Automatically RESTful Web Applications

Marking Modular Serializable Continuations

Jay McCarthy

Brigham Young University
jay@cs.byu.edu

Abstract

Continuation-based Web servers provide distinct advastayer
traditional Web application development: expressive poesed
modularity. This power leads to fewer errors and more irstiang
applications. Furthermore, these Web servers are moreptioao-
types; they are used in some real commercial applicationfort
tunately, they pay a heavy price for the additional poweh@form
of lack of scalability.

We fix this key problem with a modular program transformation
that produces scalable, continuation-based Web prograssdb
on the REST architecture. Our programs use the same features
as non-scalable, continuation-based Web programs, so wetdo
sacrifice expressive power for performance. In particwarallow
continuation marks in Web programs. Our system uses 10 perce
(or less) of the memory required by previous approaches.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Featurel Control structures

General Terms Languages, Performance, Theory

Keywords Continuations, Stack Inspection, Web Applications

1. Introduction

The functional programming community has inspired Web iappl
cation developers with the insight that Web interactionegponds
to continuation invocation (Hughes 2000; Queinnec 200@h@m
2001). This insight helps texplainwhat Web applications do and
when ad hoc continuation capture patterns are erroneoish(ia-
murthi et al. 2007). This understanding leads to more cokiéab
applications.
Many continuation-based Web development frameworks try to
apply this insight directly by automatically capturing tiomations
for Web application authors. These frameworks are oftestfated
because they limit modularity, are not scalable, or onlyi@eh
correct continuation capture without more expressive powe
Whole-program compilation systems are unusable by real-
world developers because they sacrifice modularity anddote
tion with third-party libraries for performance and fornedégance
(Matthews et al. 2004; Cooper et al. 2006). Modular comiaifat
systems are unattractive to real world developers when dey

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31-September 2, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-332-7/09/08. . . $10.00

not add expressive power (Pettyjohn et al. 2005; Thiemaid6)20
Continuation-based Web servers are unusable by real weviel-d
opers, though they add more expressive power, because fthey a
inherently not scalable (Ducasse et al. 2004; Krishnarmetthl.
2007).

This paper presents a modular program transformation that p
duces scalable Web applications and offers more expregsiver
than existing modular systems. Web applications writteimgus
our system can offloadll state to clients—the gold standard of
scalability—or, if necessary, keep state on the server aedan
timesless memory.

2. Background

The largest problem Web developers solve is imposed by #e-st
lessness oHTTP: when a server responds to a client’'s request,
the connection is closed and the Web program on the server ex-
its. When the client makes a subsequent request, the redeest
livered to the server must contain enough information tames
the computation. The insight of functional programmersé this
informationis the continuation.

Traditional Web programmers call this representationatest
transfer REsT) (Fielding and Taylor 2002} It is naturally scalable
due to the lack of per-session state. Session state is ptdson
scalability because each session has an absolute claimreer se
resources. There is no sound way to reclaim space since dbrma
sessions may reactivate at any time. Thisciearly inefficient.
Consequently, unsafe and ad hoc resource policies, likeotins,
are used to restore some scalability. The scalabilitg®$T also
comes at a price in the form of programming difficulty. We will
demonstrate this by porting a calculator to the \eb.

(define(calc)
(display(+ (prompt"First:") (prompt"Second:"))))

We must break this single coherent function into three dffie
functions to create a Web application. Each function represa
distinct part of the control-flow of the application: entegithe first
number, entering the second, and displaying their sum.

(define(calc) (web-prompt'First:" ’get-2nd #f))
(define(get-2nd firsy (web-prompt'Second:" ’sum first))
(define (sum first second(display/wek(+ second firsi)

1Unfortunately, modern Web programmers have forgotten deiénition
of REST. They use the acronyrRESTto refer to a resource-based URL
structure where database operations (like create, replpdate, and delete)
are mapped to suggestive combinationsuefLs andHTTP request types
(like PUT, POST, GET, andDELETE). We will not useRESTInN this way.

2 All program examples are written LT Scheme.

(define(calc)
;; new-sessioallocates server-side storage
(web-prompt'First:" 'get-2nd (new-session)

(define(get-2nd session-id first
;; session-setinodifies server-side storage
(session-set! session-iélrst first)
(web-prompt'Second:" 'sum session-ij)

(define(sum session-id second
;; session-lookupeferences server-side storage
(definefirst (session-lookup session-ifirst))
(display/wel(+ second firsp)

Figure 1. REST Without All the REST

The continuation is encoded by the developer in the second
argument ofveb-promptand the free variables of the continuation
in the third argument.

Unfortunately, it is tiresome in most Web programming eomir
ments to marshal all data to the client and back but convetien
access the server-side store (through session objectsitaithdes),
so developers use this naturalkgsTful style in an entirely non-
RESTfUl way. (See Figure 1.)

The Web'sresTul style is a form of continuation-passing style
(cp9 (Fischer 1972). There are well-known transformationsnfro
direct stylecode intocpsthat allow Web applications to be written
in the natural way but converted into the scalable style bys#rver
before execution.

Matthews et al. (2004) gave an automatic translation from di
rect style programs into traditional Web applications.sTiool per-
forms acpstransformation\-lifting, defunctionalization, and a
store-passing style transformation (to capture the s@ea@okie
value). These direct style Web applications are entreg1ful be-
cause the lexical environment and store are transferreuttager
between interactions.

Unfortunately, thecpstransformation is not modular; the entire
code-basejncluding libraries must be transformed. Thus, this
technique is not feasible in applications that rely on unifietole
libraries or separate compilation.

The PLT Web Server by Krishnamurthi et al. (2007) does not
have this problem. It enables direct style Web applicatioriten
in PLT Scheme through first-class continuations. These implicit
continuations avoid theps transformation and thereby provide
modularity. However, theLT implementation technique sacrifices
theRESTarchitecture.

Continuations (and the environments they close overyun
Scheme cannot be serialized into an external format orfeeesl
to the client. Thus, theLT Web Server stores continuations in the
server’'s memory and provides the client with a unique idientior
each continuation. These continuations are per-sessioerstate,
and their unique identifiers are nemc roots. Because there is no
soundway to reclaim these continuations, they must be retained
indefinitely orunsoundlydeleted.

