure Racket

• Toronto and McCarthy 2010: Derive implementation of Bayesian
modeling language from an exact specification using

66666

Example: From Bayesian Notation to Pure Racket

• Toronto and McCarthy 2010: Derive implementation of Bayesian
modeling language from an exact specification using

• Unimplementable because may be a countable set

66666

Example: From Bayesian Notation to Pure Racket

• Toronto and McCarthy 2010: Derive implementation of Bayesian
modeling language from an exact specification using

• Unimplementable because may be a countable set

• How we did it:

1. Assume a very powerful lambda calculus (λZFC) exists

2. Define exact meaning of Bayesian notation in this language

3. Derive implementable approximation, prove convergence

66666

Apologies

“[Sketch of λZFC features.] We intend λZFC to be contemporary
mathematics with well-defined lambdas, or a practical lambda
calculus with infinite sets.”

77777

Apologies

“[Sketch of λZFC features.] We intend λZFC to be contemporary
mathematics with well-defined lambdas, or a practical lambda
calculus with infinite sets.”

Our Vision:

λ calculus

77777

Apologies

“[Sketch of λZFC features.] We intend λZFC to be contemporary
mathematics with well-defined lambdas, or a practical lambda
calculus with infinite sets.”

Our Vision:

λ calculus

+

Infinite Sets and Set Operations

77777

Apologies

“[Sketch of λZFC features.] We intend λZFC to be contemporary
mathematics with well-defined lambdas, or a practical lambda
calculus with infinite sets.”

Our Vision:

λ calculus

+

Infinite Sets and Set Operations

=

λZFC

77777

Apologies

“[Sketch of λZFC features.] We intend λZFC to be contemporary
mathematics with well-defined lambdas, or a practical lambda
calculus with infinite sets.”

Our Vision:

λ calculus

+

Infinite Sets and Set Operations

=

λZFC

• “Computing in Cantor’s Paradise With λZFC” realizes this vision
77777

Lambda-ZFC Requirements

• Must be similar to implementation language

Higher-order functions and lambdas

Computable sublanguage

Call-by-value reduction semantics

88888

Lambda-ZFC Requirements

• Must be similar to implementation language

Higher-order functions and lambdas

Computable sublanguage

Call-by-value reduction semantics

• Must have infinite sets

Operations expressive enough to do measure theory

Apply well-known theorems with only trivial translation

88888

Lambda-ZFC Requirements

• Must be similar to implementation language

Higher-order functions and lambdas

Computable sublanguage

Call-by-value reduction semantics

• Must have infinite sets

Operations expressive enough to do measure theory

Apply well-known theorems with only trivial translation

• Should treat values uniformly (all values first-class)

Specifically allow lambdas in sets:

For minimalism: want to use
88888

Building Lambda-ZFC- From the ZFC Axioms (1)

Axiom λ–
ZFC

Empty set. There is a set with no
elements.

(value symbol)

99999

Building Lambda-ZFC- From the ZFC Axioms (1)

Axiom λ–
ZFC

Empty set. There is a set with no
elements.

(value symbol)

Powerset. The subsets of a set
comprise a set .

99999

Building Lambda-ZFC- From the ZFC Axioms (1)

Axiom λ–
ZFC

Empty set. There is a set with no
elements.

(value symbol)

Powerset. The subsets of a set
comprise a set .

Union. The union of a set of sets is a set.

99999

Building Lambda-ZFC- From the ZFC Axioms (1)

Axiom λ–
ZFC

Empty set. There is a set with no
elements.

(value symbol)

Powerset. The subsets of a set
comprise a set .

Union. The union of a set of sets is a set.

Example:

99999

Building Lambda-ZFC- From the ZFC Axioms (1)

Axiom λ–
ZFC

Empty set. There is a set with no
elements.

(value symbol)

Powerset. The subsets of a set
comprise a set .

Union. The union of a set of sets is a set.

Example:

Example:

99999

Building Lambda-ZFC- From the ZFC Axioms (1)

Axiom λ–
ZFC

Empty set. There is a set with no
elements.

(value symbol)

Powerset. The subsets of a set
comprise a set .

