
Automatically RESTful Web Applications
Marking Modular Serializable Continuations

Jay McCarthy
Brigham Young University

jay@cs.byu.edu

Abstract
Continuation-based Web servers provide distinct advantages over
traditional Web application development: expressive power and
modularity. This power leads to fewer errors and more interesting
applications. Furthermore, these Web servers are more thanproto-
types; they are used in some real commercial applications. Unfor-
tunately, they pay a heavy price for the additional power in the form
of lack of scalability.

We fix this key problem with a modular program transformation
that produces scalable, continuation-based Web programs based
on the REST architecture. Our programs use the same features
as non-scalable, continuation-based Web programs, so we donot
sacrifice expressive power for performance. In particular,we allow
continuation marks in Web programs. Our system uses 10 percent
(or less) of the memory required by previous approaches.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Control structures

General Terms Languages, Performance, Theory

Keywords Continuations, Stack Inspection, Web Applications

1. Introduction
The functional programming community has inspired Web appli-
cation developers with the insight that Web interaction corresponds
to continuation invocation (Hughes 2000; Queinnec 2000; Graham
2001). This insight helps toexplainwhat Web applications do and
when ad hoc continuation capture patterns are erroneous (Krishna-
murthi et al. 2007). This understanding leads to more correct Web
applications.

Many continuation-based Web development frameworks try to
apply this insight directly by automatically capturing continuations
for Web application authors. These frameworks are often frustrated
because they limit modularity, are not scalable, or only achieve
correct continuation capture without more expressive power.

Whole-program compilation systems are unusable by real-
world developers because they sacrifice modularity and interac-
tion with third-party libraries for performance and formalelegance
(Matthews et al. 2004; Cooper et al. 2006). Modular compilation
systems are unattractive to real world developers when theydo

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-332-7/09/08. . . $10.00

not add expressive power (Pettyjohn et al. 2005; Thiemann 2006).
Continuation-based Web servers are unusable by real world devel-
opers, though they add more expressive power, because they are
inherently not scalable (Ducasse et al. 2004; Krishnamurthi et al.
2007).

This paper presents a modular program transformation that pro-
duces scalable Web applications and offers more expressivepower
than existing modular systems. Web applications written using
our system can offloadall state to clients—the gold standard of
scalability—or, if necessary, keep state on the server and use ten
timesless memory.

2. Background
The largest problem Web developers solve is imposed by the state-
lessness ofHTTP: when a server responds to a client’s request,
the connection is closed and the Web program on the server ex-
its. When the client makes a subsequent request, the requestde-
livered to the server must contain enough information to resume
the computation. The insight of functional programmers is that this
informationis the continuation.

Traditional Web programmers call this representational state
transfer (REST) (Fielding and Taylor 2002).1 It is naturally scalable
due to the lack of per-session state. Session state is poisonto
scalability because each session has an absolute claim on server
resources. There is no sound way to reclaim space since dormant
sessions may reactivate at any time. This isclearly inefficient.
Consequently, unsafe and ad hoc resource policies, like timeouts,
are used to restore some scalability. The scalability ofREST also
comes at a price in the form of programming difficulty. We will
demonstrate this by porting a calculator to the Web.2

(define(calc)
(display(+ (prompt"First:") (prompt"Second:"))))

We must break this single coherent function into three different
functions to create a Web application. Each function represents a
distinct part of the control-flow of the application: entering the first
number, entering the second, and displaying their sum.

(define(calc) (web-prompt"First:" ’get-2nd #f))
(define(get-2nd first) (web-prompt"Second:" ’sum first))
(define(sum first second) (display/web(+ second first)))

1 Unfortunately, modern Web programmers have forgotten thisdefinition
of REST. They use the acronymREST to refer to a resource-based URL
structure where database operations (like create, replace, update, and delete)
are mapped to suggestive combinations ofURLs andHTTP request types
(like PUT, POST, GET, andDELETE). We will not useRESTin this way.
2 All program examples are written inPLT Scheme.

(define(calc)
;; new-sessionallocates server-side storage
(web-prompt"First:" ’get-2nd (new-session)))

(define(get-2nd session-id first)
;; session-set!modifies server-side storage
(session-set! session-id’first first)
(web-prompt"Second:" ’sum session-id))

(define(sum session-id second)
;; session-lookupreferences server-side storage
(definefirst (session-lookup session-id’first))
(display/web(+ second first)))

Figure 1. REST Without All the REST

The continuation is encoded by the developer in the second
argument ofweb-promptand the free variables of the continuation
in the third argument.

Unfortunately, it is tiresome in most Web programming environ-
ments to marshal all data to the client and back but convenient to
access the server-side store (through session objects and databases),
so developers use this naturallyRESTful style in an entirely non-
RESTful way. (See Figure 1.)

The Web’sRESTful style is a form of continuation-passing style
(CPS) (Fischer 1972). There are well-known transformations from
direct stylecode intoCPSthat allow Web applications to be written
in the natural way but converted into the scalable style by the server
before execution.

Matthews et al. (2004) gave an automatic translation from di-
rect style programs into traditional Web applications. This tool per-
forms a CPS transformation,λ-lifting, defunctionalization, and a
store-passing style transformation (to capture the store as a cookie
value). These direct style Web applications are entirelyRESTful be-
cause the lexical environment and store are transferred to the user
between interactions.

Unfortunately, theCPStransformation is not modular; the entire
code-base,including libraries, must be transformed. Thus, this
technique is not feasible in applications that rely on unmodifiable
libraries or separate compilation.

The PLT Web Server by Krishnamurthi et al. (2007) does not
have this problem. It enables direct style Web applicationswritten
in PLT Scheme through first-class continuations. These implicit
continuations avoid theCPS transformation and thereby provide
modularity. However, thePLT implementation technique sacrifices
theRESTarchitecture.

Continuations (and the environments they close over) inPLT
Scheme cannot be serialized into an external format or transferred
to the client. Thus, thePLT Web Server stores continuations in the
server’s memory and provides the client with a unique identifier for
each continuation. These continuations are per-session server state,
and their unique identifiers are newGC roots. Because there is no
soundway to reclaim these continuations, they must be retained
indefinitely orunsoundlydeleted.

The memory problems associated with this un-RESTful pol-
icy are well known. For example, a recentICFP experience report
(Welsh and Gurnell 2007) concurs with our experience managing
the CONTINUE service (Krishnamurthi 2003) by reporting unrea-
sonable memory usage. CONTINUE is a Web application for pa-
per submissions, reviews, andPC meetings, so there is no intrin-
sic reason for this memory usage. We have experimented with a
number of stopgap strategies, such as explicit continuation man-
agement through the primitivesend/forward(Krishnamurthi et al.