The memory problems associated with this resTful pol-
icy are well known. For example, a recanfp experience report
(Welsh and Gurnell 2007) concurs with our experience mangagi
the CONTINUE service (Krishnamurthi 2003) by reporting unrea-
sonable memory usage.ORTINUE is a Web application for pa-
per submissions, reviews, amd meetings, so there is no intrin-

(define(fact n)
(if (zero? n
(begin (display(c-c-m’fact))
1

(w-c-m’fact n (x n (fact (subl n)))))
(fact 3)
—
console output: (12 3)
computed value: 6

(define(fact-tr n @
(if (zero? 1
(begin (display(c-c-m’fact))
a

(w-c-m’fact n (fact-tr (subl n (x n @)))))
(fact3)
—
console output: (1)
computed value: 6

Figure 2. Factorial with Continuation Marks

2007) and a Least Recently Usadr()) continuation management
strategy. While useful remedies for some symptoms, theyatre
solutions. In contrast, the work presented herein reduasory
consumptiorby ten timedor these same Web applications.

Despite its memory problems, tlme.T Web Server provides a
valuable Web application framework, in part because ofifses-
sive features, like continuation marks.

Many programming languages and environments allow access
to the runtime stack in one way or another. Examples inclagia J
security through stack inspection, privileged access &nudgers
in .NET, and exception handlers in many languages. An abstraction
of all these mechanisms is provided iyt Scheme in continuation
marks (Clements et al. 2001). Using tivéh-continuation-mark
(w-c-m) language form, a developer can attach values to the con-
trol stack. Later, the stack-walking primitieirrent-continuation-
marks(c-c-n) can retrieve those values from the stack. Continu-
ation marks are parameterized by keys and do not interfetie wi
Scheme’s tail-calling requirements. These two mechanasios
marks to be used without interfering with existing code.

A pedagogic example of continuation mark usage is presented
in Figure 2 factis the factorial function with instrumentation using
continuation marksw-c-mrecords function arguments on the stack
andc-c-mcollects them in the base cadact-tr is a tail-recursive
version of factorial that appears to be an identical usagemtinu-
ation marks, but because they preserve tail-calling spsagea) the
intermediate marks are overwritten, leaving only the finarkn

Continuation marks are useful in all programs, but are parti
ularly useful on the Web. If the control stack is isomorptdicahe
user’s position in the application, then continuation nsac&n be
used to record information about where the user has gonesand i
going.

For example, in ©NTINUE we use a continuation mark to hold
the identity of the user. The essence of this technique isnsho
in Figure 3. This mark is stored on login and retrieved inside
display-sitefor tasks like paper rating. This is more convenient
than threading the state throughout the application aravalla
trivial implementation of user masquerading, so an adratisr
can debug a user’s problems, and delegation, so a reviewer ca

sic reason for this memory usage. We have experimented with aassign a sub-reviewer limited powers.

number of stopgap strategies, such as explicit continmatian-
agement through the primitiveend/forward(Krishnamurthi et al.

Web application developers are torn between RigsT archi-
tecture, direct style code, modularity, and expressiveufes, like

(define(start-server ireg|
(w-c-m current-user(show-logir) (display-sitg))

(define (who-am-)
(first (c-c-m current-used)

(define (delegate email papér
(w-c-m current-user(list ' delegate paper(who-am-))
(email-continuation-url emajl
(display-paper papgy)

(define(masquerade usgr
(if (symbot=? (who-am-) 'admin)
(w-c-m current-user use(display-sitg)
(access-denigg)

Figure 3. Marks in Web Applications

continuation marks. In this paper, we present a modularrarg
transformation that automatically produaessTful versions of di-
rect style Web programs that utilize continuation marks.

3. Transformation Intuition

Our modularresTful transformation is based on one from Pet-
tyjohn et al. (2005). Unfortunately, their transformatidoes not
support continuation marks in the input language, so it issud
ficient for our purposes. Our transformation is structyralmilar

to theirs, so we review their transformation before turniogur
contribution.

The Pettyjohn et al. (2005) transformation relies on the ufexd
Administrative Normal FormANF) transformation (Flanagan et al.
2004) and stack inspection to simulatl/cc.

ANF is a canonical form that requires all function arguments
to be named. This has the implication that the entire program
is a set of nestedet expressions with simple function calls for
bodies. If thelets are expanded intas, then the continuation of
every expression is syntactically obvious. Any expressian be
modularly transformed intaNF without modifying the rest of the
program.

The main insight of Pettyjohn et al. (2005) was that-mcan
“capture” the continuation, just likeall/cc, if the components of
the continuation are installed we-c-m. Their transformation does
this by duplicating the continuation into marks. This isyeage-
causeANF makes these continuations obvious, and the tail-calling
property of marks mirrors that of continuations themselgesthe
two stay synchronized.

Their work is a testament to the power of continuation marks;
we will review the essence of the transformation.

Function applications, likek(a), are transformed as

(k (w-c-m O k @)

whereJ is a special key known only to the transformation. This
effectively duplicates the continuation in a special marken
(call/cc @ is transformed as

(e (let ([ks(c-c-mO)])
(A (X) (abort (resume ks})))

whereresumerestores the continuation record from themarks
into an actual control stackesumemust also reinstall thel marks
so subsequent invocationsa#ll/cc are correct.

(define(resume | x
(if (empty?) x
(let ([k (first D] [1 (rest D))
(k (w-c-m O k (resume | ¥)))))

This transformation producegesTtful Web applications, be-
cause standard modularlifting and defunctionalization transfor-
mations encode all values into serializable represemsticat can
be sent to the client.

The great irony of the Pettyjohn et al. (2005) transformation
is that, while it shows the immense power of continuationksar
it does notsupport continuation marks in the input language; it
cannot be used for Web applications that use marks thensselve
Furthermore, it is not trivial to add support for continaatimarks
in the transformation: a semantic insight is necessarys-thour
formal contribution, in addition to the other practical@xsions we
have made.

3.1 Capturing Marks

The most intuitive strategy for supporting marks is to siyngahp-
ture “all the continuation marks” whenever the marks thabrd
the continuation are captured. However, this is not possibl

Continuation marks are parameterized by a key. When a devel-
oper uses-c-m she or he must provide a key—andly marks
associated with that kegre returned. If a mark is added with a
unique, or unknowable, key, such as a random value or unieder
symbol (a ‘gensyrt), then it cannot be extracted by the context it
wraps. This is an essential feature of continuation matiey aire
invisible to the uninitiated. Without this property, theHaeior of
an expression could drastically change with a change toittest:
new results could mysteriously return frazrc-mwithout any ex-
planation. This would have@ynamic scopé&evel of grotesqueness
to it.

