
Temporal Higher-Order
Contracts

Tim Disney, Cormac Flanagan, Jay McCarthy

This material is based upon work supported by the National Science Foundation under Grants 1016334 and 0905650.
1

sort : fun

2

sort : fun

4, true,
(list 1 2 3)

2

sort : fun

4, true,
(list 1 2 3)

quicksort,
insertionsort,

+, modulo

2

sort :
list(Int)

fun
→

list(Int)

3

sort :
list(Int)

fun
→

list(Int)
+, modulo

3

sort :
list(Int)

fun
→

list(Int)
+, modulo

quicksort,
insertionsort,

filter

3

sort :
list(Int)

(Int Int → Bool)
→

list(Int)

4

sort :
list(Int)

(Int Int → Bool)
→

list(Int)
filter, map

4

sort :
list(Int)

(Int Int → Bool)
→

list(Int)
filter, map

quicksort,
insertionsort

4

sort :
list(Int)

(Int Int → Bool)
→

list(Int)
[not re-entrant]

5

(define (cmp x y)
 (f x y
 (sort m <=)))

(sort l cmp)

6

sort :
list(Int)

(cmp : Int Int → Bool)
→

list(Int)
[not re-entrant, cmp is

a capability]
7

(define last-cmp #f)
(define (partner l cmp)
 (set! last-cmp cmp)
 (quicksort l cmp))
(define (thief x y)
 (last-cmp x y))

8

• first-order preconditions (Eiffel, etc)

• higher-order contracts (Racket, etc)

• first-order temporal contracts (MOP, etc)

• higher-order temporal contracts

9

SortContract =
 sort : (List Pos)
 (cmp : Pos!Pos!Bool)
 ! (List Pos)
 where
 not ... call(sort,_) !ret(sort,_)*
 call(sort,_)
 and
 not ... ret(sort,_) ... call(cmp,_)

10

Client Server

11

Client Server

12

Client Server

13

Client Server

14

Step 1: Game Semantics

15

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

16

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

16

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

16

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

16

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

16

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

16

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

16

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

16

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

16

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

17

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

17

Figure 1: CSI Machine
Domains

State CSI ∈ Code × Store × Interface

Code C ::= E[e] | Q[⊥]
Store S ∈ P(Var ×Var × Value)
Interface I ∈ Var → Value

Evaluation context E ::= E[• e] | E[v •] | E[ref •] | Q[rcv.callx •]
Quiescent context Q ::= • | E[send.callx •]
Value v ::= c | x | λy. e
Handle h ::= c | x
Event a ::= ρ.ret(x, h) | ρ.call(x, h)
Direction ρ ::= send | rcv
Trace t ::= #a

Transition relation (→) ⊆ State × Event⊥ × State

〈 E[(λx. e) v], S, I 〉 → 〈 E[e[x := v]], S, I 〉 [CALL]
〈 E[c v], S, I 〉 → 〈 E[v′], S, I 〉 v′ = δ(c, v) [PRIM]
〈 E[ref v], S, I 〉 → 〈 E[pair x y], S[(x, y) (→ v], I 〉 x, y fresh [REF]
〈 E[x v], S[(x, y) (→ v′], I 〉 → 〈 E[v′], S[(x, y) (→ v′], I 〉 [GET]
〈 E[y v], S[(x, y) (→ v′], I 〉 → 〈 E[v], S[(x, y) (→ v], I 〉 [SET]

〈 E[x v], S, I 〉 →send.call(x,h) 〈 E[send.callx ⊥], S, I[h % v] 〉 x)∈ BV(S) [SEND-CALL]
〈E[send.callx ⊥], S, I 〉 →rcv.ret(x,h) 〈 E[h], S, I 〉 [RCV-RET]
〈 Q[⊥], S, I 〉 →rcv.call(x,h) 〈Q[rcv.callx (v h)], S, I 〉 I(x) = v [RCV-CALL]
〈 Q[rcv.callx v], S, I 〉 →send.ret(x,h) 〈 Q[⊥], S, I[h % v] 〉 [SEND-RET]

Figure 2: Example of Linking and Running Two CSI Machines Concurrently
The two CSI machines shown below cooperate to evaluate linkRun([[H]], [[twice]]). After the initial bootstrapping, send events of one machine match rcv
events of the other and vice-versa. The final send.ret(y, 6) event reports the result of the execution is 6.
Evaluation ofH = (λt. t (λx. x+1) 4) Evaluation of twice = (λf. λx. f (f x))
I1 = [y (→ (λt. t (λx. x+1) 4)] I2 = [t (→ (λf. λx. f (f x))]
J1 = [y (→ (λt. t (λx. x+1) 4), f (→ (λx. x+1)] J2 = [t (→ (λf. λx. f (f x)), g (→ (λx. f (f x))]

〈 rcv.callstart (λt. t (λx. x+1) 4), ∅, ∅ 〉→send.ret(start,y)

〈⊥, ∅, I1 〉→rcv.call(y,t)

〈 rcv.cally ((λt. t (λx. x+1) 4) t), ∅, I1 〉→
〈 rcv.cally ((t (λx. x+1)) 4), ∅, I1 〉→send.call(t,f)

〈 rcv.cally (send.callt ⊥) 4), ∅, J1 〉
→rcv.ret(t,g)

〈 rcv.cally (g 4), ∅, J1 〉→send.call(g,4)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉
→rcv.call(f,4)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 4))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 5)), ∅, J1 〉→send.ret(f,5)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.call(f,5)

〈 rcv.cally (send.callg (rcv.callf ((λx. x+1) 5))), ∅, J1 〉→2

〈 rcv.cally (send.callg (rcv.callf 6)), ∅, J1 〉→send.ret(f,6)

〈 rcv.cally (send.callg ⊥), ∅, J1 〉→rcv.ret(g,6)

〈 rcv.cally 6, ∅, J1 〉→send.ret(y,6)

〈⊥, ∅, J1 〉

〈 rcv.callstart (λf. λx. f (f x)), ∅, ∅ 〉
→send.ret(start,t) 〈⊥, ∅, I2 〉

→rcv.call(t,f) 〈 rcv.callt ((λf. λx. f (f x)) f), ∅, I2 〉
→ 〈 rcv.callt (λx. f (f x)), ∅, I2 〉
→send.ret(t,g) 〈⊥, ∅, J2 〉
→rcv.call(g,4) 〈 rcv.callg ((λx. f (f x)) 4), ∅, J2 〉
→ 〈 rcv.callg (f (f 4)), ∅, J2 〉
→send.call(f,4) 〈 rcv.callg (send.callf (f ⊥)), ∅, J2 〉

→rcv.ret(f,5) 〈 rcv.callg (f 5), ∅, J2 〉
→send.call(f,5) 〈 rcv.callg (send.callf ⊥), ∅, J2 〉

→rcv.ret(f,6) 〈 rcv.callg 6, ∅, J2 〉
→send.ret(g,6) 〈⊥, ∅, J2 〉

noting the initial evaluation of a module. Once the evaluation of e
terminates, it will return send.ret(start , h) and wait for incoming
events. The meaning of a module e is then the set of all possible
event sequences !a that e can generate under the CSI machine:

[[−]] : Module → P(Trace)
[[e]] = {!a | 〈rcv.callstart e, ∅, ∅〉 →!a CSI }

We use t to range over traces or finite event sequences !a; we use
T to range over sets of traces; and t · t′ to denote trace concatena-
tion. The exported variables (EV) and imported variables (IV) in
a CSI machine state, and the bound variables (BV) of a store S,

are:

EV (C, S, I)
def
= dom(I)

IV (C, S, I)
def
= (FV (C) ∪ FV (rng(S)) ∪ FV (rng(I)))

\ BV (S)

BV (S)
def
= {x, y | S contains (x, y) '→ v}

Thus, the initial state 〈rcv.callstart e, ∅, ∅〉 of a module’s compu-
tation has no imported variables or capabilities [37]; they must be
passed explicitly as arguments to functions defined by the module.

4 2011/6/29

17

Step 2: Contracts are
Trace Predicates

18

⟦e⟧

19

K ∩ ⟦e⟧

20

Universal Contract:
⟦(λx. x)⟧

21

Properties

• Complete: Any computable predicate

• Non-interference: No new behaviors

22

Step 3: Programming
Simple Contracts

23

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

24

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

24

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

24

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

24

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

24

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

24

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

24

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

24

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

24

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

[[eK e]] = K ∩ [[e]]. However, [[eK e]] must be input-enabled butK
(and hence K ∩ [[e]]) may not be input-enabled, so more precisely
[[eK e]] should be the input-enabled closure of K ∩ [[e]], that is,
the smallest superset of K ∩ [[e]] that is input-enabled. Intuitively,
[[eK e]] has to receive “bad” events from its enclosing context but
can block them from being sent on to e.

4.1 The Universal Contract
The identity function (λx. x) behaves like a universal contract, in
that ((λx. x) e) exposes all the behaviors of module e. We start by
studying the semantics [[λx. x]] of this universal contract.
Consider the possible executions of the CSI machine starting

from the initial state S0 = 〈rcv.callstart (λx. x), ∅, ∅〉. When-
ever the machine imports a variable y via [RCV-CALL] or [RCV-RET],
it immediately exports a fresh name, say ŷ, for that variable, via
[SEND-CALL] or [SEND-RET]. Here, the hat (·̂) operator maps be-
tween imported and exported variable names, and is an involution
(its own inverse). We extend this hat operator to handles by defin-
ing ĉ = c. The set of identity function traces [[λx. x]] is then the
well-formed subset of the prefix-closure of the following regular
grammar. Note that the last two productions essentially copy events
from one side of the identity function to the other, renaming vari-
ables appropriately.