(define(fact n)
(if (zero? n)
(begin (display(c-c-m’ fact))

1)
(w-c-m ’ fact n (∗ n (fact (sub1 n))))))

(fact 3)
7→
console output: (1 2 3)
computed value: 6

(define(fact-tr n a)
(if (zero? n)
(begin (display(c-c-m’ fact))

a)
(w-c-m ’ fact n (fact-tr (sub1 n) (∗ n a)))))

(fact 3)
7→
console output: (1)
computed value: 6

Figure 2. Factorial with Continuation Marks

2007) and a Least Recently Used (LRU) continuation management
strategy. While useful remedies for some symptoms, they arenot
solutions. In contrast, the work presented herein reduces memory
consumptionby ten timesfor these same Web applications.

Despite its memory problems, thePLT Web Server provides a
valuable Web application framework, in part because of its expres-
sive features, like continuation marks.

Many programming languages and environments allow access
to the runtime stack in one way or another. Examples include Java
security through stack inspection, privileged access for debuggers
in .NET, and exception handlers in many languages. An abstraction
of all these mechanisms is provided byPLT Scheme in continuation
marks (Clements et al. 2001). Using thewith-continuation-mark
(w-c-m) language form, a developer can attach values to the con-
trol stack. Later, the stack-walking primitivecurrent-continuation-
marks(c-c-m) can retrieve those values from the stack. Continu-
ation marks are parameterized by keys and do not interfere with
Scheme’s tail-calling requirements. These two mechanismsallow
marks to be used without interfering with existing code.

A pedagogic example of continuation mark usage is presented
in Figure 2.fact is the factorial function with instrumentation using
continuation marks:w-c-m records function arguments on the stack
andc-c-mcollects them in the base case.fact-tr is a tail-recursive
version of factorial that appears to be an identical usage ofcontinu-
ation marks, but because they preserve tail-calling space usage, the
intermediate marks are overwritten, leaving only the final mark.

Continuation marks are useful in all programs, but are partic-
ularly useful on the Web. If the control stack is isomorphic to the
user’s position in the application, then continuation marks can be
used to record information about where the user has gone and is
going.

For example, in CONTINUE we use a continuation mark to hold
the identity of the user. The essence of this technique is shown
in Figure 3. This mark is stored on login and retrieved inside
display-sitefor tasks like paper rating. This is more convenient
than threading the state throughout the application and allows a
trivial implementation of user masquerading, so an administrator
can debug a user’s problems, and delegation, so a reviewer can
assign a sub-reviewer limited powers.

Web application developers are torn between theREST archi-
tecture, direct style code, modularity, and expressive features, like

(define(start-server ireq)
(w-c-m current-user(show-login) (display-site)))

(define(who-am-i)
(first (c-c-m current-user)))

(define(delegate email paper)
(w-c-m current-user(list ’delegate paper(who-am-i))

(email-continuation-url email)
(display-paper paper)))

(define(masquerade user)
(if (symbol=? (who-am-i) ’admin)

(w-c-m current-user user(display-site))
(access-denied)))

Figure 3. Marks in Web Applications

continuation marks. In this paper, we present a modular program
transformation that automatically producesRESTful versions of di-
rect style Web programs that utilize continuation marks.

3. Transformation Intuition
Our modularRESTful transformation is based on one from Pet-
tyjohn et al. (2005). Unfortunately, their transformationdoes not
support continuation marks in the input language, so it is not suf-
ficient for our purposes. Our transformation is structurally similar
to theirs, so we review their transformation before turningto our
contribution.

The Pettyjohn et al. (2005) transformation relies on the modular
Administrative Normal Form (ANF) transformation (Flanagan et al.
2004) and stack inspection to simulatecall/cc.

ANF is a canonical form that requires all function arguments
to be named. This has the implication that the entire program
is a set of nestedlet expressions with simple function calls for
bodies. If thelets are expanded intoλs, then the continuation of
every expression is syntactically obvious. Any expressioncan be
modularly transformed intoANF without modifying the rest of the
program.

The main insight of Pettyjohn et al. (2005) was thatc-c-mcan
“capture” the continuation, just likecall/cc, if the components of
the continuation are installed viaw-c-m. Their transformation does
this by duplicating the continuation into marks. This is easy be-
causeANF makes these continuations obvious, and the tail-calling
property of marks mirrors that of continuations themselves, so the
two stay synchronized.

Their work is a testament to the power of continuation marks;
we will review the essence of the transformation.

Function applications, like (k a), are transformed as

(k (w-c-m � k a))

where� is a special key known only to the transformation. This
effectively duplicates the continuation in a special mark.Then
(call/cc e) is transformed as

(e (let ([ks(c-c-m�)])
(λ (x) (abort (resume ks x)))))

whereresumerestores the continuation record from the� marks
into an actual control stack.resumemust also reinstall the� marks
so subsequent invocations ofcall/cc are correct.

(define(resume l x)
(if (empty? l) x

(let ([k (first l)] [l (rest l)])
(k (w-c-m � k (resume l x))))))

This transformation producesRESTful Web applications, be-
cause standard modularλ-lifting and defunctionalization transfor-
mations encode all values into serializable representations that can
be sent to the client.

The great irony of the Pettyjohn et al. (2005) transformation
is that, while it shows the immense power of continuation marks,
it does notsupport continuation marks in the input language; it
cannot be used for Web applications that use marks themselves.
Furthermore, it is not trivial to add support for continuation marks
in the transformation: a semantic insight is necessary—this is our
formal contribution, in addition to the other practical extensions we
have made.

3.1 Capturing Marks

The most intuitive strategy for supporting marks is to simply cap-
ture “all the continuation marks” whenever the marks that record
the continuation are captured. However, this is not possible.

Continuation marks are parameterized by a key. When a devel-
oper usesc-c-m, she or he must provide a key—andonly marks
associated with that keyare returned. If a mark is added with a
unique, or unknowable, key, such as a random value or uninterned
symbol (a “gensym”), then it cannot be extracted by the context it
wraps. This is an essential feature of continuation marks: they are
invisible to the uninitiated. Without this property, the behavior of
an expression could drastically change with a change to its context:
new results could mysteriously return fromc-c-mwithout any ex-
planation. This would have adynamic scopelevel of grotesqueness
to it.

We mustrecord the continuation marks, as we record the con-
tinuation components, so they can beextractedwhen performing
continuation capture. A simple strategy is to transform allinstances
of

(w-c-m k v e) into (w-c-m k v (w-c-m ⋄ (cons k v) e))

where⋄ is a key known only to the transformation. It seems
straightforward to adapt the transformation socall/cc captures and
restores these marks as well

(e (let ([ks(c-c-m�)] [cms(c-c-m⋄)])
(λ (x) (abort (re-mark cms(λ () (resume ks x)))))))

wherere-markis similar toresume:

(define(re-mark l e)
(if (empty? l) (e)

(let∗ ([cm(first l)] [l (rest l)]
[m (car cm)] [v (cdr cm)])

(w-c-m m v(w-c-m ⋄ (cons m v) (re-mark l e))))))

While simple and elegant, these strategies are incorrect.