We mustrecord the continuation marks, as we record the con-
tinuation components, so they can é&dractedwhen performing
continuation capture. A simple strategy is to transforniraflances
of

(w-c-mk v @ into (w-c-m k v (w-c-m o (cons Kk Y €))

whereo is a key known only to the transformation. It seems
straightforward to adapt the transformationcsdl/cc captures and
restores these marks as well

(e (let ([ks(c-c-mO)] [cms(c-c-mo)])
(A (X) (abort (re-mark cmg A () (resume ks})))))

wherere-markis similar toresume

(define(re-mark | @

(if (empty?] (€)
(letx ([cm (first)] [(rest D]

[m(car cm] [v (cdr cm)])

(w-c-m m v(w-c-m o (cons m ¥ (re-mark | 8)))))

While simple and elegant, these strategies are incorrect.

3.2 Reinstalling Marks
The first problem is thatesumeandre-mark do not interact cor-
rectly. Consider the following program:
(f (w-c-m k1 vi(g (call/cc 8)))
This is transformed into
(f (w-c-mOf
(w-c-m k1 vl(w-c-mo (cons k1 v}

(9(w-ccmUg
(e (let ([ks(c-c-mO)] [cms(c-c-mo)])

(A (%) (abort (re-mark cms

(A () (resume ks)})))))))))

If e calls the continuation with a valug, it reduces to

(w-c-m k1 vl(w-c-mo (cons k1 v}
(f (w-c-m D f (g (w-c-m 0 g X))))))

The mark fork1 s lifted outside off.

The problem is that even though theando marks are recorded
in the same stack frames, they are collected and installpa- se
rately: theos are put before thels. We can collect these together
by extracting multiple keys at once.

We correct the transformation afdll/cc € as

(e (let ([kxcms(c-c-m ©)])
(A (X) (abort (resume kecms 3))))

Whenc-c-mis givenn arguments, the marks are returned as a
list of frames where each frame is a list of lengthwhere (ist-ref |
1) is the value of associated with thargument o##f if none exists.
Naturally, resumemust combine the previoussumeandre-mark
operations.

(define(resume | x
(if (empty?) x
(letx ([M (car D] [I (cdr)] [k (car M)] [cm(cadr M)])

(cond
[(and k (not cm))
(k (w-c-m O k (resume |)]
[(and (not K cm)
(let ({m (car cm] [v (cdr cm)])

(w-c-m m v(w-c-m o cm(resume | ¥)))]

[else
(resume

(list= (list k #f) (list #f cm) 1) X)1))))

Even though the marks are now in the correct order, therdélis st
an error in our transformation.

3.3 The Algebra of Marks
Consider the transformation of the following program:
(w-c-m k1 vl(w-c-mk2 v2 g)

This is transformed as

(w-c-m k1 vl(w-c-mo (cons k1 v}
(w-c-m k2 v2(w-c-m o (cons k2 v2e))))

Because continuation marks respect the tail-calling pimse
of Scheme, if a frame already contains a mark for a key, th&cmar
is overwritten. Thus, the following are equivalent:

(w-c-m k v (w-c-m k u €)) and (v-c-m k u €)

Similarly, marks with different keys share the same frame.
Therefore, the following are equivalent:

(w-c-m z v (W-c-my u €)) and W-c-my u (W-c-m x v €))
Thus, the transformation is equivalent to

(w-c-m k1 v1(w-c-m k2 v2
(w-c-m o (cons k1 vl (w-c-mo (cons k2 v2e€))))

which is equivalent to

(w-c-m k1 v1(w-c-m k2 v2
(w-c-m o (cons k2 v2e)))

call/ccw)

(K T)e]

w|| (K a)

(@) e) [(K7)|o|rE

S8 ~

Variables
References
where Variables) References #

Q8
Mm M

En (w-c-mwv v’ &, A) wherev ¢ A
ARGES

0| S —]

Figure 4. SL Syntax

We've lost the record of thkl mark in theo mark.

One solution is to maintain a map from keys to values>in
marks and explicitly update that map with the continuaticerkn
transformation. For example, we will transform

(w-c-mk v @ into (w-c-m k v (c-w-i-c-mo (A (cmg
(w-c-m o (map-set cms K)\e)) empty)

where €-w-i-c-m key-v proc defaultyv(c-w-i-c-m = call-with-
immediate-continuation-maylcalls proc with the value associated
with key-vin the first frame of the current continuation. This is the
value that would be replaced if this call were replaced withlato
w-c-m. If no such value exists in the first franagfault-vis passed
to proc. The call toproc is in tail position. This function can be
implemented using just-c-m andc-c-m(Clements et al. 2008).
After changingresumeto operate on mark sets, we have a cor-
rect transformation of continuation marks in the input laage.
The rest of the transformation does not need to change dramat
cally for the entireeLT Scheme language. Nore s1ful Web appli-
cations can be written in direct style.

4. Formal Treatment

Armed with intuition, we present the continuation (markgae-
struction transformation formally.

4.1 The Source Language

The language in Figure 4, dubbsdfor sourcelanguage, is a mod-
ified version of A-Normal form ANF) (Flanagan et al. 2004). It
uses)\ instead oflet. Furthermore, we allow applications of arbi-
trary length. The language is extended wadil/cc, abort, letrec,
algebraic datatypes, and continuation marks. This isrdiffefrom
the source language of Pettyjohn et al. (2005) by includorgiou-
ation marks anabort, which were included in the target language
there. Algebraic datatypes are essential to using mabiat is in-
cluded for consistency with the target languafiedenotes zero or
more occurrences of .

Instances of algebraic datatypes are created with comstsuc
(K, K™) and destructured wittatch. We leave the actual set of
constructors unspecified, though we assume it containsahdard
list constructorgonsandnil.

L/E[((A@) e)D)] —si E/Ele[z — v]]

s/€((match(K o) 1)) sp S/€[efw — o]
where [(K T)e] €l

and is unique

s/€lletrec (o o) e)] Psr o 0]/€[e]

S/E(0T)] sr S/Elefw o))

%(o) = (A(@) e)

¥ /E[(matcho 1)) ¥ /E[(match (o) 1))

2/5[(W-C-m Vg V1 2/5[(W-C-m Vi V2

& l(w-emug vz e)])] — oy [e])]
where€’,, contains only w-c-ms

(6)

—SL

(7)

Y/E[(w-c-muy v v2)] ——sr B/E[v2]
s/elcem))] sr S/Ela(E, (i)
v/€l(aborte)] Ls, ¥/e
B/€](calllcer)] s B/E[(v k.E)]
$/E[(kE V)] Psr B/
Xvs(€) = Xxws (&, (nil))
Xos ([J; o) = v
Xvs((T E),v) = (consv; xus(E, (nil))
Xovs(W-C-Mug vy E), 1) = xvs(E, (CONS(CONSVE Vo) 17)))
if vy, € vs
Xovs(W-C-Mug vy E),v1) = Xws(E,01)
otherwise

Figure 5. SL Semantics

The operational semantics is specified via the rewritingesys
in Figure 5. Itis heavily based on target language semaotiPet-
tyjohn et al. (2005). The first rule is the stand@kdrewriting rule
for call-by-value languages (Plotkin 1975). The secondllemal-
gebraic datatypes.