Union. The union of a set of sets is a set.

Example:

Example:

Cardinality. Every set has a unique
cardinality .

99999

Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

1010101010

Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then

1010101010

Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then Ex.:

1010101010

Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then Ex.:

Ex.: let ; then the
unique set such that is

1010101010

Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then Ex.:

Ex.: let ; then the
unique set such that is

none
(hasn't been a problem)

1010101010

Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then Ex.:

Ex.: let ; then the
unique set such that is

none
(hasn't been a problem)

Infinity. The language of
 is a set, where

and .

1010101010

Building Lambda-ZFC- From the ZFC Axioms (2)

Axiom λ–
ZFC

Replacement. The image of a set
under a binary predicate is a set.

Ex.: let ;
then Ex.:

Ex.: let ; then the
unique set such that is

none
(hasn't been a problem)

Infinity. The language of
 is a set, where

and .

(value symbol)

1010101010

Grammar of Finite Terms

• Final λ–
ZFC grammar:

1111111111

Grammar of Finite Terms

• Final λ–
ZFC grammar:

1111111111

Grammar of Finite Terms

• Final λ–
ZFC grammar:

1111111111

Grammar of Finite Terms

• Final λ–
ZFC grammar:

1111111111

Grammar of Finite Terms

• Final λ–
ZFC grammar:

• Computable sublanguage: Remove

1111111111

Grammar of Finite Terms

• Final λ–
ZFC grammar:

• Computable sublanguage: Remove

• Problem: What should reduce to? isn’t a value...

1111111111

An Easy (???) Solution

Solution: Include all the sets as values!

1212121212

An Easy (???) Solution

Solution: Include all the sets as values!

• Problem 1: Set theory (the metalanguage) is single-sorted

• Solution 1: Recursively encode expressions as sets using tags
(i.e. SICP-style records)

(equivalently) is a lambda with body

is a set containing the members of (e.g. the
encoding of is)

1212121212

An Easy (???) Solution

Solution: Include all the sets as values!

• Problem 1: Set theory (the metalanguage) is single-sorted

• Solution 1: Recursively encode expressions as sets using tags
(i.e. SICP-style records)

(equivalently) is a lambda with body

is a set containing the members of (e.g. the
encoding of is)

• Problem 2: “All the sets” is not a set

• Solution 2: Find a set that acts enough like “all the sets”

1212121212

All the Sets (1)

• Curious fact: unfolding generates the hereditarily finite sets

1313131313

All the Sets (1)

• Curious fact: unfolding generates the hereditarily finite sets

1313131313

All the Sets (1)

• Curious fact: unfolding generates the hereditarily finite sets

• Curious fact: is also a number: the first countable ordinal

1313131313

All the Sets (1)

• Curious fact: unfolding generates the hereditarily finite sets

• Curious fact: is also a number: the first countable ordinal

• Can define more limit ordinals , ,
1313131313

All the Sets (2)

• Curious fact: unfolding actually generates all the sets

Every set first appears in some ; e.g.

1414141414

All the Sets (2)

• Curious fact: unfolding actually generates all the sets

Every set first appears in some ; e.g.

• Can we stop unfolding at some ordinal and have a set of sets
that is closed under set primitives?

Yes: is closed under set primitives; it’s called a
Grothendieck universe

1414141414

All the Sets (2)

• Curious fact: unfolding actually generates all the sets

Every set first appears in some ; e.g.

• Can we stop unfolding at some ordinal and have a set of sets
that is closed under set primitives?

Yes: is closed under set primitives; it’s called a
Grothendieck universe

• Is there a Grothendieck universe that contains ? Undecidable.
1414141414

Inaccessible Cardinal Axiom

Axiom (inaccessible cardinal). There exists an ordinal such
that contains and is closed under , , and replacement.

• Call sets in hereditarily accessible sets

1515151515

Inaccessible Cardinal Axiom

Axiom (inaccessible cardinal). There exists an ordinal such
that contains and is closed under , , and replacement.