3.2 Reinstalling Marks

The first problem is thatresumeand re-markdo not interact cor-
rectly. Consider the following program:

(f (w-c-m k1 v1(g (call/cc e))))

This is transformed into

(f (w-c-m � f
(w-c-m k1 v1(w-c-m ⋄ (cons k1 v1)
(g (w-c-m � g
(e (let ([ks(c-c-m�)] [cms(c-c-m⋄)])

(λ (x) (abort (re-mark cms
(λ () (resume ks x)))))))))))))

If e calls the continuation with a value,x, it reduces to

(w-c-m k1 v1(w-c-m ⋄ (cons k1 v1)
(f (w-c-m � f (g (w-c-m � g x))))))

The mark fork1 is lifted outside off .
The problem is that even though the� and⋄marks are recorded

in the same stack frames, they are collected and installed sepa-
rately: the⋄s are put before the�s. We can collect these together
by extracting multiple keys at once.

We correct the transformation of (call/cc e) as

(e (let ([k∗cms(c-c-m� ⋄)])
(λ (x) (abort (resume k∗cms x)))))

Whenc-c-m is givenn arguments, the marks are returned as a
list of frames, where each frame is a list of lengthn where (list-ref l
i) is the value of associated with thei argument or#f if none exists.
Naturally, resumemust combine the previousresumeandre-mark
operations.

(define(resume l x)
(if (empty? l) x
(let∗ ([M (car l)] [l (cdr l)] [k (car M)] [cm(cadr M)])
(cond
[(and k (not cm))
(k (w-c-m � k (resume l x)))]

[(and (not k) cm)
(let ([m (car cm)] [v (cdr cm)])
(w-c-m m v(w-c-m ⋄ cm(resume l x))))]

[else
(resume
(list∗ (list k #f) (list #f cm) l) x)]))))

Even though the marks are now in the correct order, there is still
an error in our transformation.

3.3 The Algebra of Marks

Consider the transformation of the following program:

(w-c-m k1 v1(w-c-m k2 v2 e))

This is transformed as

(w-c-m k1 v1(w-c-m ⋄ (cons k1 v1)
(w-c-m k2 v2(w-c-m ⋄ (cons k2 v2) e))))

Because continuation marks respect the tail-calling properties
of Scheme, if a frame already contains a mark for a key, the mark
is overwritten. Thus, the following are equivalent:

(w-c-m k v (w-c-m k u e)) and (w-c-m k u e)

Similarly, marks with different keys share the same frame.
Therefore, the following are equivalent:

(w-c-m x v (w-c-m y u e)) and (w-c-m y u (w-c-m x v e))

Thus, the transformation is equivalent to

(w-c-m k1 v1(w-c-m k2 v2
(w-c-m ⋄ (cons k1 v1) (w-c-m ⋄ (cons k2 v2) e))))

which is equivalent to

(w-c-m k1 v1(w-c-m k2 v2
(w-c-m ⋄ (cons k2 v2) e)))

e ::= a
| (w e)

| (letrec ([σ v]) e)
| (w-c-ma a e)
| (c-c-m [a])
| (matchw l)
| (aborte)
| (call/ccw)

l ::= [(K x)e]
a ::= w | (K a)
w ::= v | x
v ::= (λ(x) e) | (K v) | σ | κ.E

x ∈ Variables
σ ∈ References

where Variables∩ References =∅

E∆ ::= (w-c-mv v′ Ev,∆) wherev /∈ ∆
| [] | (v E)

Σ ::= ∅ | Σ[σ 7→ v]

Figure 4. SL Syntax

We’ve lost the record of thek1 mark in the⋄mark.
One solution is to maintain a map from keys to values in⋄

marks and explicitly update that map with the continuation mark
transformation. For example, we will transform

(w-c-m k v e) into (w-c-m k v (c-w-i-c-m⋄ (λ (cms)
(w-c-m ⋄ (map-set cms k v) e)) empty))

where (c-w-i-c-m key-v proc default-v) (c-w-i-c-m = call-with-
immediate-continuation-mark) callsproc with the value associated
with key-vin the first frame of the current continuation. This is the
value that would be replaced if this call were replaced with acall to
w-c-m. If no such value exists in the first frame,default-vis passed
to proc. The call toproc is in tail position. This function can be
implemented using justw-c-m andc-c-m(Clements et al. 2008).

After changingresumeto operate on mark sets, we have a cor-
rect transformation of continuation marks in the input language.
The rest of the transformation does not need to change dramati-
cally for the entirePLT Scheme language. NowRESTful Web appli-
cations can be written in direct style.

4. Formal Treatment
Armed with intuition, we present the continuation (mark) recon-
struction transformation formally.

4.1 The Source Language

The language in Figure 4, dubbedSL for sourcelanguage, is a mod-
ified version of A-Normal form (ANF) (Flanagan et al. 2004). It
usesλ instead oflet. Furthermore, we allow applications of arbi-
trary length. The language is extended withcall/cc, abort, letrec,
algebraic datatypes, and continuation marks. This is different from
the source language of Pettyjohn et al. (2005) by including continu-
ation marks andabort, which were included in the target language
there. Algebraic datatypes are essential to using marks;abort is in-
cluded for consistency with the target language.X denotes zero or
more occurrences ofX.

Instances of algebraic datatypes are created with constructors
(K, Km) and destructured withmatch. We leave the actual set of
constructors unspecified, though we assume it contains the standard
list constructorsconsandnil.