Rules 3, 4, and 5 specify the semanticslédrec. Bindings es-
tablished byletrec are maintained in a global storE, For sim-
plicity, store referencess{) are distinct from identifiers bound in
lambda expressions (Felleisen and Hieb 1992). Furtherntore
simplify the syntax for evaluation contexts, store refesmare
treated as values, and dereferencing is performed whemearsfo
erence appears in an application (rule 4) or in a match esiores
(rule 5).

The next six rules implement the continuation-related ajmes.
Recall that continuation marks allow for the manipulatidrcon-
texts. Intuitively, (v-c-m k v € installs a mark for the key as-
sociated with the value into the continuation of the expression
e, while (c-c-m[v]) recovers a list of all marks for the keys in
embedded in the current continuation. To preserve projiecath
semantics, if a rewriting step results in more thanwre-m of the
same key, surrounding the same expression, the outermastsna
replaced by the inner one. Similarly, marks for differenykare
considered to be a single location.

The mark interleaving requirement is enforced by a grammar
for evaluation contexts that consists of one parameterizat
terminal. The parameter &f (A) represents the keys that avet
allowed to appear in the context. Thus, multiple adjaceft-m

S)

w e)

letrec ([o v]) e)
W-C-ma a e)
c-c-m[a])

matchw)
aborte)

NN SN N

S8 9 ~

Variables
References
where Variables) References #

Q8
Mm M

En (w-c-mwv v’ &, A) wherev ¢ A
(1] (@e)

0| S —]

Figure 6. TL Syntax

such a redex is encountered, the redundant marks are removed
starting with the outermost (rule 6). Marks that surrouncabue
are discarded after the evaluation of the subterm (rule Hg T
evaluation ofc-c-memploys the functiory to extract the marks of
the keys from the evaluation context (rule 8). Marks areastéd
in order, such that-c-mevaluates to a list of lists of pairs of keys
and their value, starting with the oldest.

The evaluation rules for continuations (rulesind) are stan-
dard; abort abandons the context (rule 9) to facilitate pment-
ing continuations.

4.2 The Target Language

The targetlanguage L) in Figure 6 is identical tosL, except
that call/cc has been removed along with the continuation values
associated with it. The semantics (Figure 7) is also idehtéxcept

for the removal of rulesx and ¢ for continuation capture and
application.

4.3 Replacing Continuation Capture

Following Pettyjohn et al. (2005), we define our translat{big-
ure 9) fromsL to TL asCMT, for continuationmark transform.
The translation decomposes a term into a context and a rgdex b
the grammar in Figure 8.

We prove that the decomposition is unique and thus the @ansl
tion is well-defined.

Lemma 1 (Unique Decomposition)
Lete € SL. Eithere € a or e = £[r] for some redex.

The translation rules are straightforward, except forigpgibn,
continuation capture, values and marks. Continuationegkre
transformed using a variation of the rule feall/cc. call/cc uses
c-c-m to reify the context and appli#ssumeto reconstruct the
context after a value is suppliedbort is used in the continuation-
as-closure to escape from the calling context, asstheemantics
does.

Continuations rely on the insertion of marks to capture the
continuation as it is built. This strategy employs the propef
ANF that every continuation is obvious, in that it is the valughia
function position of function applications. The trangbatimarks

expressions (of the same key) must be treated as a redex. Whereach application, using thel mark to record the continuation.

/(M) €) D)]
¥/E[(match(K) 1)]

X/&[(letrec ([o v]) €)]
%/€[(o)]
¥ /E[(matcho 1))

2/5[(W-C-m Vg V1
E v [(W-c-muy vz e)])]

1)

—TL

(2)

——TL
where
(3)

—TL
(4)
where
(5)

—TL

(6)

—TL

/€l o]
L/Ele[r — v]]
(K Z)e] €1

and is unique

Eo = v]/Ele]

S/Elefx — v]]
%(o) = (M@) €)

¥ /E[(match (o) 1))

2/5[(W-C-m Vg V2

vy [e)]

where&’,, contains only w-c-ms

)

2/5[(W-C-m VE V1 ’Uz)] —TL 2/5[1}2]
S/ElcemE)] orn S/EM(E, (nil))]
v/€l(aborte)] Ly Be
Xvs(E) = xvs (&, (nil))
Xos([J,01) = v
Xos (T E),11) = (cONswr xus (&, (nil))
Xovs((W-C-Mug vy E), 1) = xvs(E, (CONS(CONSVE Vo) 17)))
if v, € vs

Xvs((W'C'm Vi Uy 5)7”) = Xvs(g7vl)

otherwise

Figure 7. TL Semantics

)

aborte)
call/cce)
Ea

= (w
|
|
| (e
| (matchw
|
(N
=
I

I(@E)

letrec ([o w]) €)
w-c-ma a w)

)

w-c-mov v’ £, A) Wherev ¢ A

Figure 8. Translation Decompositions

Similarly, all continuation marks are recorded with themark.
Later, these marks will be collected byc-mand used to reproduce

the context.