• Call sets in hereditarily accessible sets

• Uncontroversial extension to ZFC, relatively mild (c.f. HOL, Coq)

1515151515

Inaccessible Cardinal Axiom

Axiom (inaccessible cardinal). There exists an ordinal such
that contains and is closed under , , and replacement.

• Call sets in hereditarily accessible sets

• Uncontroversial extension to ZFC, relatively mild (c.f. HOL, Coq)

• No corresponding λ–
ZFC or λZFC expression

1515151515

The Hierarchy of Sets

1616161616

An Infinite Set Rule For Finite Grammars

New BNF rule: means “sets of with less than elements”

1717171717

An Infinite Set Rule For Finite Grammars

New BNF rule: means “sets of with less than elements”

• Example:

Equivalent to

Language is (the hereditarily finite sets)

1717171717

An Infinite Set Rule For Finite Grammars

New BNF rule: means “sets of with less than elements”

• Example:

Equivalent to

Language is (the hereditarily finite sets)

• Example:

Language is (the hereditarily accessible sets)

1717171717

An Infinite Set Rule For Finite Grammars

New BNF rule: means “sets of with less than elements”

• Example:

Equivalent to

Language is (the hereditarily finite sets)

• Example:

Language is (the hereditarily accessible sets)

• Example:

Language is every set in , recursively tagged

1717171717

Finite Grammar of Infinite Terms

• Final λZFC grammar:

1818181818

Finite Grammar of Infinite Terms

• Final λZFC grammar:

• Contains encodings of all the sets in

1818181818

Finite Grammar of Infinite Terms

• Final λZFC grammar:

• Contains encodings of all the sets in

• Computable sublanguage: replace with

1818181818

Finite Grammar of Infinite Terms

• Final λZFC grammar:

• Contains encodings of all the sets in

• Computable sublanguage: replace with

• Ugly! Write in λ–
ZFC with heaps of syntactic sugar; assume

transformation to λZFC before reduction

1818181818

Lambda-ZFC’s Reduction Semantics

Defines a -sized, big-step reduction relation :

1919191919

Lambda-ZFC’s Reduction Semantics

Defines a -sized, big-step reduction relation :

Theorem. λZFC’s set values and are a model of ZFC- .

(i.e. theorems that don’t depend on are true of λZFC’s sets) 1919191919

Expressive Enough?

• Implementable in λZFC:

Bounded logic, pairs, naturals, integers, rationals, arithmetic

2020202020

Expressive Enough?

• Implementable in λZFC:

Bounded logic, pairs, naturals, integers, rationals, arithmetic

Reals and real limits (in the paper)

2020202020

Expressive Enough?

• Implementable in λZFC:

Bounded logic, pairs, naturals, integers, rationals, arithmetic

Reals and real limits (in the paper)

Set-theoretic , general closure operators, metric
universes, limits on metric spaces

2020202020

Expressive Enough?

• Implementable in λZFC:

Bounded logic, pairs, naturals, integers, rationals, arithmetic

Reals and real limits (in the paper)

Set-theoretic , general closure operators, metric
universes, limits on metric spaces

Measure theory: Borel σ-algebras, arbitrary products of
σ-algebras, product measures, Lebesgue measure,
Lebesgue integration, conditional probability measures

2020202020

Example Application: Limit Monad

• Values: language of

2121212121

Example Application: Limit Monad

• Values: language of

• Computations: (converging sequences of values)

2121212121

Example Application: Limit Monad

• Values: language of

• Computations: (converging sequences of values)

• Run function:

2121212121

Example Application: Limit Monad

• Values: language of

• Computations: (converging sequences of values)

• Run function:

Example:

2121212121

Example Application: Limit Monad

• Values: language of

• Computations: (converging sequences of values)

• Run function:

Example:

Example:

2121212121

Uncomputable Limit Monad

• Defining functions:

2222222222

Uncomputable Limit Monad

• Defining functions:

• Example:

2222222222

Uncomputable Limit Monad

• Defining functions:

• Example:

• Wish for: limit-free, drop-in replacement for

Reality says: Sorry Bucko, only under limited conditions

2222222222

Uncomputable Limit Monad

• Defining functions:

• Example:

• Wish for: limit-free, drop-in replacement for

Reality says: Sorry Bucko, only under limited conditions

• Step 1: Factor using monad identities and topological theorems

2222222222

Computable Limit Monad

• Step 2: Collapse limits using topological theorems

Identity Condition (per-instance)

Continuity

2323232323

Computable Limit Monad

• Step 2: Collapse limits using topological theorems

Identity Condition (per-instance)

Continuity

Uniform Convergence

2323232323

Computable Limit Monad

• Step 2: Collapse limits using topological theorems

Identity Condition (per-instance)

Continuity

Uniform Convergence

• Limit-free replacement for :

2323232323

Computable Limit Monad

• Step 2: Collapse limits using topological theorems

Identity Condition (per-instance)

Continuity

Uniform Convergence

• Limit-free replacement for :

• Prove conditions for use of in ; then redefine

2323232323

Limit Monad Example: Computing π

Machin’s formula (1706):

2424242424

Limit Monad Example: Computing π

Machin’s formula (1706):

λZFC

2424242424

Limit Monad Example: Computing π

Machin’s formula (1706):

λZFC Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

2424242424

Limit Monad Example: Computing π

Machin’s formula (1706):

λZFC Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

2424242424

Limit Monad Example: Computing π

Machin’s formula (1706):

λZFC Proof Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

Continuity
Unif. conv.

2424242424

Limit Monad Example: Computing π

Machin’s formula (1706):

λZFC Proof Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

Continuity
Unif. conv.

2424242424

Limit Monad Example: Computing π

Machin’s formula (1706):

λZFC Proof Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

Continuity
Unif. conv.

(define (atan-lim ys)
(bind ys atan-seq))

2424242424

Limit Monad Example: Computing π

Machin’s formula (1706):

λZFC Proof Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

Continuity
Unif. conv.

(define (atan-lim ys)
(bind ys atan-seq))

2424242424

Limit Monad Example: Computing π

Machin’s formula (1706):

λZFC Proof Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

Continuity
Unif. conv.

(define (atan-lim ys)
(bind ys atan-seq))

None

2424242424

Limit Monad Example: Computing π

Machin’s formula (1706):

λZFC Proof Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

Continuity
Unif. conv.

(define (atan-lim ys)
(bind ys atan-seq))

None (define pi-lim
(-lim (*lim (r 16) (atan-lim (r 1/5)))

(*lim (r 4) (atan-lim (r 1/239)))))

2424242424

Limit Monad Example: Computing π

Machin’s formula (1706):

λZFC Proof Racket
(define (atan-seq y)

(sums (λ (n) (/ (* (expt -1 n)
(expt y (+ (* n 2) 1)))

(+ (* n 2) 1)))))

Continuity
Unif. conv.

(define (atan-lim ys)
(bind ys atan-seq))

None (define pi-lim
(-lim (*lim (r 16) (atan-lim (r 1/5)))

(*lim (r 4) (atan-lim (r 1/239)))))

> (real->decimal-string (time (pi-lim 141)) 200)
cpu time: 10 real time: 18 gc time: 0
"3.1415926535897932384626433832795028841971693993751058[...]"

2424242424

Conclusions and Future Work

• We did awesome things

Defined λZFC, which can express anything “constructive”;
proved almost all theorems apply directly to λZFC terms

Defined the limit monad, defined π in it, derived an
implementation, transliterated it into Racket

2525252525

Conclusions and Future Work

• We did awesome things

Defined λZFC, which can express anything “constructive”;
proved almost all theorems apply directly to λZFC terms

Defined the limit monad, defined π in it, derived an
implementation, transliterated it into Racket

• We will do more awesome things

2525252525

Conclusions and Future Work

• We did awesome things

Defined λZFC, which can express anything “constructive”;
proved almost all theorems apply directly to λZFC terms

Defined the limit monad, defined π in it, derived an
implementation, transliterated it into Racket

• We will do more awesome things

• Bonus Questions!

How much deep set theory do I need to know to use λZFC?

Can proofs about λZFC terms be used in contemporary math?

How would one make a call-by-name version of λZFC?

Why is ? 2525252525