Σ/E [((λ(x) e) v)]
(1)
−−→SL Σ/E [e[x 7→ v]]

Σ/E [(match(K v) l)]
(2)
−−→SL Σ/E [e[x 7→ v]]
where [(K x)e] ∈ l

and is unique

Σ/E [(letrec ([σ v]) e)]
(3)
−−→SL Σ[σ 7→ v]/E [e]

Σ/E [(σ v)]
(4)
−−→SL Σ/E [e[x 7→ v]]
where Σ(σ) = (λ(x) e)

Σ/E [(matchσ l)]
(5)
−−→SL Σ/E [(matchΣ(σ) l)]

Σ/E [(w-c-mvk v1 Σ/E [(w-c-mvk v2

E ′vk
[(w-c-mvk v2 e)])]

(6)
−−→SL E ′vk

[e])]
whereE ′vk

contains only w-c-ms

Σ/E [(w-c-mvk v1 v2)]
(7)
−−→SL Σ/E [v2]

Σ/E [(c-c-m [v])]
(8)
−−→SL Σ/E [χv(E , (nil))]

Σ/E [(aborte)]
(9)
−−→SL Σ/e

Σ/E [(call/ccv)]
(⋆)
−−→SL Σ/E [(v κ.E)]

Σ/E [(κ.E ′ v)]
(♯)
−−→SL Σ/E ′[v]

χvs(E) = χvs(E , (nil))

χvs([], vl) = vl

χvs((v E), vl) = (consvl χvs(E , (nil))

χvs((w-c-mvk vv E), vl) = χvs(E , (cons(consvk vv) vl)))

if vk ∈ vs

χvs((w-c-mvk vv E), vl) = χvs(E , vl)

otherwise

Figure 5. SL Semantics

The operational semantics is specified via the rewriting system
in Figure 5. It is heavily based on target language semanticsof Pet-
tyjohn et al. (2005). The first rule is the standardβv-rewriting rule
for call-by-value languages (Plotkin 1975). The second handles al-
gebraic datatypes.

Rules 3, 4, and 5 specify the semantics forletrec. Bindings es-
tablished byletrec are maintained in a global store,Σ. For sim-
plicity, store references (σ) are distinct from identifiers bound in
lambda expressions (Felleisen and Hieb 1992). Furthermore, to
simplify the syntax for evaluation contexts, store references are
treated as values, and dereferencing is performed when a store ref-
erence appears in an application (rule 4) or in a match expression
(rule 5).

The next six rules implement the continuation-related operators.
Recall that continuation marks allow for the manipulation of con-
texts. Intuitively, (w-c-m k v e) installs a mark for the keyk as-
sociated with the valuev into the continuation of the expression
e, while (c-c-m [v]) recovers a list of all marks for the keys inv
embedded in the current continuation. To preserve proper tail-call
semantics, if a rewriting step results in more than onew-c-m of the
same key, surrounding the same expression, the outermost mark is
replaced by the inner one. Similarly, marks for different keys are
considered to be a single location.

The mark interleaving requirement is enforced by a grammar
for evaluation contexts that consists of one parameterizednon-
terminal. The parameter ofE (∆) represents the keys that arenot
allowed to appear in the context. Thus, multiple adjacentw-c-m
expressions (of the same key) must be treated as a redex. When

e ::= a
| (w e)

| (letrec ([σ v]) e)
| (w-c-ma a e)
| (c-c-m [a])
| (matchw l)
| (aborte)

l ::= [(K x)e]
a ::= w | (K a)
w ::= v | x
v ::= (λ(x) e) | (K v) | σ

x ∈ Variables
σ ∈ References

where Variables∩ References =∅

E∆ ::= (w-c-mv v′ Ev,∆) wherev /∈ ∆
| [] | (v E)

Σ ::= ∅ | Σ[σ 7→ v]

Figure 6. TL Syntax

such a redex is encountered, the redundant marks are removed,
starting with the outermost (rule 6). Marks that surround a value
are discarded after the evaluation of the subterm (rule 7). The
evaluation ofc-c-memploys the functionχ to extract the marks of
the keys from the evaluation context (rule 8). Marks are extracted
in order, such thatc-c-mevaluates to a list of lists of pairs of keys
and their value, starting with the oldest.

The evaluation rules for continuations (rules⋆ and♯) are stan-
dard; abort abandons the context (rule 9) to facilitate reimplement-
ing continuations.

4.2 The Target Language

The target language (TL) in Figure 6 is identical toSL, except
that call/cc has been removed along with the continuation values
associated with it. The semantics (Figure 7) is also identical, except
for the removal of rules⋆ and ♯ for continuation capture and
application.

4.3 Replacing Continuation Capture

Following Pettyjohn et al. (2005), we define our translation(Fig-
ure 9) fromSL to TL asCMT , for continuationmark transform.
The translation decomposes a term into a context and a redex by
the grammar in Figure 8.

We prove that the decomposition is unique and thus the transla-
tion is well-defined.

Lemma 1 (Unique Decomposition).
Let e ∈ SL. Eithere ∈ a or e = E [r] for some redexr.

The translation rules are straightforward, except for application,
continuation capture, values and marks. Continuation values are
transformed using a variation of the rule forcall/cc. call/cc uses
c-c-m to reify the context and appliesresumeto reconstruct the
context after a value is supplied.abort is used in the continuation-
as-closure to escape from the calling context, as theSL semantics
does.

Continuations rely on the insertion of marks to capture the
continuation as it is built. This strategy employs the property of
ANF that every continuation is obvious, in that it is the value inthe
function position of function applications. The translation marks
each application, using the� mark to record the continuation.

Σ/E [((λ(x) e) v)]
(1)
−−→TL Σ/E [e[x 7→ v]]

Σ/E [(match(K v) l)]
(2)
−−→TL Σ/E [e[x 7→ v]]
where [(K x)e] ∈ l

and is unique

Σ/E [(letrec ([σ v]) e)]
(3)
−−→TL Σ[σ 7→ v]/E [e]

Σ/E [(σ v)]
(4)
−−→TL Σ/E [e[x 7→ v]]
where Σ(σ) = (λ(x) e)

Σ/E [(matchσ l)]
(5)
−−→TL Σ/E [(matchΣ(σ) l)]

Σ/E [(w-c-mvk v1 Σ/E [(w-c-mvk v2

E ′vk
[(w-c-mvk v2 e)])]

(6)
−−→TL E ′vk

[e])]
whereE ′vk

contains only w-c-ms

Σ/E [(w-c-mvk v1 v2)]
(7)
−−→TL Σ/E [v2]

Σ/E [(c-c-m [v])]
(8)
−−→TL Σ/E [χv(E , (nil))]

Σ/E [(aborte)]
(9)
−−→TL Σ/e

χvs(E) = χvs(E , (nil))

χvs([], vl) = vl

χvs((v E), vl) = (consvl χvs(E , (nil))

χvs((w-c-mvk vv E), vl) = χvs(E , (cons(consvk vv) vl)))

if vk ∈ vs

χvs((w-c-mvk vv E), vl) = χvs(E , vl)

otherwise

Figure 7. TL Semantics

r ::= (w)

| (letrec ([σ w]) e)
| (w-c-ma a w)
| (c-c-m [a])
| (matchw l)
| (aborte)
| (call/cce)

E∆ ::= (w-c-mv v′ Ev,∆) wherev /∈ ∆
| [] | (v E)

Figure 8. Translation Decompositions

Similarly, all continuation marks are recorded with the⋄ mark.
Later, these marks will be collected byc-c-mand used to reproduce
the context.