Tid ::= send.ret(start , f)
| Tid · rcv.call(f, h)·send.ret (f, ĥ)
| Tid · rcv.call(y, h)·send.call(ŷ, ĥ)
| Tid · rcv.ret (y, h)·send.ret (ŷ, ĥ)

4.2 Copycat Traces
We next consider contracts that are more restrictive than the identity
function. Suppose the target module e generates the trace:

t = send.ret(start , h) · a1 · . . . · an

If the contract K permits this trace then [[eK]] should include:

copycat(t)
def
=

send.ret(start , f) · rcv.call(f, h) · send.ret(f, ĥ)·
copy(a1) · . . . · copy(an)

This trace returns a function f that is applied to the handle h

produced by t. It then returns a renamed handle ĥ, and subsequently
copies every event ai from one side of eK to the other via the
following event copying function copy(a):

copy(send.call(y, h)) = rcv.call(y, h)·send.call(ŷ, ĥ)
copy(send.ret (y, h)) = rcv.ret (y, h)·send.ret (ŷ, ĥ)
copy(rcv.call(y, h)) = rcv.call(ŷ, ĥ)·send.call(y, h)
copy(rcv.ret (y, h)) = rcv.ret (ŷ, ĥ)·send.ret (y, h)

We extend copycat from traces to trace sets in a pointwise fashion:

copycat(K)
def
= {copycat(t) | t ∈ K}

This copycat function allows us to formalize the relationship be-
tween the permissible traces K and the contract implementation
eK . We require that eK copies onlyK-traces:

[[eK]] is the prefix and input-enabled closure of copycat(K)

5. The Programmatic Monitor Interface
Based on the above specification, it is possible to hand-code an
implementation eK for each contractK, but these implementations
are difficult to read and write, and can violate non-interference.
Instead, we propose to express eK as a pair of a guard and

a monitor. The predefined guard function performs the nec-
essary copycat behavior on event streams and guarantees non-

interference. It also encodes the observed event stream and com-
municates it to the monitor M , which detects errors and reports
them to the guard, which then halts execution. Thus, we implement
eK as:

eK
def
= (guard M)

Traces contain scope and binding information, which is tricky
to communicate to the monitor M . Our chosen encoding is that,
when an event such as rcv.call(·, x) introduces a new variable
x, the monitor M creates two new sub-monitors, say Mcall and
Mret, which handle events ρ.call(x,) and ρ.ret(x,), respec-
tively. This encoding avoids passing function references (or get-
ters/setters for mutable reference cells) to M , which helps ensure
non-interference. We also require that the monitorM is closed, so
that it does not gain accesses to function references through its en-
vironment.
Based on this discussion, the type τ of the monitorM is:
τ = (Constant → Bool)× (Unit → (False + (τ × τ)))

When an event transmits a constant, the first component of M is
called to decide if that event is permitted. That function can use
mutable internal state to track and enforce temporal properties.
Thus, temporal properties of the contracts are implemented via
imperative state in the monitor.
When an event transmits a function x, the second component

of M is called, which again has the opportunity to halt execution
by retuning false. Otherwise, the function should return a pair of
monitors for handling call and ret events on the function x.
The function guard below then converts its monitor argument

M into an appropriate contract implementation that queries M to
verify that each transmitted event is permitted:

1 guard M =
2 λx. if (constant? x) then
3 assert ((fst M) x) != false
4 x
5 else
6 let MM = (snd M)()
7 assert MM != false
8 λy. (guard (snd MM) (x (guard (fst MM) y)))

5.1 Example Monitors
Using the monitor interface, it is straightforward to implement a
universal monitor Any that permits all communication:

rec Any = pair (λx. true) (λ. pair Any Any)

As a more interesting example, the following code shows how
to implement revokable membranes [37]. In this code, ref true
returns a pair of get and set methods. As long as get() returns
true, the monitor M behaves like the universal contract. Calling
revoke puts false into the reference cell, after which all further
communication is prohibited. The top-level membrane function
returns a pair of the membrane monitor and its revoke function.

1 membrane =
2 λ. let (get,set) = ref true
3 let revoke = λ. set false
4 letrec M = pair (λx. get())
5 (λ . if (get())
6 then (pair M M)
7 else false)
8 in pair M revoke

Note that M is not strictly speaking a monitor, since it calls a free
variable get, which could (in theory, but not in this case) interfere
with the enclosing program.

6 2011/6/29

24

Step 4: Programming
Temporal Contracts

25

Thus linkMonitorRun(T1,K, T2) extends linkRun(T1,K ∩ T2)
to return a blame label in situations where linkRun would fail
silently.
To incorporate blame assignment into the guard implementa-

tion, we introduce additional arguments to track the module and
enclosing context of each monitor, where these two arguments are
swapped for contravariant domain checks (as in [19]). We assume a
primitive blame for reporting blame, and an appropriate represen-
tation for module labels (e.g., strings).

1 guard module context M =
2 λx. if (constant? x) then
3 if ((fst M) x) == false then blame module
4 x
5 else
6 let MM = (snd M)()
7 if MM == false then blame module
8 λy. (guard module context (snd MM)
9 (x (guard context module (fst MM) y)))

7. The Declarative Contract Language
The programmatic monitor interface provides trace completeness,
non-interference, and blame assignment. We now leverage that in-
terface to develop a declarative contract language for writing mixed
higher-order temporal (HOT) contracts. Our declarative language
sacrifices trace completeness for ease-of-expression, but still inter-
operates with the monitor interface for situations where additional
expressiveness is required.
Figure 3 summarizes the contract syntax. A HOT contract

S where R

contains both a structural component (S) that binds function names
(n), and a temporal component (R) that imposes constraints on
when those functions can be called or return.
The flat structural contract flat(e) describes the set of constants

c that satisfy the predicate e. The higher-order structural contract
(n : S1 "→ S2) describes functions where S1 and S2 specify the
function’s domain and range contracts, respectively, and n provides
a name for this function that can be referenced in the temporal
component.
In the temporal component, event patterns call(n, p) and

ret(n, p) denote calls and returns of the function named n, where
the argument or result matches pattern p. Patterns include con-
stants, variables x, and “ ”, which matches any argument.
Temporal contracts (R) include events (A), negated events

(!A), concatentation (RR), Kleene closure (R∗), negation of trace
sets (not R), union (R ∪ R), and the universal temporal contract
(“. . . ”), which matches any trace. Temporal contracts also include
dependent sequencing patterns such as call(n, ?x) R, where the
argument from the first event is bound to x, and can be referred
to from within R. Dependent sequencing captures common con-
straints on function arguments and returns, for example, that the
argument passed to free must previously have been returned from
alloc.

7.1 Semantics of HOT Contracts
To formalize the semantics of a structural contract S, we define an
abstract machine called the EF machine that describes what traces
S permits.
This EF machine contains an environment E and a stack F .

The environment E associates each variable x with a direction
ρ (describing whether x was sent or received) and a structural
contract S (describing permitted uses of x). The stack F contains

Figure 3: Declarative HOT Contracts

M ::= S where R HOT contract
S ::= flat(e) | n :S1 "→ S2 Structural contract
R ::= A | !A | RR | R∗ | not R | R ∪R Temporal contract

| . . . | call(n, ?x) R | ret(n, ?x) R
A ::= call(n, p) | ret(n, p) Event patterns
p ::= | x | c Value patterns
n ∈ Name Function names

the variable names of inter-module calls (or stack frames).

E ::= ε | E, x : ρS
F ::= Variable∗

The EF machine generates traces according to the following
transition relation EF ⇒a EF ′. The stack length |F | indicates
whether the contracted module is active or quescient, so if |F | is
odd we require that ρ = send, and otherwise that ρ = rcv, in both
of these rules.

〈E,F 〉 ⇒ρ.call(x,h) 〈E ⊕ (h : ρS1), F.x〉 [S-CALL]
where E(x) = ρ(n : S1 "→ S2)

〈E,F.x〉 ⇒ρ.ret(x,h) 〈E ⊕ (h : ρS2), F 〉 [S-RET]
where E(x) = ρ(n : S1 "→ S2)

Assuming ρ = send, the rule [S-CALL] generates a call event
send.call(x, h), provided x was previously received and has a
function contract. (If ρ = rcv then the dual situation applies.) The
[S-RET] rule generates a return event that must return to the top
variable on the stack F .
The operation E ⊕ (h : ρS1) checks if a sent handle h is com-

patible with the argument contract S1, and extends the environment
E appropriately. Note that the check run([[e c]]) = true ensures
that the constant c satisfies the structural contract flat(e).

E ⊕ (c : ρ flat(e)) = E provided run([[e c]]) = true
E ⊕ (x : ρS) = E, x : ρS

The meaning of a structural contract S is then defined as the
set of all traces that first return a handle satisfying S, and where
subsequent interactions satisfy the requirements of the EFmachine:

[[S]] = { send.ret(start , h).t | 〈E0, start〉 ⇒t 〈E,F 〉 }
where E0 = ∅ ⊕ (h : send S)

The meaning of a temporal contract R is defined with respect
to the environment E that is produced by the EF machine, where
E is used to map each variable x in the trace to a name n that is
referenced in the temporal contract. The relation p ∼ h defines
when a pattern p matches a handle h. Constants match constants
(c ∼ c), and the pattern “ ” matches any handle (∼ h).

[[•]]• : R× E → P(Trace)
[[call(n, p)]]E = {ρ.call(y, h) | E(y) = n : . . . and p ∼ h}
[[ret(n, p)]]E = {ρ.ret(y, h) | E(y) = n : . . . and p ∼ h}

[[!A]]E = Event \ [[A]]E
[[R1R2]]E = [[R1]]E · [[R2]]E

[[R∗]]E = [[R]]∗E
[[not R]]E = any trace \ [[R]]E

[[R1 ∪ R2]]E = [[R1]]E ∪ [[R2]]E
[[. . .]]E = any trace

[[call(n, ?x) R]]E = {ρ.call(y, c) · t | E(y) = n : .., t ∈ [[R[x := c]]]E}
[[ret(n, ?x) R]]E = {ρ.ret(y, c) · t | E(y) = n : .., t ∈ [[R[x := c]]]E}

8 2011/6/29

26

Thus linkMonitorRun(T1,K, T2) extends linkRun(T1,K ∩ T2)
to return a blame label in situations where linkRun would fail
silently.
To incorporate blame assignment into the guard implementa-

tion, we introduce additional arguments to track the module and
enclosing context of each monitor, where these two arguments are
swapped for contravariant domain checks (as in [19]). We assume a
primitive blame for reporting blame, and an appropriate represen-
tation for module labels (e.g., strings).