The resumefunction (Figure 10) is used by the translated pro-

Variables and Values:
CMTx] ==z
CMTlo]l=0
CMT(A@) €)] = (A(T) CMTIe])
CMT[k.E] = (kont/ms x (g o1 (CMTIE], (nil)))
CMT((K @)] = (K CMTla])

Redexes:
CMT((w)] = (CMT [w])
cMT|(letrec ([o w]) e)] = (letrec ([o CMT [w]]) CMTe])
CMT[(w-c-me)] = (W-c-mCMTTe])
CMT](c-c-m[a))] = (c-c-m[CMTTa]])
CMT|(,atchw 1)] = (matchCMT [w] CMTI])
CMTI[(K Z)e]] = [(K T)CMTe]]
CMT|(aborte)] = (abortCMT [e])
CMT|[(calllccw)] = (CMT|w] kont)

kont = (kont/ms (c-c-m [0 ¢]))
kont/ms = (A(m) (A(z)
(abort(resume m x))))
Contexts:
CMTIl] =
CMT[(w)] = (K (w-c-mO K CMTIE]))
whereK = (A(z) (CMT[w] z))
CMT[(w-c-muv v’ £)] = (w-c-mwv v’ (c-w-i-c-m o (X (cms)
(w-c-m o (map-setms v v')
CMTIE])))
Compositions:
CMTIE[r]] = CMTIE][CMTIr]]

Figure 9. Translation from SL to TL

4.4 Correctness
Let

eval, (p) = {1 g/?,/i—)...v

Theorem 1. CMT [evalsr(p)] = evalrr (CMT [p])

Overview.If a source term reduces i steps, then its translation
will reduce in at least steps, such that the result of the translation’s
reduction is the translation of the source’s result. Thirtved by
induction onk. The base case is obvious, but the inductive case
must be shown by arguing that simulates each step @ in

a finite number of steps. This argument is captured in the next
lemma. |

gram.resumefaithfully reconstructs an evaluation context from a | emma 2(S|mulat|on)

list of pairs of continuation functions and mark sets. lvéises
the list and recursively applies the functions from thedistl rein-
stalls the marks usingestore-markslt restores the origindll and
o marks as well so that the context matches exactly and subsequ

call/cc operations will succeed.

If $/Ele] —s1 ¥ /E'[¢'] thenCMT[S]/CMT[Ele]] —,
CMT[S|JCMTIE[¢]]

Overview.This is proved by a case analysis of thesy re-
lation. It requires additional lemmas that cover the addi

(letrec
([resume
(v
(match
[(nil) v]
[(cons ms)
(match ms
[(nil) (resume | }]
[(cons(consd k) nil)
(k (w-c-m O k (resume | §))]
[(cons(conso cmg nil)
(restore-marks cms
(A () (w-c-m o cms(resume |))))]
[(cons(cons k) (conse cmg)
(w-c-m O k
(restore-marks cms
(A () (w-c-m o cms(resume | Y))))]
[(cons(conse cmg (cons k))
(w-c-m O k
(restore-marks cms
(A () (w-c-m o cms(resume |)))))1)))]
[restore-marks
(A (cms thnk
(match cms
[(nil) (thnk]
[(cons(cons m ycmg
(w-c-m m v(restore-marks cms thihj))]
[c-w-i-c-m(X (k proc default-y. . .)]
[rn)ap-set()\ (mapkvy...)])

Figure 10. Necessary Definitions

steps that—r; takes to reduce a program to images of sub-
expressions/contexts of the original. a

Lemma 3 (Compositionality)
CMTE]/CMTIEN[CMT [e]] =7z CMTE]/CMTIE][e]

Sketch.C M7] only introducesv-c-minto the context or abstracts
the continuation of an argument to a function. These additio
contexts are eventually erased as the argument is evaloated
surroundingw-c-m is removed as a value is returned. |

Lemma 4 (Reconstitution)
CMTIE]/(resume x(0,0} (CMTIE']) CMTv])
CMTIZ]/CMTIE|[CMTv]]

_)¥L

Proof. We proceed by cases on the structur€ of

Supposeg’ = [], thenCMT[E'] =], sox returns(nil) and
resume returnsCMT [v], which is equal td][CMT [v]].

Supposef’ = (w £), thenCMT(] expands to a mark that
capturest’ as a function abstracted ow&iin the] mark, which is
restored byresume. £ is preserved by induction.

Suppos€&’ = (w-c-muv v’ £), thenCMT] expands to a mark
that captures andv’ in theo mark, which is restored byesume.
£ is preserved by induction. a

Lemma 5 (Substitution)

CMT e[z — v]] = CMTe][z — CMT[v]]

Sketch.The CMT] transformation is applied to every subexpres-
sion in the transformed expression. Thus, tkesubstituted in will
eventually have€ M T[] performed on them it appears ir. If an

identifier appears in the argumentddA7 [], it is not transformed,
but left as is, so it could be substituted after the transétiom with
theCMT] of the valuev. |

4.5 Defunctionalization

We do not need to extend the defunctionalization defined lty Pe
tyjohn et al. (2005) in any interesting way, but in our impkam
tation we have extended it in the trivial way to keyed corition
marks and the numerows.1 A forms.

5. Extensions

Continuation marks, however, are not the only expressiatufes

of PLT Scheme we aim to support. We discuss how to support
fluid state, Web cells, advanced control flow, and contimumati
management in turn.

5.1 Parameters

Web applications often usBuid state State is fluid when it is
bound only in a particular dynamic context. The continuatizark
demonstration from the introduction (Figure 3) is an apgilan of
fluid state: when the user authenticates NG INUE, the “current
user identity” is bound in the dynamic context of tdesplay-
site call. Every link presents the user with a new page using the
same user identity. If another type of state were used, itavbea
more difficult to program or would prevent certain kinds otus
behavior. For example, if the environment were used, theruger
identity would need to be an argument to every function; & th
store were used, then there would be only one user identity fo
all uRLs associated with a session, thereby disallowing a “free”
implementation of masquerading and delegation.

PLT Scheme provides a mechanism for fluidly bound state: pa-
rameters. Parameters are effectively a short-hand foireatton
mark operations.parameterize p v € wrapse in a continuation
mark for the key associated wighbound tov. The parametep can
then be referenced insi@@&nd will evaluate to whatever the closest
mark is.

Unfortunately, parameters are not implemented this way, be
cause they also provide efficient lookup, thread-safety,thread-
local mutation. Instead, there is a single continuationknkay for
all parameters. This key is not serializable, so our marknding
and reconstitution strategy fails. The key is included and¢hptured
continuation structure but destroys its serializabilitye compen-
sate by providing an implementation of parameters usingtndt
serializable key for each parameter. This way, Web serebatsef-
fectively use fluid state, like parameters.

5.2 Web Cells

Sometimes fluid state (parameters), the environment @exari-
ables), and the store (mutable structures) are all inapiatepfor
Web applications. A simple example is maintaining the prefé
sort state of a list while the user is exploring the applaatiwith-
out forcing the user to have one sort state per session.

If fluid state is used, then the entire application must béteni
as tail calls to ensure that the dynamic extent of sort stamifina-
tions is the “rest” of the session. This means the progrant treis
written incPs

If the lexical environment is used, then the sort state mast b
threaded throughout every part of the application, inclgdhose
that are not related to the sorted list. This means the pnognast
be written in store-passing style, an invasive and nonnaodyibbal
program transformation.