The resumefunction (Figure 10) is used by the translated pro-
gram.resumefaithfully reconstructs an evaluation context from a
list of pairs of continuation functions and mark sets. It traverses
the list and recursively applies the functions from the listand rein-
stalls the marks usingrestore-marks. It restores the original� and
⋄marks as well so that the context matches exactly and subsequent
call/cc operations will succeed.

Variables and Values:

CMT [x] = x

CMT [σ] = σ

CMT [(λ(x) e)] = (λ(x) CMT [e])

CMT [κ.E] = (kont/ms χ{�,⋄}(CMT [E], (nil)))

CMT [(K a)] = (K CMT [a])

Redexes:

CMT [(w)] = (CMT [w])

CMT [(letrec ([σ w]) e)] = (letrec ([σ CMT [w]]) CMT [e])

CMT [(w-c-me)] = (w-c-mCMT [e])

CMT [(c-c-m [a])] = (c-c-m [CMT [a]])

CMT [(,atchw l)] = (matchCMT [w] CMT [l])

CMT [[(K x)e]] = [(K x)CMT [e]]

CMT [(aborte)] = (abortCMT [e])

CMT [(call/ccw)] = (CMT [w] kont)

kont = (kont/ms (c-c-m [� ⋄]))

kont/ms = (λ(m) (λ(x)

(abort(resume m x))))

Contexts:

CMT [[]] = []

CMT [(w E)] = (K (w-c-m� K CMT [E]))

whereK = (λ(x) (CMT [w] x))

CMT [(w-c-mv v′ E)] = (w-c-mv v′ (c-w-i-c-m ⋄ (λ (cms)

(w-c-m ⋄ (map-setcms v v′)

CMT [E]))))

Compositions:

CMT [E [r]] = CMT [E][CMT [r]]

Figure 9. Translation from SL to TL

4.4 Correctness

Let

evalx(p) =

(

v if ∅/p→∗ v

⊥ ∅/p→∗ . . .

Theorem 1. CMT [evalSL(p)] = evalTL(CMT [p])

Overview.If a source term reduces ink steps, then its translation
will reduce in at leastk steps, such that the result of the translation’s
reduction is the translation of the source’s result. This isproved by
induction onk. The base case is obvious, but the inductive case
must be shown by arguing thatTL simulates each step ofSL in
a finite number of steps. This argument is captured in the next
lemma.

Lemma 2 (Simulation).
If Σ/E [e] →SL Σ′/E ′[e′] thenCMT [Σ]/CMT [E [e]] →+

TL

CMT [Σ′]/CMT [E ′[e′]]

Overview.This is proved by a case analysis of the→SL re-
lation. It requires additional lemmas that cover the additional

(letrec
([resume

(λ (l v)
(match l
[(nil) v]
[(cons ms l)
(match ms
[(nil) (resume l v)]
[(cons(cons� k) nil)
(k (w-c-m � k (resume l v)))]

[(cons(cons⋄ cms) nil)
(restore-marks cms
(λ () (w-c-m ⋄ cms(resume l v))))]

[(cons(cons� k) (cons⋄ cms))
(w-c-m � k
(restore-marks cms
(λ () (w-c-m ⋄ cms(resume l v)))))]

[(cons(cons⋄ cms) (cons� k))
(w-c-m � k
(restore-marks cms
(λ () (w-c-m ⋄ cms(resume l v)))))])]))]

[restore-marks
(λ (cms thnk)
(match cms
[(nil) (thnk)]
[(cons(cons m v) cms)
(w-c-m m v(restore-marks cms thnk))]))]

[c-w-i-c-m(λ (k proc default-v) . . .)]
[map-set(λ (map k v) . . .)])

. . .)

Figure 10. Necessary Definitions

steps that→TL takes to reduce a program to images of sub-
expressions/contexts of the original.

Lemma 3 (Compositionality).
CMT [Σ]/CMT [E][CMT [e]]→∗

TL CMT [Σ]/CMT [E][e]

Sketch.CMT [] only introducesw-c-m into the context or abstracts
the continuation of an argument to a function. These additional
contexts are eventually erased as the argument is evaluatedor the
surroundingw-c-m is removed as a value is returned.

Lemma 4 (Reconstitution).
CMT [Σ]/(resume χ{�,⋄}(CMT [E ′]) CMT [v])

→+
TL CMT [Σ]/CMT [E ′][CMT [v]]

Proof. We proceed by cases on the structure ofE ′.
SupposeE ′ = [], thenCMT [E ′] = [], soχ returns(nil) and

resume returnsCMT [v], which is equal to[][CMT [v]].
SupposeE ′ = (w E), thenCMT [] expands to a mark that

capturesE ′ as a function abstracted overE in the� mark, which is
restored byresume. E is preserved by induction.

SupposeE ′ = (w-c-mv v′ E), thenCMT [] expands to a mark
that capturesv andv′ in the⋄mark, which is restored byresume.
E is preserved by induction.

Lemma 5 (Substitution).

CMT [e[x 7→ v]] = CMT [e][x 7→ CMT [v]]

Sketch.TheCMT [] transformation is applied to every subexpres-
sion in the transformed expression. Thus, thevs substituted in will
eventually haveCMT [] performed on them ifx appears ine. If an

identifier appears in the argument toCMT [], it is not transformed,
but left as is, so it could be substituted after the transformation with
theCMT [] of the valuev.

4.5 Defunctionalization

We do not need to extend the defunctionalization defined by Pet-
tyjohn et al. (2005) in any interesting way, but in our implemen-
tation we have extended it in the trivial way to keyed continuation
marks and the numerousPLT λ forms.

5. Extensions
Continuation marks, however, are not the only expressive features
of PLT Scheme we aim to support. We discuss how to support
fluid state, Web cells, advanced control flow, and continuation
management in turn.

5.1 Parameters

Web applications often usefluid state. State is fluid when it is
bound only in a particular dynamic context. The continuation mark
demonstration from the introduction (Figure 3) is an application of
fluid state: when the user authenticates to CONTINUE, the “current
user identity” is bound in the dynamic context of thedisplay-
site call. Every link presents the user with a new page using the
same user identity. If another type of state were used, it would be
more difficult to program or would prevent certain kinds of user
behavior. For example, if the environment were used, then the user
identity would need to be an argument to every function; if the
store were used, then there would be only one user identity for
all URLs associated with a session, thereby disallowing a “free”
implementation of masquerading and delegation.

PLT Scheme provides a mechanism for fluidly bound state: pa-
rameters. Parameters are effectively a short-hand for continuation
mark operations. (parameterize p v e) wrapse in a continuation
mark for the key associated withp bound tov. The parameterp can
then be referenced insideeand will evaluate to whatever the closest
mark is.