1 guard module context M =
2 λx. if (constant? x) then
3 if ((fst M) x) == false then blame module
4 x
5 else
6 let MM = (snd M)()
7 if MM == false then blame module
8 λy. (guard module context (snd MM)
9 (x (guard context module (fst MM) y)))

7. The Declarative Contract Language
The programmatic monitor interface provides trace completeness,
non-interference, and blame assignment. We now leverage that in-
terface to develop a declarative contract language for writing mixed
higher-order temporal (HOT) contracts. Our declarative language
sacrifices trace completeness for ease-of-expression, but still inter-
operates with the monitor interface for situations where additional
expressiveness is required.
Figure 3 summarizes the contract syntax. A HOT contract

S where R

contains both a structural component (S) that binds function names
(n), and a temporal component (R) that imposes constraints on
when those functions can be called or return.
The flat structural contract flat(e) describes the set of constants

c that satisfy the predicate e. The higher-order structural contract
(n : S1 "→ S2) describes functions where S1 and S2 specify the
function’s domain and range contracts, respectively, and n provides
a name for this function that can be referenced in the temporal
component.
In the temporal component, event patterns call(n, p) and

ret(n, p) denote calls and returns of the function named n, where
the argument or result matches pattern p. Patterns include con-
stants, variables x, and “ ”, which matches any argument.
Temporal contracts (R) include events (A), negated events

(!A), concatentation (RR), Kleene closure (R∗), negation of trace
sets (not R), union (R ∪ R), and the universal temporal contract
(“. . . ”), which matches any trace. Temporal contracts also include
dependent sequencing patterns such as call(n, ?x) R, where the
argument from the first event is bound to x, and can be referred
to from within R. Dependent sequencing captures common con-
straints on function arguments and returns, for example, that the
argument passed to free must previously have been returned from
alloc.

7.1 Semantics of HOT Contracts
To formalize the semantics of a structural contract S, we define an
abstract machine called the EF machine that describes what traces
S permits.
This EF machine contains an environment E and a stack F .

The environment E associates each variable x with a direction
ρ (describing whether x was sent or received) and a structural
contract S (describing permitted uses of x). The stack F contains

Figure 3: Declarative HOT Contracts

M ::= S where R HOT contract
S ::= flat(e) | n :S1 "→ S2 Structural contract
R ::= A | !A | RR | R∗ | not R | R ∪R Temporal contract

| . . . | call(n, ?x) R | ret(n, ?x) R
A ::= call(n, p) | ret(n, p) Event patterns
p ::= | x | c Value patterns
n ∈ Name Function names

the variable names of inter-module calls (or stack frames).

E ::= ε | E, x : ρS
F ::= Variable∗

The EF machine generates traces according to the following
transition relation EF ⇒a EF ′. The stack length |F | indicates
whether the contracted module is active or quescient, so if |F | is
odd we require that ρ = send, and otherwise that ρ = rcv, in both
of these rules.

〈E,F 〉 ⇒ρ.call(x,h) 〈E ⊕ (h : ρS1), F.x〉 [S-CALL]
where E(x) = ρ(n : S1 "→ S2)

〈E,F.x〉 ⇒ρ.ret(x,h) 〈E ⊕ (h : ρS2), F 〉 [S-RET]
where E(x) = ρ(n : S1 "→ S2)

Assuming ρ = send, the rule [S-CALL] generates a call event
send.call(x, h), provided x was previously received and has a
function contract. (If ρ = rcv then the dual situation applies.) The
[S-RET] rule generates a return event that must return to the top
variable on the stack F .
The operation E ⊕ (h : ρS1) checks if a sent handle h is com-

patible with the argument contract S1, and extends the environment
E appropriately. Note that the check run([[e c]]) = true ensures
that the constant c satisfies the structural contract flat(e).

E ⊕ (c : ρ flat(e)) = E provided run([[e c]]) = true
E ⊕ (x : ρS) = E, x : ρS

The meaning of a structural contract S is then defined as the
set of all traces that first return a handle satisfying S, and where
subsequent interactions satisfy the requirements of the EFmachine:

[[S]] = { send.ret(start , h).t | 〈E0, start〉 ⇒t 〈E,F 〉 }
where E0 = ∅ ⊕ (h : send S)

The meaning of a temporal contract R is defined with respect
to the environment E that is produced by the EF machine, where
E is used to map each variable x in the trace to a name n that is
referenced in the temporal contract. The relation p ∼ h defines
when a pattern p matches a handle h. Constants match constants
(c ∼ c), and the pattern “ ” matches any handle (∼ h).

[[•]]• : R× E → P(Trace)
[[call(n, p)]]E = {ρ.call(y, h) | E(y) = n : . . . and p ∼ h}
[[ret(n, p)]]E = {ρ.ret(y, h) | E(y) = n : . . . and p ∼ h}

[[!A]]E = Event \ [[A]]E
[[R1R2]]E = [[R1]]E · [[R2]]E

[[R∗]]E = [[R]]∗E
[[not R]]E = any trace \ [[R]]E

[[R1 ∪ R2]]E = [[R1]]E ∪ [[R2]]E
[[. . .]]E = any trace

[[call(n, ?x) R]]E = {ρ.call(y, c) · t | E(y) = n : .., t ∈ [[R[x := c]]]E}
[[ret(n, ?x) R]]E = {ρ.ret(y, c) · t | E(y) = n : .., t ∈ [[R[x := c]]]E}

8 2011/6/29

26

Finally, the meaning of a contract (S where R) is defined as
any trace that satisfies S, providing a resulting environment E, and
where the trace also satisfies R with respect to E. The function
prefixes performs prefix-closure on a set of traces.
[[S where R]]
def
= { (send.ret(start , h) · t) ∈ prefixes([[R]]E) |

〈E0, start〉 ⇒t 〈E,F 〉 and E0 = ∅ ⊕ (h : send S) }

Thus, a module e under contract S where R yields the trace set:
[[e]] ∩ [[S where R]]

7.2 Compiling HOT Contracts
We enforce each contract (S where R) by compiling it into an
appropriate monitor. We convert the temporal component R into a
finite state automaton, where s ranges over the state space of the
automaton, s0 denotes the initial state, and the handlers calln and
retn for each function name n imperatively update s appropriately
and return true if the automaton is in an accepting state and false
otherwise. The code is roughly:
let s = s0

calln = λi. · · · check and update s appropriately · · ·
.
retn = λo. · · · check and update s appropriately · · ·
.

in compile(λx.true, S)

The function compile(f, S) generates a monitor that ensures
that the trace satisfies S, and which is parameterized over a number
of calln and retn functions that communicate to the temporal
code above. The additional argument

f : (Constant ∪ {λx.x})→ Bool)

is an “observer function” that is called and can signal an error
whenever a value passes through this S boundary; it is used in the
following recursive definition of compile .

compile : (Constant ∪ {λx.x})→ Bool)× S)→ Monitor

compile(f,flat(e))
def
=

pair (λx. (e x) && (f x))
(λ. false)

compile(f, n :S1)→ S2)
def
=

pair (λx. false)
(λ. (f (λx.x)) && (pair compile(calln, S1)

compile(retn, S2))))

compile(f, y)
def
=

let (chkconst,chkfn) = y
pair (λx. (f x) && (chkconst x))

(λ. (f (λx.x)) && (chkfn()))

For the contract flat(e), the generated monitor accepts only
constants; it checks that the constant satisfies both the observer
function f and the predicate e. For the function contract n :S1)→
S2, the generated monitor accepts only functions. It immediately
notifies the observer that a function is passing through this contract,
and then returns a pair of monitors that monitor calls and returns of
this function, in each case notifying calln or retn and enforcing
the sub-contracts S1 or S2, as appropriate.
Our implementation extends the structural contract language to

include variable references (y) for referring to predefined monitors
such as the Any monitor defined in section 5.1. The compilation of
such monitor references extends the referenced monitor to call the
observer function f appropriately.

THEOREM 3 (Structural Contract Compilation Correctness). For
all structural contracts S, [[S]] = [[guard compile(λx.true, S)]]

PROOF: We proceed by structural induction on S.
In the case that S = flat(e): we substitute into the theorem,

then focus on the right-hand side. We expand the definition of
compile and do beta reduction. The application of (f x) in the
definition reduces to true with the given f , so we remove it and
the and-expression. This and an application of eta produces the
right-hand side: [[guard (pair e (λ.false))]]. If we expand this
application of guard, it onlys succeeds if the value sent to the
contract is a constant, c, such that (ec) = true. We now focus
on the left-hand side. By expanding the definition of [[S]] and ⊕,
we get the condition that run(ec) = true where c is the constant
sent to the contract. Clearly these two constraints are the same, so
this case is completed.
In the case that S = n : S1)→ S2, we, naturally, make us of

the inductive hypothesis twice. However, getting to that point re-
quires a few subtle steps. First, we assume that calln and retn
are λx.true for all n. This is a reasonable assumption, because we
are only considering structural contracts, so there are no temporal
properties to enforce. Next, we consider the behavior of both sides
after it has been applied. Only the case where it is actually a func-
tion is relevant, because if it is a constant, both trivially reject any
subsequent events. After assuming we’ve received a function, we
then assume that the function is called and returns. The contracts
S1 and S2 protect the call and return through the S-CALL and S-
RET rules on the left and through the recursive calls to guard on the
right—and the inductive hypothesis ensures that these have identi-
cal semantics. !

Compiling Dependent Sequences For dependent sequences, we
follow the same general approach, except we cannot compile to a
finite state automaton. For example, the constraint

not ... call(free,?z) !ret(alloc,z)* call(free,z)

requires unbound storage to record all freed locations z. Instead, we
compile to a lazily constructed infinite automaton. Each automaton
is a function from an event (call or return) to a next automaton—
as well as a boolean to encode acceptance. Event patterns are
functions that return the epsilon automaton on matching and a null
(rejecting) automaton otherwise. In contrast, dependent sequences
return a new automaton representing the rest of the trace, and which
includes an appropriate binding for the dependent variable z.
Each of the regular grammar operators (sequencing, comple-

ment, etc) is implemented as an explicit automaton that simulates
the operator using the automaton functions representing its pieces.
These implementation correspond precisely to the intuitive expla-
nations of regular operator closure properties found in any textbook
on automata theory. Since Kleene star and sequencing may invoke
their arguments multiple times, dependent sequences embedded in
them will be duplicated for each successful match of the pattern.
This approach is similar to regular expression derivatives [9, 38].

7.3 Examples
Section 2 presented a variety of examples of structural/temporal
contracts, whose meaning and compilation can now be understood
based on the formalism of this section. In particular, the contract
combinator “Pair S1 S2” abbreviates the contract for Church-
encoded pairs “(S1 →S2 →Any) → Any”, and generalizes to a
Record combinator that supports n-ary tuples.
The specification of temporal properties involves some sub-

tleties, which we illustrate by considering various contracts for a
lock object with acquire and release methods. Our initial con-
tract states that acquire and release are atomic, and calls must
alternate between these functions, with acquire being called first.