If the store is used, then a single sort state will be usedlfor a
browsers displaying the same list. This means the user wilbe

able to use the Web interactions provided by the browseh asc
Open in New Window, to compare different sorts of the same list.

Web cells (McCarthy and Krishnamurthi 2006) provide a kind
of state appropriate for the sort state. Semantically, ¢h@t\Web
cells is a store-like container that is part of the evaluationtext;
however, unlike the store, it is captured when continuatiare
captured and restored when they are invoked. Since cotitnua
capture corresponds to Web interaction, this state is “floiger
the Web interaction tree, rather than the dynamic call tree.

It is easy to add support for Web cells in our system. We
have a thread-local box that stores the cells for the e>xatudf
a continuation. Whenever a continuation is captured, tlase
saved. Our serializable continuation data structure am\{@) the
continuation components, (b) the continuation marks, andhe
Web cell record. Each of these are restored when the cotitinua
is called.

5.3 Request Handlers

send/suspend the fundamental operator of tireT Web Server.
This function captures the current continuation, seraliit into a
URL, and calls a display function with therL. This works well
for applications with a linear control-flow. However, mogpéca-
tions have many possible continuations (links) for eactepagd
therefore are difficult to encode wittend/suspend

We can simulate this control-flow by dispatching on someaextr
data attached to a single continuation capturedsdiyd/suspend
This dispatching pattern is abstracted isend/suspend/dispatch
(s/s/9 (Hopkins 2003). This function allows request handling-pro
cedures to be embedded as links; when clicked, the requgiseis
to the procedure, and the procedure returrgsfds continuation.

For example, consider the servlet

(define(show message
(send/suspend/dispatch
(A (embed/ur)
‘(html (h1 ,message
(a ([href ,(embed/url(\ _ (show"One")))]) "One")
(a ([href ,(embed/url(A _ (show" Two")))]) "Two")))))

This servlet generates a page with two links: one for eadhteal
embed/urlWhen clients click on either, they are sent to an identical
page that contains a header with the link text.

s/s/dcan either build a hash-table and perform dispatching with
a single continuation, or it may be written (Krishnamurthiag
2007) succinctly as

(define (send/suspend/dispatch mk-ppge
(let/cc application-context
(local
[(define (embed/url handler
(let/ec mk-page-context
(application-context
(handler
(send/suspend
mk-page-conteXy))]

(send/bacKmk-page embed/J)))

This encoding employs a clever use of continuations to emb
the handler in the continuation captured $gnd/suspendVhen
embed/urlis called, it captures the continuation wk-page mk-

This encoding generates one continuation per cals/sd
(application-contextand one escape (“one-shot”) continuation per
call to the embedding procedumak-page-context

We can do better with serializable continuations. Becawse e
erything is serializable and manipulable, we can implensésfid
as

(define(send/suspend/dispatch mk-page
(call-with-serializable-current-continuation
(A (application-context
(define(embed/url handler
(defineapplicatiord-handler-context
(kont-cons handler application-contgxt
(kont—url applicatiorH-handler-contex)
(send/bacKmk-page embed/J))))

Like before, this implementation first captures the cordtian
of s/s/d embed/urlaccepts a procedure and returns a continuation
serialized into aurL. This serialized continuation is the continu-
ation of s/s/dwith the procedure appended to the end. Since the
components of the continuation are represented as a listaweo
this directly. However, the continuation components aogest in
reverse order, so a logical append is a prepend on the repaese
tion.

In the program,

(f (g (h (s/s/d(A (embed/ul (embed/url))))))

application-contexts (list h g f) andapplication+-handler-context
is (listihgf).

This captures only a single continuation regardless of hawym
handler procedures are embedded. This improves our &inte
space efficiency.

5.4 Continuation Management

In our system, continuations are serialized and embeddédein
URLS given to the client by default. However, there are some-prag
matic reasons why this is not always a good idea.

First, there is, in principle, no limit to the size of a contation.

If the lexical environment contains the contents of anMB(file,
then the continuation will be at least @8s (modulo clever com-
pression). Most Web clients and servers supp@&ts of arbitrary
length, but some browsers and servers do not. In particMar,
crosoft Internet Exploreng) limits URLS to 2,048 characters and
Microsoft 11s limits them to 16,384 characters.

Second, if a continuation is embedded iwAL and given to
the user, then it is possible to manipulate the continuaitioits
serialized form. Thus, the environment and Web cell costen¢
not “secure” when handled directly by users.

Providing security is not always appropriate, so we allonbWe
application developers to customize tkent—url function that is
used to embed continuations WrrLs with “stuffers.” We provide
a number of different stuffer algorithms and the ability topose
them. They compose because they produce and consumezseriali
able values.

Plain The value is serialized with no special considerations.
e(§|Zip The value is compressed with the GZip algorithm.
Sign The value is signed with a parameterized algorithm.

page-contextwhich is in the process of constructing a lirfm- Crypt The value is encrypted with a parameterized algorithm.

bed/url provides this link by giving the continuatiomk-page-

contextto send/suspendwhich calls its argument with a link to
send/susperisl continuation.embed/urlis arranged so that when
send/suspengbturns, its return value is given to the handler, whose

Hash The value is hashed with thed5 or SHAL algorithm. The value

is serialized into a database addressed by the hash andsthe ha
is embedded in therL.

return value is given to the caller sfend/suspend/dispatchia Len(s) Stuffersis used if theurL would be too long when stuffed with

application-context

the value.

These techniques can be combined in many ways. For exam-

ple, an application with small continuations and no needsfsr
crecy could just use thBlain algorithm. An application that had
larger continuations might add ti&ip algorithm. An application
that needed to protect against changes could ad&igre algo-
rithm, while one that needed to guarantee the values coultdeno
inspected might ad@rypt. Finally, an application that did not want
the expense in either bandwidth or computational time cqust
use theHash algorithm. EveryurL would be the same length, and
identical continuations would be stored only once.

Although theHash method is not trulyresTful, it performs
drastically better than the traditional method of storihg ton-
tinuations in memory. It uses less space because the catitinu
representation is tailored to the particular applicatinmontrast to
the standara-stack copy. Furthermore, it takes less time to service
requests. This might seem implausible since the operaystgs’s
virtual memory system seems morally equivalent to a coation
database because unused parts of memory are moved to digk. Ho
ever, thevm considers memory unused only when it is not touched
by the application. IrPLT Scheme, the garbage collector stores a
tag bit with objects. Thus, even though the collector daeseéd
to walk all data, collection affects these tag bits, whichses the
operating system to bring the entire page into main memdrs T
paging, which would not be present with a swap-sensitiveage
collector (Hertz et al. 2005), causes severe performangeada-
tion.