Unfortunately, parameters are not implemented this way, be-
cause they also provide efficient lookup, thread-safety, and thread-
local mutation. Instead, there is a single continuation mark key for
all parameters. This key is not serializable, so our mark recording
and reconstitution strategy fails. The key is included in the captured
continuation structure but destroys its serializability.We compen-
sate by providing an implementation of parameters using a distinct
serializable key for each parameter. This way, Web servletscan ef-
fectively use fluid state, like parameters.

5.2 Web Cells

Sometimes fluid state (parameters), the environment (lexical vari-
ables), and the store (mutable structures) are all inappropriate for
Web applications. A simple example is maintaining the preferred
sort state of a list while the user is exploring the application, with-
out forcing the user to have one sort state per session.

If fluid state is used, then the entire application must be written
as tail calls to ensure that the dynamic extent of sort state modifica-
tions is the “rest” of the session. This means the program must be
written in CPS.

If the lexical environment is used, then the sort state must be
threaded throughout every part of the application, including those
that are not related to the sorted list. This means the program must
be written in store-passing style, an invasive and nonmodular global
program transformation.

If the store is used, then a single sort state will be used for all
browsers displaying the same list. This means the user will not be

able to use the Web interactions provided by the browser, such as
Open in New Window, to compare different sorts of the same list.

Web cells (McCarthy and Krishnamurthi 2006) provide a kind
of state appropriate for the sort state. Semantically, the set of Web
cells is a store-like container that is part of the evaluation context;
however, unlike the store, it is captured when continuations are
captured and restored when they are invoked. Since continuation
capture corresponds to Web interaction, this state is “fluid” over
the Web interaction tree, rather than the dynamic call tree.

It is easy to add support for Web cells in our system. We
have a thread-local box that stores the cells for the execution of
a continuation. Whenever a continuation is captured, theseare
saved. Our serializable continuation data structure contains (a) the
continuation components, (b) the continuation marks, and (c) the
Web cell record. Each of these are restored when the continuation
is called.

5.3 Request Handlers

send/suspendis the fundamental operator of thePLT Web Server.
This function captures the current continuation, serializes it into a
URL, and calls a display function with theURL. This works well
for applications with a linear control-flow. However, most applica-
tions have many possible continuations (links) for each page, and
therefore are difficult to encode withsend/suspend.

We can simulate this control-flow by dispatching on some extra
data attached to a single continuation captured bysend/suspend.
This dispatching pattern is abstracted intosend/suspend/dispatch
(s/s/d) (Hopkins 2003). This function allows request handling pro-
cedures to be embedded as links; when clicked, the request isgiven
to the procedure, and the procedure returns tos/s/d’s continuation.

For example, consider the servlet

(define(show message)
(send/suspend/dispatch
(λ (embed/url)
‘(html (h1 ,message)

(a ([href ,(embed/url(λ (show"One")))]) "One")
(a ([href ,(embed/url(λ (show"Two")))]) "Two")))))

This servlet generates a page with two links: one for each call to
embed/url. When clients click on either, they are sent to an identical
page that contains a header with the link text.

s/s/dcan either build a hash-table and perform dispatching with
a single continuation, or it may be written (Krishnamurthi et al.
2007) succinctly as

(define(send/suspend/dispatch mk-page)
(let/cc application-context

(local
[(define(embed/url handler)

(let/ec mk-page-context
(application-context
(handler
(send/suspend
mk-page-context)))))]

(send/back(mk-page embed/url)))))

This encoding employs a clever use of continuations to embed
the handler in the continuation captured bysend/suspend. When
embed/urlis called, it captures the continuation ofmk-page, mk-
page-context, which is in the process of constructing a link.em-
bed/url provides this link by giving the continuationmk-page-
contextto send/suspend, which calls its argument with a link to
send/suspend’s continuation.embed/urlis arranged so that when
send/suspendreturns, its return value is given to the handler, whose
return value is given to the caller ofsend/suspend/dispatch, via
application-context.

This encoding generates one continuation per call tos/s/d
(application-context) and one escape (“one-shot”) continuation per
call to the embedding procedure (mk-page-context).

We can do better with serializable continuations. Because ev-
erything is serializable and manipulable, we can implements/s/d
as

(define(send/suspend/dispatch mk-page)
(call-with-serializable-current-continuation
(λ (application-context)
(define(embed/url handler)
(defineapplication+handler-context
(kont-cons handler application-context))

(kont→url application+handler-context))
(send/back(mk-page embed/url)))))

Like before, this implementation first captures the continuation
of s/s/d. embed/urlaccepts a procedure and returns a continuation
serialized into aURL. This serialized continuation is the continu-
ation of s/s/dwith the procedure appended to the end. Since the
components of the continuation are represented as a list, wecan do
this directly. However, the continuation components are stored in
reverse order, so a logical append is a prepend on the representa-
tion.

In the program,

(f (g (h (s/s/d(λ (embed/url) (embed/url i))))))

application-contextis (list h g f) andapplication+handler-context
is (list i h g f).

This captures only a single continuation regardless of how many
handler procedures are embedded. This improves our timeand
space efficiency.

5.4 Continuation Management

In our system, continuations are serialized and embedded inthe
URLs given to the client by default. However, there are some prag-
matic reasons why this is not always a good idea.

First, there is, in principle, no limit to the size of a continuation.
If the lexical environment contains the contents of a 100MB file,
then the continuation will be at least 100MBs (modulo clever com-
pression). Most Web clients and servers supportURLs of arbitrary
length, but some browsers and servers do not. In particular,Mi-
crosoft Internet Explorer (IE) limits URLs to 2,048 characters and
Microsoft IIS limits them to 16,384 characters.

Second, if a continuation is embedded in aURL and given to
the user, then it is possible to manipulate the continuationin its
serialized form. Thus, the environment and Web cell contents are
not “secure” when handled directly by users.

Providing security is not always appropriate, so we allow Web
application developers to customize thekont→url function that is
used to embed continuations inURLs with “stuffers.” We provide
a number of different stuffer algorithms and the ability to compose
them. They compose because they produce and consume serializ-
able values.

Plain The value is serialized with no special considerations.

GZip The value is compressed with the GZip algorithm.

Sign The value is signed with a parameterized algorithm.

Crypt The value is encrypted with a parameterized algorithm.

Hash The value is hashed with theMD5 orSHA1 algorithm. The value
is serialized into a database addressed by the hash and the hash
is embedded in theURL.

Len(s) Stuffers is used if theURL would be too long when stuffed with
the value.