LockContract =

9 2011/6/29

Finally, the meaning of a contract (S where R) is defined as
any trace that satisfies S, providing a resulting environment E, and
where the trace also satisfies R with respect to E. The function
prefixes performs prefix-closure on a set of traces.
[[S where R]]
def
= { (send.ret(start , h) · t) ∈ prefixes([[R]]E) |

〈E0, start〉 ⇒t 〈E,F 〉 and E0 = ∅ ⊕ (h : send S) }

Thus, a module e under contract S where R yields the trace set:
[[e]] ∩ [[S where R]]

7.2 Compiling HOT Contracts
We enforce each contract (S where R) by compiling it into an
appropriate monitor. We convert the temporal component R into a
finite state automaton, where s ranges over the state space of the
automaton, s0 denotes the initial state, and the handlers calln and
retn for each function name n imperatively update s appropriately
and return true if the automaton is in an accepting state and false
otherwise. The code is roughly:
let s = s0

calln = λi. · · · check and update s appropriately · · ·
.
retn = λo. · · · check and update s appropriately · · ·
.

in compile(λx.true, S)

The function compile(f, S) generates a monitor that ensures
that the trace satisfies S, and which is parameterized over a number
of calln and retn functions that communicate to the temporal
code above. The additional argument

f : (Constant ∪ {λx.x})→ Bool)

is an “observer function” that is called and can signal an error
whenever a value passes through this S boundary; it is used in the
following recursive definition of compile .

compile : (Constant ∪ {λx.x})→ Bool)× S)→ Monitor

compile(f,flat(e))
def
=

pair (λx. (e x) && (f x))
(λ. false)

compile(f, n :S1)→ S2)
def
=

pair (λx. false)
(λ. (f (λx.x)) && (pair compile(calln, S1)

compile(retn, S2))))

compile(f, y)
def
=

let (chkconst,chkfn) = y
pair (λx. (f x) && (chkconst x))

(λ. (f (λx.x)) && (chkfn()))

For the contract flat(e), the generated monitor accepts only
constants; it checks that the constant satisfies both the observer
function f and the predicate e. For the function contract n :S1)→
S2, the generated monitor accepts only functions. It immediately
notifies the observer that a function is passing through this contract,
and then returns a pair of monitors that monitor calls and returns of
this function, in each case notifying calln or retn and enforcing
the sub-contracts S1 or S2, as appropriate.
Our implementation extends the structural contract language to

include variable references (y) for referring to predefined monitors
such as the Any monitor defined in section 5.1. The compilation of
such monitor references extends the referenced monitor to call the
observer function f appropriately.

THEOREM 3 (Structural Contract Compilation Correctness). For
all structural contracts S, [[S]] = [[guard compile(λx.true, S)]]

PROOF: We proceed by structural induction on S.
In the case that S = flat(e): we substitute into the theorem,

then focus on the right-hand side. We expand the definition of
compile and do beta reduction. The application of (f x) in the
definition reduces to true with the given f , so we remove it and
the and-expression. This and an application of eta produces the
right-hand side: [[guard (pair e (λ.false))]]. If we expand this
application of guard, it onlys succeeds if the value sent to the
contract is a constant, c, such that (ec) = true. We now focus
on the left-hand side. By expanding the definition of [[S]] and ⊕,
we get the condition that run(ec) = true where c is the constant
sent to the contract. Clearly these two constraints are the same, so
this case is completed.
In the case that S = n : S1)→ S2, we, naturally, make us of

the inductive hypothesis twice. However, getting to that point re-
quires a few subtle steps. First, we assume that calln and retn
are λx.true for all n. This is a reasonable assumption, because we
are only considering structural contracts, so there are no temporal
properties to enforce. Next, we consider the behavior of both sides
after it has been applied. Only the case where it is actually a func-
tion is relevant, because if it is a constant, both trivially reject any
subsequent events. After assuming we’ve received a function, we
then assume that the function is called and returns. The contracts
S1 and S2 protect the call and return through the S-CALL and S-
RET rules on the left and through the recursive calls to guard on the
right—and the inductive hypothesis ensures that these have identi-
cal semantics. !

Compiling Dependent Sequences For dependent sequences, we
follow the same general approach, except we cannot compile to a
finite state automaton. For example, the constraint

not ... call(free,?z) !ret(alloc,z)* call(free,z)

requires unbound storage to record all freed locations z. Instead, we
compile to a lazily constructed infinite automaton. Each automaton
is a function from an event (call or return) to a next automaton—
as well as a boolean to encode acceptance. Event patterns are
functions that return the epsilon automaton on matching and a null
(rejecting) automaton otherwise. In contrast, dependent sequences
return a new automaton representing the rest of the trace, and which
includes an appropriate binding for the dependent variable z.
Each of the regular grammar operators (sequencing, comple-

ment, etc) is implemented as an explicit automaton that simulates
the operator using the automaton functions representing its pieces.
These implementation correspond precisely to the intuitive expla-
nations of regular operator closure properties found in any textbook
on automata theory. Since Kleene star and sequencing may invoke
their arguments multiple times, dependent sequences embedded in
them will be duplicated for each successful match of the pattern.
This approach is similar to regular expression derivatives [9, 38].

7.3 Examples
Section 2 presented a variety of examples of structural/temporal
contracts, whose meaning and compilation can now be understood
based on the formalism of this section. In particular, the contract
combinator “Pair S1 S2” abbreviates the contract for Church-
encoded pairs “(S1 →S2 →Any) → Any”, and generalizes to a
Record combinator that supports n-ary tuples.
The specification of temporal properties involves some sub-

tleties, which we illustrate by considering various contracts for a
lock object with acquire and release methods. Our initial con-
tract states that acquire and release are atomic, and calls must
alternate between these functions, with acquire being called first.

LockContract =

9 2011/6/29

27

Finally, the meaning of a contract (S where R) is defined as
any trace that satisfies S, providing a resulting environment E, and
where the trace also satisfies R with respect to E. The function
prefixes performs prefix-closure on a set of traces.
[[S where R]]
def
= { (send.ret(start , h) · t) ∈ prefixes([[R]]E) |

〈E0, start〉 ⇒t 〈E,F 〉 and E0 = ∅ ⊕ (h : send S) }

Thus, a module e under contract S where R yields the trace set:
[[e]] ∩ [[S where R]]

7.2 Compiling HOT Contracts
We enforce each contract (S where R) by compiling it into an
appropriate monitor. We convert the temporal component R into a
finite state automaton, where s ranges over the state space of the
automaton, s0 denotes the initial state, and the handlers calln and
retn for each function name n imperatively update s appropriately
and return true if the automaton is in an accepting state and false
otherwise. The code is roughly:
let s = s0

calln = λi. · · · check and update s appropriately · · ·
.
retn = λo. · · · check and update s appropriately · · ·
.

in compile(λx.true, S)

The function compile(f, S) generates a monitor that ensures
that the trace satisfies S, and which is parameterized over a number
of calln and retn functions that communicate to the temporal
code above. The additional argument

f : (Constant ∪ {λx.x})→ Bool)

is an “observer function” that is called and can signal an error
whenever a value passes through this S boundary; it is used in the
following recursive definition of compile .

compile : (Constant ∪ {λx.x})→ Bool)× S)→ Monitor

compile(f,flat(e))
def
=

pair (λx. (e x) && (f x))
(λ. false)

compile(f, n :S1)→ S2)
def
=

pair (λx. false)
(λ. (f (λx.x)) && (pair compile(calln, S1)

compile(retn, S2))))

compile(f, y)
def
=

let (chkconst,chkfn) = y
pair (λx. (f x) && (chkconst x))

(λ. (f (λx.x)) && (chkfn()))

For the contract flat(e), the generated monitor accepts only
constants; it checks that the constant satisfies both the observer
function f and the predicate e. For the function contract n :S1)→
S2, the generated monitor accepts only functions. It immediately
notifies the observer that a function is passing through this contract,
and then returns a pair of monitors that monitor calls and returns of
this function, in each case notifying calln or retn and enforcing
the sub-contracts S1 or S2, as appropriate.
Our implementation extends the structural contract language to

include variable references (y) for referring to predefined monitors
such as the Any monitor defined in section 5.1. The compilation of
such monitor references extends the referenced monitor to call the
observer function f appropriately.

THEOREM 3 (Structural Contract Compilation Correctness). For
all structural contracts S, [[S]] = [[guard compile(λx.true, S)]]

PROOF: We proceed by structural induction on S.
In the case that S = flat(e): we substitute into the theorem,

then focus on the right-hand side. We expand the definition of
compile and do beta reduction. The application of (f x) in the
definition reduces to true with the given f , so we remove it and
the and-expression. This and an application of eta produces the
right-hand side: [[guard (pair e (λ.false))]]. If we expand this
application of guard, it onlys succeeds if the value sent to the
contract is a constant, c, such that (ec) = true. We now focus
on the left-hand side. By expanding the definition of [[S]] and ⊕,
we get the condition that run(ec) = true where c is the constant
sent to the contract. Clearly these two constraints are the same, so
this case is completed.
In the case that S = n : S1)→ S2, we, naturally, make us of

the inductive hypothesis twice. However, getting to that point re-
quires a few subtle steps. First, we assume that calln and retn
are λx.true for all n. This is a reasonable assumption, because we
are only considering structural contracts, so there are no temporal
properties to enforce. Next, we consider the behavior of both sides
after it has been applied. Only the case where it is actually a func-
tion is relevant, because if it is a constant, both trivially reject any
subsequent events. After assuming we’ve received a function, we
then assume that the function is called and returns. The contracts
S1 and S2 protect the call and return through the S-CALL and S-
RET rules on the left and through the recursive calls to guard on the
right—and the inductive hypothesis ensures that these have identi-
cal semantics. !

Compiling Dependent Sequences For dependent sequences, we
follow the same general approach, except we cannot compile to a
finite state automaton. For example, the constraint

not ... call(free,?z) !ret(alloc,z)* call(free,z)

requires unbound storage to record all freed locations z. Instead, we
compile to a lazily constructed infinite automaton. Each automaton
is a function from an event (call or return) to a next automaton—
as well as a boolean to encode acceptance. Event patterns are
functions that return the epsilon automaton on matching and a null
(rejecting) automaton otherwise. In contrast, dependent sequences
return a new automaton representing the rest of the trace, and which
includes an appropriate binding for the dependent variable z.
Each of the regular grammar operators (sequencing, comple-

ment, etc) is implemented as an explicit automaton that simulates
the operator using the automaton functions representing its pieces.
These implementation correspond precisely to the intuitive expla-
nations of regular operator closure properties found in any textbook
on automata theory. Since Kleene star and sequencing may invoke
their arguments multiple times, dependent sequences embedded in
them will be duplicated for each successful match of the pattern.
This approach is similar to regular expression derivatives [9, 38].