The Hash method has the additional advantage of providing
multi-server scalability easily, compared to other pdssaerver-
side continuation stores. Since thiash method guarantees that

two writes to the same key must contain the same data, becausé®

otherwise the hashing algorithm would not be secure, nialtifeb
servers do not need to coordinate their access to the datalbas
serialized continuations. Therefore, replication can beedlazily
and efficiently, avoiding many of the problems that many isess
object databases are fraught with.

5.4.1 Replay Attacks

Since theurLs of our application completely specify what the
Web application will do in response to a request, it is ndttoa
assume that our applications are particular susceptibleptay
attacks. For example, suppose we build a stock-tradingcapiain
and at some point a user sell® shares. An adversary could
capture the continuation for “selD shares” and replay it times to
sell 10n shares, even with encryption in place. This seems utterly
unacceptable.

However, consider the same application on another platform
where the continuation is specified through an ad-hoc coatiloim

of URL, form data, and cookies. In this case as well, a request may

be replayed to perform this attack. On a traditional platfothis
would be prevented by some server-side state. For exangtl, e
server response would include a unique identifier that wbalsent
back with requests; each identifier would be allowed to beived
only once, and the identifier would be cryptographicallydtte
the incoming requests, so that new identifiers could not teel us
to “freshen” old requests to replay them. This same stratagybe
implemented in our system as well, except perhaps betteuisec
the unique identifier can be combined with #tire continuation
since it is explicitly represented, in one place, in our syst

As before with the various stuffer algorithms, it is not aywa
appropriate to disallow replays. For example, it is usefulise
the browser'Refresh button and to send links to colleagues. If we
provided replay protection “for free,” we would also digsil many
useful Web applications.

5.4.2 Serialization Format

Each continuation record is scarcely more than 100 byteis.ih
split between Web cells, the continuation marks, and théirmos-
tion function components. The cells and marks are compartabl
the lexical values captured in the continuation. Each fonds se-
rialized as a unique identifier that refers to the compiledecand
the captured values of free variables. The continuatioortebas a
list of these functions. A sanitized, sample record is below

(serialized((web-server/lang/abort-resumeveb:konj
(web-server/lang/web-cellaveb:framé
(application/servlet web:300)

(web:kont
(web:frame
(list (cons web:23-1path #"static-path" . unix))
(cons web:10-@path #"db-path" . unix))
(cons web:36-2'username")))
(list (vector(web:300Q #f))))

This can be seen as a short program that constructs theizeial
value. The first part records what modules contain the difirst

of data-structures that are created. The module path refevde
loaded into theeLT Scheme instance that is deserializing the con-
tinuation. If they are resolved to the wrong code, or if thedole

are simply not available, then deserialization will faihi§ means
any PLT Scheme instance with access to the same source can de-
serialize this continuation. Our system protects agaiegamn er-
rors by including in a hash of the module source in the names of
continuation data structures. In the real record that thé&rple
orresponds to, the toke390 would include a hash of the source
of application/servleto result in a deserialization error if the code
were changed, rather than the unsafe behavior that woultt ies
different kind of continuation were populated with erronsaata
from this record.

The second part is an expression that creates the continuati
record. Its first field contains the record of the Web cellsisTh
is an association list from identifying symbols to values.ttis
example, two of the values are paths, while the other is agstri
The second field of the continuation is the continuation re.cbhis
is the list that will be passed t@sume In the example, there is a
single functionweb:300 with no accompanying continuation mark
recording.

6. Evaluation

The formal treatment of Section 4 can tell us if the transfation
is correct and if it formally has the modularity properties desire,
but it cannot tell us if it is useful for producing scalabies sTful,

direct-style Web applications.

6.1 Scalability

We observe that Web applications in our system written irair
style can be entirelyresTful. Their usage of the lexical environ-
ment, fluid state, and Web cells are all contained in sedhle
structures. These can then be stored by the client in erexhygid
compressedRLs. Cookies can easily capture store state, and since
nearly all data structures are serializable, any value eastdred

in cookies. Finally, our programs majooseto use server state
where appropriate.

However, our system would not really be useful if it greatly
slowed down the developer (with compilation lag) or the rdlie
(with execution lag), so we measure those.

Compilation takes, on average, twice the amount of time as
compiling normal Scheme. This measurement was based on com-
piling a collection of15 servlets. This is because our compiler is
implemented as aLT module language (Flatt 2002) that performs

#lang scheme
(require web-server/servigt
(define (get-number which
(string->number
(extract-binding/single
"number
(send/suspend
(A (k-url)
‘(html
(body
(form ([action ,k-url])
,which" number:"
(input ([name "number"]))))))))))
(define(start reg
‘(html
(body
,(humber=>string
(+ (get-number'First")
(get-number'Second"))))))

; « different
; «— different
(define(get-number which
(string->number
(extract-binding/single
"number
(send/suspend
(A (k-url)
‘(html
(body
(form ([action ,k-url])
,which" Number:"
(input ([name "number"]))))))))))
(define(start reg
‘(html
(body
,(humber=>string
(+ (get-number'First")
(get-number'Second"))))))

#lang web-server

Figure 11. Add-Two-Numbers (Before)

Figure 12. Add-Two-Numbers (After)

five passes over the source code before it produces normairéch
These five passes cause a delay that is noticeable to derselnfie
not prohibitive.

etc. If a program includes these data structures in the @amvient
of serialized continuations, then the continuation is eoidizable.
In most cases this is not problematic, because these datiLsgs

There is no noticeable difference in the execution time of ou &ré often defined at the global level or used during a comiputat

servlets versus standard servlets. Although it is possibleause
slow down by serializing large objects.

but not between Web interactions. For example, it is muchemor
common for the functiont- to be invoked during a computation

We tested scalability by comparing the space usage of a typi- than for the function+ to be stored in a list that it is in the envi-

cal Web application before and after conversion to our sysie-
fore, theLRU manager kept memory usage scarcely belowi28

This pattern of “hugging the edge” of the limit matches our ex

perience with ©NTINUE (Krishnamurthi 2003). After conversion,
the server uses about &8, of which approximately 1@8 is the
bytecode for the application and its libraries.