These techniques can be combined in many ways. For exam-
ple, an application with small continuations and no need forse-
crecy could just use thePlain algorithm. An application that had
larger continuations might add theGZip algorithm. An application
that needed to protect against changes could add theSign algo-
rithm, while one that needed to guarantee the values could not be
inspected might addCrypt. Finally, an application that did not want
the expense in either bandwidth or computational time couldjust
use theHash algorithm. EveryURL would be the same length, and
identical continuations would be stored only once.

Although theHash method is not trulyRESTful, it performs
drastically better than the traditional method of storing the con-
tinuations in memory. It uses less space because the continuation
representation is tailored to the particular application,in contrast to
the standardC-stack copy. Furthermore, it takes less time to service
requests. This might seem implausible since the operating system’s
virtual memory system seems morally equivalent to a continuation
database because unused parts of memory are moved to disk. How-
ever, theVM considers memory unused only when it is not touched
by the application. InPLT Scheme, the garbage collector stores a
tag bit with objects. Thus, even though the collector doesn’t need
to walk all data, collection affects these tag bits, which causes the
operating system to bring the entire page into main memory. This
paging, which would not be present with a swap-sensitive garbage
collector (Hertz et al. 2005), causes severe performance degrada-
tion.

The Hash method has the additional advantage of providing
multi-server scalability easily, compared to other possible server-
side continuation stores. Since theHash method guarantees that
two writes to the same key must contain the same data, because
otherwise the hashing algorithm would not be secure, multiple Web
servers do not need to coordinate their access to the database of
serialized continuations. Therefore, replication can be done lazily
and efficiently, avoiding many of the problems that many session
object databases are fraught with.

5.4.1 Replay Attacks

Since theURLs of our application completely specify what the
Web application will do in response to a request, it is natural to
assume that our applications are particular susceptible toreplay
attacks. For example, suppose we build a stock-trading application
and at some point a user sells10 shares. An adversary could
capture the continuation for “sell10 shares” and replay itn times to
sell 10n shares, even with encryption in place. This seems utterly
unacceptable.

However, consider the same application on another platform
where the continuation is specified through an ad-hoc combination
of URL, form data, and cookies. In this case as well, a request may
be replayed to perform this attack. On a traditional platform, this
would be prevented by some server-side state. For example, each
server response would include a unique identifier that wouldbe sent
back with requests; each identifier would be allowed to be received
only once, and the identifier would be cryptographically tied to
the incoming requests, so that new identifiers could not be used
to “freshen” old requests to replay them. This same strategycan be
implemented in our system as well, except perhaps better because
the unique identifier can be combined with theentirecontinuation
since it is explicitly represented, in one place, in our system.

As before with the various stuffer algorithms, it is not always
appropriate to disallow replays. For example, it is useful to use
the browser’sRefresh button and to send links to colleagues. If we
provided replay protection “for free,” we would also disallow many
useful Web applications.

5.4.2 Serialization Format

Each continuation record is scarcely more than 100 bytes. This is
split between Web cells, the continuation marks, and the continua-
tion function components. The cells and marks are comparable to
the lexical values captured in the continuation. Each function is se-
rialized as a unique identifier that refers to the compiled code and
the captured values of free variables. The continuation record has a
list of these functions. A sanitized, sample record is below.

(serialized((web-server/lang/abort-resume. web:kont)
(web-server/lang/web-cells. web:frame)
(application/servlet. web:300))

(web:kont
(web:frame
(list (cons web:23-1(path#"static-path" . unix))

(cons web:10-0(path#"db-path" . unix))
(cons web:36-2"username")))

(list (vector(web:300) #f))))

This can be seen as a short program that constructs the serialized
value. The first part records what modules contain the definitions
of data-structures that are created. The module path refer to code
loaded into thePLT Scheme instance that is deserializing the con-
tinuation. If they are resolved to the wrong code, or if the module
are simply not available, then deserialization will fail. This means
any PLT Scheme instance with access to the same source can de-
serialize this continuation. Our system protects against certain er-
rors by including in a hash of the module source in the names of
continuation data structures. In the real record that this example
corresponds to, the token300 would include a hash of the source
of application/servletto result in a deserialization error if the code
were changed, rather than the unsafe behavior that would result if a
different kind of continuation were populated with erroneous data
from this record.

The second part is an expression that creates the continuation
record. Its first field contains the record of the Web cells. This
is an association list from identifying symbols to values. In this
example, two of the values are paths, while the other is a string.
The second field of the continuation is the continuation record. This
is the list that will be passed toresume. In the example, there is a
single function,web:300, with no accompanying continuation mark
recording.

6. Evaluation
The formal treatment of Section 4 can tell us if the transformation
is correct and if it formally has the modularity properties we desire,
but it cannot tell us if it is useful for producing scalable,RESTful,
direct-style Web applications.

6.1 Scalability

We observe that Web applications in our system written in direct
style can be entirelyRESTful. Their usage of the lexical environ-
ment, fluid state, and Web cells are all contained in serializable
structures. These can then be stored by the client in encrypted and
compressedURLs. Cookies can easily capture store state, and since
nearly all data structures are serializable, any value can be stored
in cookies. Finally, our programs maychooseto use server state
where appropriate.

However, our system would not really be useful if it greatly
slowed down the developer (with compilation lag) or the client
(with execution lag), so we measure those.

Compilation takes, on average, twice the amount of time as
compiling normal Scheme. This measurement was based on com-
piling a collection of15 servlets. This is because our compiler is
implemented as aPLT module language (Flatt 2002) that performs

#lang scheme
(require web-server/servlet)
(define(get-number which)
(string->number
(extract-binding/single
’number
(send/suspend
(λ (k-url)
‘(html

(body
(form ([action ,k-url])
,which" number:"
(input ([name "number"]))))))))))

(define(start req)
‘(html

(body
,(number->string

(+ (get-number"First")
(get-number"Second"))))))

Figure 11. Add-Two-Numbers (Before)

five passes over the source code before it produces normal Scheme.
These five passes cause a delay that is noticeable to developers but
not prohibitive.

There is no noticeable difference in the execution time of our
servlets versus standard servlets. Although it is possibleto cause
slow down by serializing large objects.

We tested scalability by comparing the space usage of a typi-
cal Web application before and after conversion to our system. Be-
fore, theLRU manager kept memory usage scarcely below 128MB.
This pattern of “hugging the edge” of the limit matches our ex-
perience with CONTINUE (Krishnamurthi 2003). After conversion,
the server uses about 12MB, of which approximately 10MB is the
bytecode for the application and its libraries.

We tested with multiple serialization regimes. WhenGZip is
used, no continuation is larger thanIE’s limit, so there is no per-
session state on the server. When we useHash, the continuation
store is about 24MB for approximately 150 users. This means that
we use about 20 percent of the preconversion storage, while pro-
viding moreservice, because continuations are never revoked. But
remember, we don’tneedto use that storage because the client can
hold every continuation.