7.3 Examples
Section 2 presented a variety of examples of structural/temporal
contracts, whose meaning and compilation can now be understood
based on the formalism of this section. In particular, the contract
combinator “Pair S1 S2” abbreviates the contract for Church-
encoded pairs “(S1 →S2 →Any) → Any”, and generalizes to a
Record combinator that supports n-ary tuples.
The specification of temporal properties involves some sub-

tleties, which we illustrate by considering various contracts for a
lock object with acquire and release methods. Our initial con-
tract states that acquire and release are atomic, and calls must
alternate between these functions, with acquire being called first.

LockContract =

9 2011/6/29

Finally, the meaning of a contract (S where R) is defined as
any trace that satisfies S, providing a resulting environment E, and
where the trace also satisfies R with respect to E. The function
prefixes performs prefix-closure on a set of traces.
[[S where R]]
def
= { (send.ret(start , h) · t) ∈ prefixes([[R]]E) |

〈E0, start〉 ⇒t 〈E,F 〉 and E0 = ∅ ⊕ (h : send S) }

Thus, a module e under contract S where R yields the trace set:
[[e]] ∩ [[S where R]]

7.2 Compiling HOT Contracts
We enforce each contract (S where R) by compiling it into an
appropriate monitor. We convert the temporal component R into a
finite state automaton, where s ranges over the state space of the
automaton, s0 denotes the initial state, and the handlers calln and
retn for each function name n imperatively update s appropriately
and return true if the automaton is in an accepting state and false
otherwise. The code is roughly:
let s = s0

calln = λi. · · · check and update s appropriately · · ·
.
retn = λo. · · · check and update s appropriately · · ·
.

in compile(λx.true, S)

The function compile(f, S) generates a monitor that ensures
that the trace satisfies S, and which is parameterized over a number
of calln and retn functions that communicate to the temporal
code above. The additional argument

f : (Constant ∪ {λx.x})→ Bool)

is an “observer function” that is called and can signal an error
whenever a value passes through this S boundary; it is used in the
following recursive definition of compile .

compile : (Constant ∪ {λx.x})→ Bool)× S)→ Monitor

compile(f,flat(e))
def
=

pair (λx. (e x) && (f x))
(λ. false)

compile(f, n :S1)→ S2)
def
=

pair (λx. false)
(λ. (f (λx.x)) && (pair compile(calln, S1)

compile(retn, S2))))

compile(f, y)
def
=

let (chkconst,chkfn) = y
pair (λx. (f x) && (chkconst x))

(λ. (f (λx.x)) && (chkfn()))

For the contract flat(e), the generated monitor accepts only
constants; it checks that the constant satisfies both the observer
function f and the predicate e. For the function contract n :S1)→
S2, the generated monitor accepts only functions. It immediately
notifies the observer that a function is passing through this contract,
and then returns a pair of monitors that monitor calls and returns of
this function, in each case notifying calln or retn and enforcing
the sub-contracts S1 or S2, as appropriate.
Our implementation extends the structural contract language to

include variable references (y) for referring to predefined monitors
such as the Any monitor defined in section 5.1. The compilation of
such monitor references extends the referenced monitor to call the
observer function f appropriately.

THEOREM 3 (Structural Contract Compilation Correctness). For
all structural contracts S, [[S]] = [[guard compile(λx.true, S)]]

PROOF: We proceed by structural induction on S.
In the case that S = flat(e): we substitute into the theorem,

then focus on the right-hand side. We expand the definition of
compile and do beta reduction. The application of (f x) in the
definition reduces to true with the given f , so we remove it and
the and-expression. This and an application of eta produces the
right-hand side: [[guard (pair e (λ.false))]]. If we expand this
application of guard, it onlys succeeds if the value sent to the
contract is a constant, c, such that (ec) = true. We now focus
on the left-hand side. By expanding the definition of [[S]] and ⊕,
we get the condition that run(ec) = true where c is the constant
sent to the contract. Clearly these two constraints are the same, so
this case is completed.
In the case that S = n : S1)→ S2, we, naturally, make us of

the inductive hypothesis twice. However, getting to that point re-
quires a few subtle steps. First, we assume that calln and retn
are λx.true for all n. This is a reasonable assumption, because we
are only considering structural contracts, so there are no temporal
properties to enforce. Next, we consider the behavior of both sides
after it has been applied. Only the case where it is actually a func-
tion is relevant, because if it is a constant, both trivially reject any
subsequent events. After assuming we’ve received a function, we
then assume that the function is called and returns. The contracts
S1 and S2 protect the call and return through the S-CALL and S-
RET rules on the left and through the recursive calls to guard on the
right—and the inductive hypothesis ensures that these have identi-
cal semantics. !

Compiling Dependent Sequences For dependent sequences, we
follow the same general approach, except we cannot compile to a
finite state automaton. For example, the constraint

not ... call(free,?z) !ret(alloc,z)* call(free,z)

requires unbound storage to record all freed locations z. Instead, we
compile to a lazily constructed infinite automaton. Each automaton
is a function from an event (call or return) to a next automaton—
as well as a boolean to encode acceptance. Event patterns are
functions that return the epsilon automaton on matching and a null
(rejecting) automaton otherwise. In contrast, dependent sequences
return a new automaton representing the rest of the trace, and which
includes an appropriate binding for the dependent variable z.
Each of the regular grammar operators (sequencing, comple-

ment, etc) is implemented as an explicit automaton that simulates
the operator using the automaton functions representing its pieces.
These implementation correspond precisely to the intuitive expla-
nations of regular operator closure properties found in any textbook
on automata theory. Since Kleene star and sequencing may invoke
their arguments multiple times, dependent sequences embedded in
them will be duplicated for each successful match of the pattern.
This approach is similar to regular expression derivatives [9, 38].

7.3 Examples
Section 2 presented a variety of examples of structural/temporal
contracts, whose meaning and compilation can now be understood
based on the formalism of this section. In particular, the contract
combinator “Pair S1 S2” abbreviates the contract for Church-
encoded pairs “(S1 →S2 →Any) → Any”, and generalizes to a
Record combinator that supports n-ary tuples.
The specification of temporal properties involves some sub-

tleties, which we illustrate by considering various contracts for a
lock object with acquire and release methods. Our initial con-
tract states that acquire and release are atomic, and calls must
alternate between these functions, with acquire being called first.

LockContract =

9 2011/6/29

27

Finally, the meaning of a contract (S where R) is defined as
any trace that satisfies S, providing a resulting environment E, and
where the trace also satisfies R with respect to E. The function
prefixes performs prefix-closure on a set of traces.
[[S where R]]
def
= { (send.ret(start , h) · t) ∈ prefixes([[R]]E) |

〈E0, start〉 ⇒t 〈E,F 〉 and E0 = ∅ ⊕ (h : send S) }

Thus, a module e under contract S where R yields the trace set:
[[e]] ∩ [[S where R]]

7.2 Compiling HOT Contracts
We enforce each contract (S where R) by compiling it into an
appropriate monitor. We convert the temporal component R into a
finite state automaton, where s ranges over the state space of the
automaton, s0 denotes the initial state, and the handlers calln and
retn for each function name n imperatively update s appropriately
and return true if the automaton is in an accepting state and false
otherwise. The code is roughly:
let s = s0

calln = λi. · · · check and update s appropriately · · ·
.
retn = λo. · · · check and update s appropriately · · ·
.

in compile(λx.true, S)

The function compile(f, S) generates a monitor that ensures
that the trace satisfies S, and which is parameterized over a number
of calln and retn functions that communicate to the temporal
code above. The additional argument

f : (Constant ∪ {λx.x})→ Bool)

is an “observer function” that is called and can signal an error
whenever a value passes through this S boundary; it is used in the
following recursive definition of compile .

compile : (Constant ∪ {λx.x})→ Bool)× S)→ Monitor

compile(f,flat(e))
def
=

pair (λx. (e x) && (f x))
(λ. false)

compile(f, n :S1)→ S2)
def
=

pair (λx. false)
(λ. (f (λx.x)) && (pair compile(calln, S1)

compile(retn, S2))))

compile(f, y)
def
=

let (chkconst,chkfn) = y
pair (λx. (f x) && (chkconst x))

(λ. (f (λx.x)) && (chkfn()))

For the contract flat(e), the generated monitor accepts only
constants; it checks that the constant satisfies both the observer
function f and the predicate e. For the function contract n :S1)→
S2, the generated monitor accepts only functions. It immediately
notifies the observer that a function is passing through this contract,
and then returns a pair of monitors that monitor calls and returns of
this function, in each case notifying calln or retn and enforcing
the sub-contracts S1 or S2, as appropriate.
Our implementation extends the structural contract language to

include variable references (y) for referring to predefined monitors
such as the Any monitor defined in section 5.1. The compilation of
such monitor references extends the referenced monitor to call the
observer function f appropriately.

THEOREM 3 (Structural Contract Compilation Correctness). For
all structural contracts S, [[S]] = [[guard compile(λx.true, S)]]

PROOF: We proceed by structural induction on S.
In the case that S = flat(e): we substitute into the theorem,

then focus on the right-hand side. We expand the definition of
compile and do beta reduction. The application of (f x) in the
definition reduces to true with the given f , so we remove it and
the and-expression. This and an application of eta produces the
right-hand side: [[guard (pair e (λ.false))]]. If we expand this
application of guard, it onlys succeeds if the value sent to the
contract is a constant, c, such that (ec) = true. We now focus
on the left-hand side. By expanding the definition of [[S]] and ⊕,
we get the condition that run(ec) = true where c is the constant
sent to the contract. Clearly these two constraints are the same, so
this case is completed.
In the case that S = n : S1)→ S2, we, naturally, make us of

the inductive hypothesis twice. However, getting to that point re-
quires a few subtle steps. First, we assume that calln and retn
are λx.true for all n. This is a reasonable assumption, because we
are only considering structural contracts, so there are no temporal
properties to enforce. Next, we consider the behavior of both sides
after it has been applied. Only the case where it is actually a func-
tion is relevant, because if it is a constant, both trivially reject any
subsequent events. After assuming we’ve received a function, we
then assume that the function is called and returns. The contracts
S1 and S2 protect the call and return through the S-CALL and S-
RET rules on the left and through the recursive calls to guard on the
right—and the inductive hypothesis ensures that these have identi-
cal semantics. !