We tested with multiple serialization regimes. Whé#ip is
used, no continuation is larger thag's limit, so there is no per-
session state on the server. When we Haeh, the continuation

store is about 248 for approximately 150 users. This means that

we use about 20 percent of the preconversion storage, widle p

ronment of a continuation. Only the second prevents seaitidin.
Since these practices are so uncommon, we have not found con-
straint to prevent compatibility in practice.

6.2.2 Higher-order Third-Party Library Procedures

Programs that use higher-order third-party library proced can-
not be used safely with our system. For example,

(map get-numbeflist "First" "Second"))

This does not work because tlsend/suspendhside of get-
numberrelies on thel mark to capture the continuation, but be-

viding moreservice, because continuations are never revoked. But causemapis not transformed, its part of the continuation is not
remember, we dontieedto use that storage because the client can recorded. We can detect this situation and signal a runtimoe as

hold every continuation.

6.2 Modularity & Compatibility

The final way we evaluate our work is by its ability to run unmod
ified Scheme programs, in particular, Web applications. bstm
cases, there is no difficulty whatsoever; the user simplpgbaone
line at the top of his or her program. Figure 11 presents deterv
and Figure 12 shows the same servlet using our transformatie
first line selects the compiler, and the second eliminatesitimec-
essaryrequire specification.

described by Pettyjohn et al. (2005). However, #liwayspossible
to recompile the necessary code (iraap under our transforma-
tion.

7. Conclusion

We presented a modular program transformation that praeduce
RESTful implementations of direct style Web programs that use
expressive features, like continuation marks.

We have discussed how to extend this transformation into a
deployable system. We have discussed the opportunitiesofor

There are two categories of programs that lead to errors when ¢, ation management this allows. We have evaluated thiemper

transformed. The first category is programs that includesaeonn
alizable data structures in the environment of their caatiuon-
tinuations. The second category is programs that use higier
library procedures with arguments that capture contionati

6.2.1 Non-serialized Data Structures

Our transformation implements continuations with closuaad
renders closures serializable through defunctionatimatiowever,
other data structures remain unserializable: ports,darpointers,
global and thread-local boxes, untransformed closureanpeters,

mance of our work and found that it meets the gold standard of
scalability—no server-side session state—and can usétlasalé
10% of the memory when server-side state is desirable.

This work relies on continuation marks, so it is difficult tp-a
ply it to programming languages other thant Scheme. How-
ever, practitioners could apply our technique easily onmetin-
uation marks were available. Since continuation marks can b
implemented for both C# (Pettyjohn et al. 2005) and JavaScri
(Clements et al. 2008), it should be possible to automayigab-
duceresTful Web applications in those languages as well.

In the future, we will explore how to allow continuation cap- Paul Graham. Lisp for web-based applications, 2001.
ture in an untransformed context. We anticipate thawwheH ap- http://www.paulgraham.com/lwba.html.
proach (Thiemann 2006) of combining multiple continuati@p-

ture methods will be apprapriate. Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage catiact

without paging. InProgramming Language Design and Imple-
Acknowledgments We thank Matthew Flatt for his superlative mentation pages 143-153, 2005.

work onPLT Scheme. We thank Greg Pettyjohn for his work on the peter Walton Hopkins. Enabling complex Ul in Web applicasio
prototype our system is based upon. We thank Matthias Beliei with send/suspend/dispatch. Stheme Workshpg003.

Matthew Flatt, Shriram Krishnamurthi, and the anonymouiere- John Hughes. G lisi d) fC
ers for their comments on this paper. This material is baget u OPTogLrlgm?r?i-ngggt(e{ié?ggﬂig? NSI;:)C/) %ro@om_ nce of Computer

work supported under a National Science Foundation Gradret

search Fellowship. Shriram Krishnamurthi. The G@NTINUE server. InPractical
Aspects of Declarative Langaugesnuary 2003.

References Shriram Krishnamurthi, Peter Walton Hopkins, Jay McCarthy
John Clements, Matthew Flatt, and Matthias Felleisen. NMoge Paul T. Graunke, Greg Pettyjohn, and Matthias Felleisen. Im
an algebraic stepper. Buropean Symposium on Programming plementation and Use of the PLT Scheme Web Setdégher-

April 2001. Order and Symbolic ComputatipR007.

John Clements, Ayswarya Sundaram, and David Herman. Imple- Jacob Matthews, Robert Bruce Findler, Paul T. Graunke r&ri
menting continuation marks in JavaScript.3cheme and Func- Krishnamurthi, and Matthias Felleisen. Automaticallytres-
tional Programming Worksho2008. turing programs for the WeltAutomated Software Engineering

. . 11(4):337-364, 2004.
Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.))))
Links: Web programming without tiers. IFormal Methods for Jay McCarthy and Shriram Krishnamurthi. Interaction-ssthte

Components and Object8006. for the Web. InScheme and Functional Programmijrgeptem-
ber 2006.
Stéphane Ducasse, Adrian Lienhard, and Lukas Rengglsidea . . .
a multiple control flow web application framework. European Greg Pettyjohn, John Clements, Joe Marshall, Shriram Keish
Smalltalk User Group - Research Trag004. murthi, and Matthias Felleisen. Continuations from gehera

. . .) ized stack inspection. limternational Conference on Functional
Matthias Felleisen and Robert Hieb. The revised report en th Programming September 2005.

syntactic theories of sequential control and staléneoretical)
Computer Sciencd 02:235-271, 1992. Gordon D. Plotkin. Call-by-name, call-by-value, and the

. . o) calculus.Theoretical Computer Scienc&d75.
Roy T. Fielding and Richard N. Taylor. Principled design of o .)
the modern web architectureACM Transactions on Internet ~ Christian Queinnec. The influence of browsers on evaluaiors
Technology?2(2):115-150, 2002. continuations to program web servers.Ihternational Confer-

. ence on Functional Programmingages 23—-33, 2000.
M. J. Fischer. Lambda calculus schemat&CM SIGPLAN No- . . .
tices 7(1):104—109, 1972. In thaCM Conference on Proving ~ Peter Thiemann. Wash server pagésinctional and Logic Pro-

Assertions about Programs gramming 2006.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Noel Welsh and David Gurnell. Experience report: Schemein-c
Felleisen. The essence of compiling with continuatio8$G- mercial web application development. Ilternational Confer-
PLAN Notices39(4):502-514, 2004. ence on Functional Programmin&eptember 2007.

Matthew Flatt. Composable and compilable macrosInterna-
tional Conference on Functional Programmirgp02.