6.2 Modularity & Compatibility

The final way we evaluate our work is by its ability to run unmod-
ified Scheme programs, in particular, Web applications. In most
cases, there is no difficulty whatsoever; the user simply changes one
line at the top of his or her program. Figure 11 presents a servlet
and Figure 12 shows the same servlet using our transformation: the
first line selects the compiler, and the second eliminates the unnec-
essaryrequire specification.

There are two categories of programs that lead to errors when
transformed. The first category is programs that include nonseri-
alizable data structures in the environment of their captured con-
tinuations. The second category is programs that use higher-order
library procedures with arguments that capture continuations.

6.2.1 Non-serialized Data Structures

Our transformation implements continuations with closures and
renders closures serializable through defunctionalization. However,
other data structures remain unserializable: ports, foreign pointers,
global and thread-local boxes, untransformed closures, parameters,

#lang web-server ;← different
;← different

(define(get-number which)
(string->number
(extract-binding/single
’number
(send/suspend
(λ (k-url)
‘(html

(body
(form ([action ,k-url])
,which" Number:"
(input ([name "number"]))))))))))

(define(start req)
‘(html

(body
,(number->string

(+ (get-number"First")
(get-number"Second"))))))

Figure 12. Add-Two-Numbers (After)

etc. If a program includes these data structures in the environment
of serialized continuations, then the continuation is not serializable.
In most cases this is not problematic, because these data structures
are often defined at the global level or used during a computation
but not between Web interactions. For example, it is much more
common for the function+ to be invoked during a computation
than for the function+ to be stored in a list that it is in the envi-
ronment of a continuation. Only the second prevents serialization.
Since these practices are so uncommon, we have not found con-
straint to prevent compatibility in practice.

6.2.2 Higher-order Third-Party Library Procedures

Programs that use higher-order third-party library procedures can-
not be used safely with our system. For example,

(map get-number(list "First" "Second"))

This does not work because thesend/suspendinside of get-
numberrelies on the� mark to capture the continuation, but be-
causemap is not transformed, its part of the continuation is not
recorded. We can detect this situation and signal a runtime error as
described by Pettyjohn et al. (2005). However, it isalwayspossible
to recompile the necessary code (i.e.,map) under our transforma-
tion.

7. Conclusion
We presented a modular program transformation that produces
RESTful implementations of direct style Web programs that use
expressive features, like continuation marks.

We have discussed how to extend this transformation into a
deployable system. We have discussed the opportunities forcon-
tinuation management this allows. We have evaluated the perfor-
mance of our work and found that it meets the gold standard of
scalability—no server-side session state—and can use as little as
10% of the memory when server-side state is desirable.

This work relies on continuation marks, so it is difficult to ap-
ply it to programming languages other thanPLT Scheme. How-
ever, practitioners could apply our technique easily once contin-
uation marks were available. Since continuation marks can be
implemented for both C# (Pettyjohn et al. 2005) and JavaScript
(Clements et al. 2008), it should be possible to automatically pro-
duceRESTful Web applications in those languages as well.

In the future, we will explore how to allow continuation cap-
ture in an untransformed context. We anticipate that theWASH ap-
proach (Thiemann 2006) of combining multiple continuationcap-
ture methods will be appropriate.

Acknowledgments We thank Matthew Flatt for his superlative
work onPLT Scheme. We thank Greg Pettyjohn for his work on the
prototype our system is based upon. We thank Matthias Felleisen,
Matthew Flatt, Shriram Krishnamurthi, and the anonymous review-
ers for their comments on this paper. This material is based upon
work supported under a National Science Foundation Graduate Re-
search Fellowship.

References
John Clements, Matthew Flatt, and Matthias Felleisen. Modeling

an algebraic stepper. InEuropean Symposium on Programming,
April 2001.

John Clements, Ayswarya Sundaram, and David Herman. Imple-
menting continuation marks in JavaScript. InScheme and Func-
tional Programming Workshop, 2008.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web programming without tiers. InFormal Methods for
Components and Objects, 2006.

Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside -
a multiple control flow web application framework. InEuropean
Smalltalk User Group - Research Track, 2004.

Matthias Felleisen and Robert Hieb. The revised report on the
syntactic theories of sequential control and state.Theoretical
Computer Science, 102:235–271, 1992.

Roy T. Fielding and Richard N. Taylor. Principled design of
the modern web architecture.ACM Transactions on Internet
Technology, 2(2):115–150, 2002.

M. J. Fischer. Lambda calculus schemata.ACM SIGPLAN No-
tices, 7(1):104–109, 1972. In theACM Conference on Proving
Assertions about Programs.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias
Felleisen. The essence of compiling with continuations.SIG-
PLAN Notices, 39(4):502–514, 2004.

Matthew Flatt. Composable and compilable macros. InInterna-
tional Conference on Functional Programming, 2002.

Paul Graham. Lisp for web-based applications, 2001.
http://www.paulgraham.com/lwba.html.

Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage collection
without paging. InProgramming Language Design and Imple-
mentation, pages 143–153, 2005.

Peter Walton Hopkins. Enabling complex UI in Web applications
with send/suspend/dispatch. InScheme Workshop, 2003.

John Hughes. Generalising monads to arrows.Science of Computer
Programming, 37(1–3):67–111, May 2000.

Shriram Krishnamurthi. The CONTINUE server. InPractical
Aspects of Declarative Langauges, January 2003.

Shriram Krishnamurthi, Peter Walton Hopkins, Jay McCarthy,
Paul T. Graunke, Greg Pettyjohn, and Matthias Felleisen. Im-
plementation and Use of the PLT Scheme Web Server.Higher-
Order and Symbolic Computation, 2007.

Jacob Matthews, Robert Bruce Findler, Paul T. Graunke, Shriram
Krishnamurthi, and Matthias Felleisen. Automatically restruc-
turing programs for the Web.Automated Software Engineering,
11(4):337–364, 2004.

Jay McCarthy and Shriram Krishnamurthi. Interaction-safestate
for the Web. InScheme and Functional Programming, Septem-
ber 2006.

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishna-
murthi, and Matthias Felleisen. Continuations from general-
ized stack inspection. InInternational Conference on Functional
Programming, September 2005.

Gordon D. Plotkin. Call-by-name, call-by-value, and theλ-
calculus.Theoretical Computer Science, 1975.

Christian Queinnec. The influence of browsers on evaluatorsor,
continuations to program web servers. InInternational Confer-
ence on Functional Programming, pages 23–33, 2000.

Peter Thiemann. Wash server pages.Functional and Logic Pro-
gramming, 2006.

Noel Welsh and David Gurnell. Experience report: Scheme in com-
mercial web application development. InInternational Confer-
ence on Functional Programming, September 2007.