Compiling Dependent Sequences For dependent sequences, we
follow the same general approach, except we cannot compile to a
finite state automaton. For example, the constraint

not ... call(free,?z) !ret(alloc,z)* call(free,z)

requires unbound storage to record all freed locations z. Instead, we
compile to a lazily constructed infinite automaton. Each automaton
is a function from an event (call or return) to a next automaton—
as well as a boolean to encode acceptance. Event patterns are
functions that return the epsilon automaton on matching and a null
(rejecting) automaton otherwise. In contrast, dependent sequences
return a new automaton representing the rest of the trace, and which
includes an appropriate binding for the dependent variable z.
Each of the regular grammar operators (sequencing, comple-

ment, etc) is implemented as an explicit automaton that simulates
the operator using the automaton functions representing its pieces.
These implementation correspond precisely to the intuitive expla-
nations of regular operator closure properties found in any textbook
on automata theory. Since Kleene star and sequencing may invoke
their arguments multiple times, dependent sequences embedded in
them will be duplicated for each successful match of the pattern.
This approach is similar to regular expression derivatives [9, 38].

7.3 Examples
Section 2 presented a variety of examples of structural/temporal
contracts, whose meaning and compilation can now be understood
based on the formalism of this section. In particular, the contract
combinator “Pair S1 S2” abbreviates the contract for Church-
encoded pairs “(S1 →S2 →Any) → Any”, and generalizes to a
Record combinator that supports n-ary tuples.
The specification of temporal properties involves some sub-

tleties, which we illustrate by considering various contracts for a
lock object with acquire and release methods. Our initial con-
tract states that acquire and release are atomic, and calls must
alternate between these functions, with acquire being called first.

LockContract =

9 2011/6/29

Finally, the meaning of a contract (S where R) is defined as
any trace that satisfies S, providing a resulting environment E, and
where the trace also satisfies R with respect to E. The function
prefixes performs prefix-closure on a set of traces.
[[S where R]]
def
= { (send.ret(start , h) · t) ∈ prefixes([[R]]E) |

〈E0, start〉 ⇒t 〈E,F 〉 and E0 = ∅ ⊕ (h : send S) }

Thus, a module e under contract S where R yields the trace set:
[[e]] ∩ [[S where R]]

7.2 Compiling HOT Contracts
We enforce each contract (S where R) by compiling it into an
appropriate monitor. We convert the temporal component R into a
finite state automaton, where s ranges over the state space of the
automaton, s0 denotes the initial state, and the handlers calln and
retn for each function name n imperatively update s appropriately
and return true if the automaton is in an accepting state and false
otherwise. The code is roughly:
let s = s0

calln = λi. · · · check and update s appropriately · · ·
.
retn = λo. · · · check and update s appropriately · · ·
.

in compile(λx.true, S)

The function compile(f, S) generates a monitor that ensures
that the trace satisfies S, and which is parameterized over a number
of calln and retn functions that communicate to the temporal
code above. The additional argument

f : (Constant ∪ {λx.x})→ Bool)

is an “observer function” that is called and can signal an error
whenever a value passes through this S boundary; it is used in the
following recursive definition of compile .

compile : (Constant ∪ {λx.x})→ Bool)× S)→ Monitor

compile(f,flat(e))
def
=

pair (λx. (e x) && (f x))
(λ. false)

compile(f, n :S1)→ S2)
def
=

pair (λx. false)
(λ. (f (λx.x)) && (pair compile(calln, S1)

compile(retn, S2))))

compile(f, y)
def
=

let (chkconst,chkfn) = y
pair (λx. (f x) && (chkconst x))

(λ. (f (λx.x)) && (chkfn()))

For the contract flat(e), the generated monitor accepts only
constants; it checks that the constant satisfies both the observer
function f and the predicate e. For the function contract n :S1)→
S2, the generated monitor accepts only functions. It immediately
notifies the observer that a function is passing through this contract,
and then returns a pair of monitors that monitor calls and returns of
this function, in each case notifying calln or retn and enforcing
the sub-contracts S1 or S2, as appropriate.
Our implementation extends the structural contract language to

include variable references (y) for referring to predefined monitors
such as the Any monitor defined in section 5.1. The compilation of
such monitor references extends the referenced monitor to call the
observer function f appropriately.

THEOREM 3 (Structural Contract Compilation Correctness). For
all structural contracts S, [[S]] = [[guard compile(λx.true, S)]]

PROOF: We proceed by structural induction on S.
In the case that S = flat(e): we substitute into the theorem,

then focus on the right-hand side. We expand the definition of
compile and do beta reduction. The application of (f x) in the
definition reduces to true with the given f , so we remove it and
the and-expression. This and an application of eta produces the
right-hand side: [[guard (pair e (λ.false))]]. If we expand this
application of guard, it onlys succeeds if the value sent to the
contract is a constant, c, such that (ec) = true. We now focus
on the left-hand side. By expanding the definition of [[S]] and ⊕,
we get the condition that run(ec) = true where c is the constant
sent to the contract. Clearly these two constraints are the same, so
this case is completed.
In the case that S = n : S1)→ S2, we, naturally, make us of

the inductive hypothesis twice. However, getting to that point re-
quires a few subtle steps. First, we assume that calln and retn
are λx.true for all n. This is a reasonable assumption, because we
are only considering structural contracts, so there are no temporal
properties to enforce. Next, we consider the behavior of both sides
after it has been applied. Only the case where it is actually a func-
tion is relevant, because if it is a constant, both trivially reject any
subsequent events. After assuming we’ve received a function, we
then assume that the function is called and returns. The contracts
S1 and S2 protect the call and return through the S-CALL and S-
RET rules on the left and through the recursive calls to guard on the
right—and the inductive hypothesis ensures that these have identi-
cal semantics. !

Compiling Dependent Sequences For dependent sequences, we
follow the same general approach, except we cannot compile to a
finite state automaton. For example, the constraint

not ... call(free,?z) !ret(alloc,z)* call(free,z)

requires unbound storage to record all freed locations z. Instead, we
compile to a lazily constructed infinite automaton. Each automaton
is a function from an event (call or return) to a next automaton—
as well as a boolean to encode acceptance. Event patterns are
functions that return the epsilon automaton on matching and a null
(rejecting) automaton otherwise. In contrast, dependent sequences
return a new automaton representing the rest of the trace, and which
includes an appropriate binding for the dependent variable z.
Each of the regular grammar operators (sequencing, comple-

ment, etc) is implemented as an explicit automaton that simulates
the operator using the automaton functions representing its pieces.
These implementation correspond precisely to the intuitive expla-
nations of regular operator closure properties found in any textbook
on automata theory. Since Kleene star and sequencing may invoke
their arguments multiple times, dependent sequences embedded in
them will be duplicated for each successful match of the pattern.
This approach is similar to regular expression derivatives [9, 38].

7.3 Examples
Section 2 presented a variety of examples of structural/temporal
contracts, whose meaning and compilation can now be understood
based on the formalism of this section. In particular, the contract
combinator “Pair S1 S2” abbreviates the contract for Church-
encoded pairs “(S1 →S2 →Any) → Any”, and generalizes to a
Record combinator that supports n-ary tuples.
The specification of temporal properties involves some sub-

tleties, which we illustrate by considering various contracts for a
lock object with acquire and release methods. Our initial con-
tract states that acquire and release are atomic, and calls must
alternate between these functions, with acquire being called first.

LockContract =

9 2011/6/29

27

Finally, the meaning of a contract (S where R) is defined as
any trace that satisfies S, providing a resulting environment E, and
where the trace also satisfies R with respect to E. The function
prefixes performs prefix-closure on a set of traces.
[[S where R]]
def
= { (send.ret(start , h) · t) ∈ prefixes([[R]]E) |

〈E0, start〉 ⇒t 〈E,F 〉 and E0 = ∅ ⊕ (h : send S) }

Thus, a module e under contract S where R yields the trace set:
[[e]] ∩ [[S where R]]

7.2 Compiling HOT Contracts
We enforce each contract (S where R) by compiling it into an
appropriate monitor. We convert the temporal component R into a
finite state automaton, where s ranges over the state space of the
automaton, s0 denotes the initial state, and the handlers calln and
retn for each function name n imperatively update s appropriately
and return true if the automaton is in an accepting state and false
otherwise. The code is roughly:
let s = s0

calln = λi. · · · check and update s appropriately · · ·
.
retn = λo. · · · check and update s appropriately · · ·
.

in compile(λx.true, S)

The function compile(f, S) generates a monitor that ensures
that the trace satisfies S, and which is parameterized over a number
of calln and retn functions that communicate to the temporal
code above. The additional argument

f : (Constant ∪ {λx.x})→ Bool)

is an “observer function” that is called and can signal an error
whenever a value passes through this S boundary; it is used in the
following recursive definition of compile .

compile : (Constant ∪ {λx.x})→ Bool)× S)→ Monitor

compile(f,flat(e))
def
=

pair (λx. (e x) && (f x))
(λ. false)

compile(f, n :S1)→ S2)
def
=

pair (λx. false)
(λ. (f (λx.x)) && (pair compile(calln, S1)

compile(retn, S2))))

compile(f, y)
def
=

let (chkconst,chkfn) = y
pair (λx. (f x) && (chkconst x))

(λ. (f (λx.x)) && (chkfn()))

For the contract flat(e), the generated monitor accepts only
constants; it checks that the constant satisfies both the observer
function f and the predicate e. For the function contract n :S1)→
S2, the generated monitor accepts only functions. It immediately
notifies the observer that a function is passing through this contract,
and then returns a pair of monitors that monitor calls and returns of
this function, in each case notifying calln or retn and enforcing
the sub-contracts S1 or S2, as appropriate.
Our implementation extends the structural contract language to

include variable references (y) for referring to predefined monitors
such as the Any monitor defined in section 5.1. The compilation of
such monitor references extends the referenced monitor to call the
observer function f appropriately.

THEOREM 3 (Structural Contract Compilation Correctness). For
all structural contracts S, [[S]] = [[guard compile(λx.true, S)]]

PROOF: We proceed by structural induction on S.
In the case that S = flat(e): we substitute into the theorem,

then focus on the right-hand side. We expand the definition of
compile and do beta reduction. The application of (f x) in the
definition reduces to true with the given f , so we remove it and
the and-expression. This and an application of eta produces the
right-hand side: [[guard (pair e (λ.false))]]. If we expand this
application of guard, it onlys succeeds if the value sent to the
contract is a constant, c, such that (ec) = true. We now focus
on the left-hand side. By expanding the definition of [[S]] and ⊕,
we get the condition that run(ec) = true where c is the constant
sent to the contract. Clearly these two constraints are the same, so
this case is completed.
In the case that S = n : S1)→ S2, we, naturally, make us of

the inductive hypothesis twice. However, getting to that point re-
quires a few subtle steps. First, we assume that calln and retn
are λx.true for all n. This is a reasonable assumption, because we
are only considering structural contracts, so there are no temporal
properties to enforce. Next, we consider the behavior of both sides
after it has been applied. Only the case where it is actually a func-
tion is relevant, because if it is a constant, both trivially reject any
subsequent events. After assuming we’ve received a function, we
then assume that the function is called and returns. The contracts
S1 and S2 protect the call and return through the S-CALL and S-
RET rules on the left and through the recursive calls to guard on the
right—and the inductive hypothesis ensures that these have identi-
cal semantics. !

Compiling Dependent Sequences For dependent sequences, we
follow the same general approach, except we cannot compile to a
finite state automaton. For example, the constraint

not ... call(free,?z) !ret(alloc,z)* call(free,z)

requires unbound storage to record all freed locations z. Instead, we
compile to a lazily constructed infinite automaton. Each automaton
is a function from an event (call or return) to a next automaton—
as well as a boolean to encode acceptance. Event patterns are
functions that return the epsilon automaton on matching and a null
(rejecting) automaton otherwise. In contrast, dependent sequences
return a new automaton representing the rest of the trace, and which
includes an appropriate binding for the dependent variable z.
Each of the regular grammar operators (sequencing, comple-

ment, etc) is implemented as an explicit automaton that simulates
the operator using the automaton functions representing its pieces.
These implementation correspond precisely to the intuitive expla-
nations of regular operator closure properties found in any textbook
on automata theory. Since Kleene star and sequencing may invoke
their arguments multiple times, dependent sequences embedded in
them will be duplicated for each successful match of the pattern.
This approach is similar to regular expression derivatives [9, 38].

7.3 Examples
Section 2 presented a variety of examples of structural/temporal
contracts, whose meaning and compilation can now be understood
based on the formalism of this section. In particular, the contract
combinator “Pair S1 S2” abbreviates the contract for Church-
encoded pairs “(S1 →S2 →Any) → Any”, and generalizes to a
Record combinator that supports n-ary tuples.
The specification of temporal properties involves some sub-

tleties, which we illustrate by considering various contracts for a
lock object with acquire and release methods. Our initial con-
tract states that acquire and release are atomic, and calls must
alternate between these functions, with acquire being called first.

LockContract =

9 2011/6/29

Finally, the meaning of a contract (S where R) is defined as
any trace that satisfies S, providing a resulting environment E, and
where the trace also satisfies R with respect to E. The function
prefixes performs prefix-closure on a set of traces.
[[S where R]]
def
= { (send.ret(start , h) · t) ∈ prefixes([[R]]E) |

〈E0, start〉 ⇒t 〈E,F 〉 and E0 = ∅ ⊕ (h : send S) }

Thus, a module e under contract S where R yields the trace set:
[[e]] ∩ [[S where R]]

7.2 Compiling HOT Contracts
We enforce each contract (S where R) by compiling it into an
appropriate monitor. We convert the temporal component R into a
finite state automaton, where s ranges over the state space of the
automaton, s0 denotes the initial state, and the handlers calln and
retn for each function name n imperatively update s appropriately
and return true if the automaton is in an accepting state and false
otherwise. The code is roughly:
let s = s0

calln = λi. · · · check and update s appropriately · · ·
.
retn = λo. · · · check and update s appropriately · · ·
.

in compile(λx.true, S)

The function compile(f, S) generates a monitor that ensures
that the trace satisfies S, and which is parameterized over a number
of calln and retn functions that communicate to the temporal
code above. The additional argument

f : (Constant ∪ {λx.x})→ Bool)

is an “observer function” that is called and can signal an error
whenever a value passes through this S boundary; it is used in the
following recursive definition of compile .

compile : (Constant ∪ {λx.x})→ Bool)× S)→ Monitor

compile(f,flat(e))
def
=

pair (λx. (e x) && (f x))
(λ. false)

compile(f, n :S1)→ S2)
def
=

pair (λx. false)
(λ. (f (λx.x)) && (pair compile(calln, S1)

compile(retn, S2))))

compile(f, y)
def
=

let (chkconst,chkfn) = y
pair (λx. (f x) && (chkconst x))

(λ. (f (λx.x)) && (chkfn()))

For the contract flat(e), the generated monitor accepts only
constants; it checks that the constant satisfies both the observer
function f and the predicate e. For the function contract n :S1)→
S2, the generated monitor accepts only functions. It immediately
notifies the observer that a function is passing through this contract,
and then returns a pair of monitors that monitor calls and returns of
this function, in each case notifying calln or retn and enforcing
the sub-contracts S1 or S2, as appropriate.
Our implementation extends the structural contract language to

include variable references (y) for referring to predefined monitors
such as the Any monitor defined in section 5.1. The compilation of
such monitor references extends the referenced monitor to call the
observer function f appropriately.

THEOREM 3 (Structural Contract Compilation Correctness). For
all structural contracts S, [[S]] = [[guard compile(λx.true, S)]]

PROOF: We proceed by structural induction on S.
In the case that S = flat(e): we substitute into the theorem,

then focus on the right-hand side. We expand the definition of
compile and do beta reduction. The application of (f x) in the
definition reduces to true with the given f , so we remove it and
the and-expression. This and an application of eta produces the
right-hand side: [[guard (pair e (λ.false))]]. If we expand this
application of guard, it onlys succeeds if the value sent to the
contract is a constant, c, such that (ec) = true. We now focus
on the left-hand side. By expanding the definition of [[S]] and ⊕,
we get the condition that run(ec) = true where c is the constant
sent to the contract. Clearly these two constraints are the same, so
this case is completed.
In the case that S = n : S1)→ S2, we, naturally, make us of

the inductive hypothesis twice. However, getting to that point re-
quires a few subtle steps. First, we assume that calln and retn
are λx.true for all n. This is a reasonable assumption, because we
are only considering structural contracts, so there are no temporal
properties to enforce. Next, we consider the behavior of both sides
after it has been applied. Only the case where it is actually a func-
tion is relevant, because if it is a constant, both trivially reject any
subsequent events. After assuming we’ve received a function, we
then assume that the function is called and returns. The contracts
S1 and S2 protect the call and return through the S-CALL and S-
RET rules on the left and through the recursive calls to guard on the
right—and the inductive hypothesis ensures that these have identi-
cal semantics. !

Compiling Dependent Sequences For dependent sequences, we
follow the same general approach, except we cannot compile to a
finite state automaton. For example, the constraint

not ... call(free,?z) !ret(alloc,z)* call(free,z)

requires unbound storage to record all freed locations z. Instead, we
compile to a lazily constructed infinite automaton. Each automaton
is a function from an event (call or return) to a next automaton—
as well as a boolean to encode acceptance. Event patterns are
functions that return the epsilon automaton on matching and a null
(rejecting) automaton otherwise. In contrast, dependent sequences
return a new automaton representing the rest of the trace, and which
includes an appropriate binding for the dependent variable z.
Each of the regular grammar operators (sequencing, comple-

ment, etc) is implemented as an explicit automaton that simulates
the operator using the automaton functions representing its pieces.
These implementation correspond precisely to the intuitive expla-
nations of regular operator closure properties found in any textbook
on automata theory. Since Kleene star and sequencing may invoke
their arguments multiple times, dependent sequences embedded in
them will be duplicated for each successful match of the pattern.
This approach is similar to regular expression derivatives [9, 38].

7.3 Examples
Section 2 presented a variety of examples of structural/temporal
contracts, whose meaning and compilation can now be understood
based on the formalism of this section. In particular, the contract
combinator “Pair S1 S2” abbreviates the contract for Church-
encoded pairs “(S1 →S2 →Any) → Any”, and generalizes to a
Record combinator that supports n-ary tuples.
The specification of temporal properties involves some sub-

tleties, which we illustrate by considering various contracts for a
lock object with acquire and release methods. Our initial con-
tract states that acquire and release are atomic, and calls must
alternate between these functions, with acquire being called first.

LockContract =

9 2011/6/29

27

Finally, the meaning of a contract (S where R) is defined as
any trace that satisfies S, providing a resulting environment E, and
where the trace also satisfies R with respect to E. The function
prefixes performs prefix-closure on a set of traces.
[[S where R]]
def
= { (send.ret(start , h) · t) ∈ prefixes([[R]]E) |

〈E0, start〉 ⇒t 〈E,F 〉 and E0 = ∅ ⊕ (h : send S) }

Thus, a module e under contract S where R yields the trace set:
[[e]] ∩ [[S where R]]

7.2 Compiling HOT Contracts
We enforce each contract (S where R) by compiling it into an
appropriate monitor. We convert the temporal component R into a
finite state automaton, where s ranges over the state space of the
automaton, s0 denotes the initial state, and the handlers calln and
retn for each function name n imperatively update s appropriately
and return true if the automaton is in an accepting state and false
otherwise. The code is roughly:
let s = s0

calln = λi. · · · check and update s appropriately · · ·
.
retn = λo. · · · check and update s appropriately · · ·
.

in compile(λx.true, S)

The function compile(f, S) generates a monitor that ensures
that the trace satisfies S, and which is parameterized over a number
of calln and retn functions that communicate to the temporal
code above. The additional argument

f : (Constant ∪ {λx.x})→ Bool)

is an “observer function” that is called and can signal an error
whenever a value passes through this S boundary; it is used in the
following recursive definition of compile .

compile : (Constant ∪ {λx.x})→ Bool)× S)→ Monitor

compile(f,flat(e))
def
=

pair (λx. (e x) && (f x))
(λ. false)

compile(f, n :S1)→ S2)
def
=

pair (λx. false)
(λ. (f (λx.x)) && (pair compile(calln, S1)

compile(retn, S2))))

compile(f, y)
def
=

let (chkconst,chkfn) = y
pair (λx. (f x) && (chkconst x))

(λ. (f (λx.x)) && (chkfn()))

For the contract flat(e), the generated monitor accepts only
constants; it checks that the constant satisfies both the observer
function f and the predicate e. For the function contract n :S1)→
S2, the generated monitor accepts only functions. It immediately
notifies the observer that a function is passing through this contract,
and then returns a pair of monitors that monitor calls and returns of
this function, in each case notifying calln or retn and enforcing
the sub-contracts S1 or S2, as appropriate.
Our implementation extends the structural contract language to

include variable references (y) for referring to predefined monitors
such as the Any monitor defined in section 5.1. The compilation of
such monitor references extends the referenced monitor to call the
observer function f appropriately.

THEOREM 3 (Structural Contract Compilation Correctness). For
all structural contracts S, [[S]] = [[guard compile(λx.true, S)]]

PROOF: We proceed by structural induction on S.
In the case that S = flat(e): we substitute into the theorem,

then focus on the right-hand side. We expand the definition of
compile and do beta reduction. The application of (f x) in the
definition reduces to true with the given f , so we remove it and
the and-expression. This and an application of eta produces the
right-hand side: [[guard (pair e (λ.false))]]. If we expand this
application of guard, it onlys succeeds if the value sent to the
contract is a constant, c, such that (ec) = true. We now focus
on the left-hand side. By expanding the definition of [[S]] and ⊕,
we get the condition that run(ec) = true where c is the constant
sent to the contract. Clearly these two constraints are the same, so
this case is completed.
In the case that S = n : S1)→ S2, we, naturally, make us of

the inductive hypothesis twice. However, getting to that point re-
quires a few subtle steps. First, we assume that calln and retn
are λx.true for all n. This is a reasonable assumption, because we
are only considering structural contracts, so there are no temporal
properties to enforce. Next, we consider the behavior of both sides
after it has been applied. Only the case where it is actually a func-
tion is relevant, because if it is a constant, both trivially reject any
subsequent events. After assuming we’ve received a function, we
then assume that the function is called and returns. The contracts
S1 and S2 protect the call and return through the S-CALL and S-
RET rules on the left and through the recursive calls to guard on the
right—and the inductive hypothesis ensures that these have identi-
cal semantics. !

Compiling Dependent Sequences For dependent sequences, we
follow the same general approach, except we cannot compile to a
finite state automaton. For example, the constraint

not ... call(free,?z) !ret(alloc,z)* call(free,z)

requires unbound storage to record all freed locations z. Instead, we
compile to a lazily constructed infinite automaton. Each automaton
is a function from an event (call or return) to a next automaton—
as well as a boolean to encode acceptance. Event patterns are
functions that return the epsilon automaton on matching and a null
(rejecting) automaton otherwise. In contrast, dependent sequences
return a new automaton representing the rest of the trace, and which
includes an appropriate binding for the dependent variable z.
Each of the regular grammar operators (sequencing, comple-

ment, etc) is implemented as an explicit automaton that simulates
the operator using the automaton functions representing its pieces.
These implementation correspond precisely to the intuitive expla-
nations of regular operator closure properties found in any textbook
on automata theory. Since Kleene star and sequencing may invoke
their arguments multiple times, dependent sequences embedded in
them will be duplicated for each successful match of the pattern.
This approach is similar to regular expression derivatives [9, 38].

7.3 Examples
Section 2 presented a variety of examples of structural/temporal
contracts, whose meaning and compilation can now be understood
based on the formalism of this section. In particular, the contract
combinator “Pair S1 S2” abbreviates the contract for Church-
encoded pairs “(S1 →S2 →Any) → Any”, and generalizes to a
Record combinator that supports n-ary tuples.
The specification of temporal properties involves some sub-

tleties, which we illustrate by considering various contracts for a
lock object with acquire and release methods. Our initial con-
tract states that acquire and release are atomic, and calls must
alternate between these functions, with acquire being called first.

LockContract =

9 2011/6/29

Finally, the meaning of a contract (S where R) is defined as
any trace that satisfies S, providing a resulting environment E, and
where the trace also satisfies R with respect to E. The function
prefixes performs prefix-closure on a set of traces.
[[S where R]]
def
= { (send.ret(start , h) · t) ∈ prefixes([[R]]E) |

〈E0, start〉 ⇒t 〈E,F 〉 and E0 = ∅ ⊕ (h : send S) }

Thus, a module e under contract S where R yields the trace set:
[[e]] ∩ [[S where R]]

7.2 Compiling HOT Contracts
We enforce each contract (S where R) by compiling it into an
appropriate monitor. We convert the temporal component R into a
finite state automaton, where s ranges over the state space of the
automaton, s0 denotes the initial state, and the handlers calln and
retn for each function name n imperatively update s appropriately
and return true if the automaton is in an accepting state and false
otherwise. The code is roughly:
let s = s0

calln = λi. · · · check and update s appropriately · · ·
.
retn = λo. · · · check and update s appropriately · · ·
.

in compile(λx.true, S)

The function compile(f, S) generates a monitor that ensures
that the trace satisfies S, and which is parameterized over a number
of calln and retn functions that communicate to the temporal
code above. The additional argument

f : (Constant ∪ {λx.x})→ Bool)

is an “observer function” that is called and can signal an error
whenever a value passes through this S boundary; it is used in the
following recursive definition of compile .

compile : (Constant ∪ {λx.x})→ Bool)× S)→ Monitor

compile(f,flat(e))
def
=

pair (λx. (e x) && (f x))
(λ. false)

compile(f, n :S1)→ S2)
def
=

pair (λx. false)
(λ. (f (λx.x)) && (pair compile(calln, S1)

compile(retn, S2))))

compile(f, y)
def
=

let (chkconst,chkfn) = y
pair (λx. (f x) && (chkconst x))

(λ. (f (λx.x)) && (chkfn()))

For the contract flat(e), the generated monitor accepts only
constants; it checks that the constant satisfies both the observer
function f and the predicate e. For the function contract n :S1)→
S2, the generated monitor accepts only functions. It immediately
notifies the observer that a function is passing through this contract,
and then returns a pair of monitors that monitor calls and returns of
this function, in each case notifying calln or retn and enforcing
the sub-contracts S1 or S2, as appropriate.
Our implementation extends the structural contract language to

include variable references (y) for referring to predefined monitors
such as the Any monitor defined in section 5.1. The compilation of
such monitor references extends the referenced monitor to call the
observer function f appropriately.

THEOREM 3 (Structural Contract Compilation Correctness). For
all structural contracts S, [[S]] = [[guard compile(λx.true, S)]]

PROOF: We proceed by structural induction on S.
In the case that S = flat(e): we substitute into the theorem,

then focus on the right-hand side. We expand the definition of
compile and do beta reduction. The application of (f x) in the
definition reduces to true with the given f , so we remove it and
the and-expression. This and an application of eta produces the
right-hand side: [[guard (pair e (λ.false))]]. If we expand this
application of guard, it onlys succeeds if the value sent to the
contract is a constant, c, such that (ec) = true. We now focus
on the left-hand side. By expanding the definition of [[S]] and ⊕,
we get the condition that run(ec) = true where c is the constant
sent to the contract. Clearly these two constraints are the same, so
this case is completed.
In the case that S = n : S1)→ S2, we, naturally, make us of

the inductive hypothesis twice. However, getting to that point re-
quires a few subtle steps. First, we assume that calln and retn
are λx.true for all n. This is a reasonable assumption, because we
are only considering structural contracts, so there are no temporal
properties to enforce. Next, we consider the behavior of both sides
after it has been applied. Only the case where it is actually a func-
tion is relevant, because if it is a constant, both trivially reject any
subsequent events. After assuming we’ve received a function, we
then assume that the function is called and returns. The contracts
S1 and S2 protect the call and return through the S-CALL and S-
RET rules on the left and through the recursive calls to guard on the
right—and the inductive hypothesis ensures that these have identi-
cal semantics. !

Compiling Dependent Sequences For dependent sequences, we
follow the same general approach, except we cannot compile to a
finite state automaton. For example, the constraint

not ... call(free,?z) !ret(alloc,z)* call(free,z)

requires unbound storage to record all freed locations z. Instead, we
compile to a lazily constructed infinite automaton. Each automaton
is a function from an event (call or return) to a next automaton—
as well as a boolean to encode acceptance. Event patterns are
functions that return the epsilon automaton on matching and a null
(rejecting) automaton otherwise. In contrast, dependent sequences
return a new automaton representing the rest of the trace, and which
includes an appropriate binding for the dependent variable z.
Each of the regular grammar operators (sequencing, comple-

ment, etc) is implemented as an explicit automaton that simulates
the operator using the automaton functions representing its pieces.
These implementation correspond precisely to the intuitive expla-
nations of regular operator closure properties found in any textbook
on automata theory. Since Kleene star and sequencing may invoke
their arguments multiple times, dependent sequences embedded in
them will be duplicated for each successful match of the pattern.
This approach is similar to regular expression derivatives [9, 38].

7.3 Examples
Section 2 presented a variety of examples of structural/temporal
contracts, whose meaning and compilation can now be understood
based on the formalism of this section. In particular, the contract
combinator “Pair S1 S2” abbreviates the contract for Church-
encoded pairs “(S1 →S2 →Any) → Any”, and generalizes to a
Record combinator that supports n-ary tuples.
The specification of temporal properties involves some sub-

tleties, which we illustrate by considering various contracts for a
lock object with acquire and release methods. Our initial con-
tract states that acquire and release are atomic, and calls must
alternate between these functions, with acquire being called first.

LockContract =

9 2011/6/29

27

Step 5: Racket
Implementation

28

Differences
• No non-interference

guarantee (inherited
from Racket contracts)

• Continuations allow 0,
1, and many returns

• Mutation intermediation
through standard
contracts

• Safe w.r.t concurrency
with kill-safe server

• Temporal formula
macros like and using
De Morgan’s law

• Recursive temporal
formulas with delays

29

Step 6: Evaluation

30

Racket Standard
Library

Atomic 519 number?

Transient 51 map

Anti-transient 17 curry

Unconstrained 13 apply

31

Atomicity

825.00ms

1550.00ms

2275.00ms

3000.00ms

2007

Monitors HOT HOT w/ dseq

32

Adversarial Defense

• Tic-Tac-Toe game

• Player : Board →
Board

• May only call
board-set once

• May not call
board-set with
same arguments in
one game

• Catches cheating
humans and AIs
with contracts

33

Future Work

• Interaction with types

• Concurrency

• Explain contract violations

34

