
Proving MCAPI Executions are Correct

Applying SMT Technology to Message Passing

Yu Huang, Eric Mercer, and Jay McCarthy ?

Brigham Young University
{yuHuang,egm,jay}@byu.edu

Abstract. Asynchronous message passing is an important paradigm in
writing applications for embedded heterogeneous multicore systems. The
Multicore Association (MCA), an industry consortium promoting multi-
core technology, is working to standardize message passing into a single
API, MCAPI, for bare metal implementation and portability across plat-
forms. Correctness in such an API is difficult to reason about manually,
and testing against reference solutions is equally difficult as reference
solutions implement an unknown set of allowed behaviors, and program-
mers have no way to directly control API internals to expose or reproduce
errors. This paper provides a way to encode an MCAPI execution as a
Satisfiability Modulo Theories (SMT) problem, which if satisfiable, yields
a feasible execution schedule on the same trace, such that it resolves
non-determinism in the MCAPI runtime in a way that it now fails user
provided assertions. The paper proves the problem is NP-complete. The
encoding is useful for test, debug, and verification of MCAPI program
execution. The novelty in the encoding is the direct use of match pairs
(potential send and receive couplings). Match-pair encoding for MCAPI
executions, when compared to other encoding strategies, is simpler to
reason about, results in significantly fewer terms in the SMT problem,
and captures feasible behaviors that are ignored in previously published
techniques. Further, to our knowledge, this is the first SMT encoding
that is able to run in infinite-buffer semantics, meaning the runtime has
unlimited internal buffering as opposed to no internal buffering. Results
demonstrate that the SMT encoding, restricted to zero-buffer seman-
tics, uses fewer clauses when compared to another zero-buffer technique,
and it runs faster and uses less memory. As a result the encoding scales
well for programs with high levels of non-determinism in how sends and
receives may potentially match.

Keywords: Abstraction, refinement, SMT, message passing

1 Introduction

Embedded devices fill all sorts of crucial roles in our lives. They exist as medical
devices, as network infrastructure, and they control our automobiles. Embed-
ded devices continue to become more powerful as computing hardware becomes

? Special thanks to Christopher Fischer, formally at BYU and now at Amazon

smaller and more modular. It is now becoming commonplace to find multiple
processing units inside a single device. The Multicore Association (MCA) is an
industry group that has formed to define specifications for low-level communica-
tion, resource management, and task management for embedded heterogeneous
multicore devices [9].

One specification that the MCA has released is the Multicore Association
Communications API (MCAPI) [10]. The specification defines types and func-
tions for simple message passing operations between different computing enti-
ties within a device. Messages can be passed across persistent channels that
force an ordering of the messages, or they can be passed to specific endpoints
within the system. The specification places few ordering constraints on mes-
sages passed from one endpoint to another. This freedom introduces the pos-
sibility of a race between multiple messages to common endpoints thus giving
rise to non-deterministic behavior in the runtime [14]. If an application has non-
determinism, it is not possible to test and debug such an application without a
way to directly (or indirectly) control the MCAPI runtime.

There are two ways to implement the MCAPI semantics: infinite-buffer se-
mantics (the message is copied into a runtime buffer on the API call) and zero-
buffer semantics (the message has no buffering) [18]. An infinite-buffer semantics
provides more non-deterministic behaviors in matching send and receives because
the runtime can arbitrarily delay a send to create interesting (and unexpected)
send reorderings. The zero-buffer semantics follow intuitive message orderings
as a send and receive essentially rendezvous.

Sharma et al. propose a method to indirectly control the MCAPI runtime to
verify MCAPI programs under zero-buffer semantics [16]. As the work does not
address infinite-buffer semantics, it is somewhat limited in its application. The
work does provide a dynamic partial order reduction for the model checker, but
such a reduction is not sufficient to control state space explosion in the presence
of even moderate non-determinism between message sends and receives. A key
insight from the approach is its direct use of match pairs–couplings for potential
sends and receives.

Wang et al. propose an alternative method for resolving non-determinism for
program verification using symbolic methods in the context of shared memory
systems [19]. The work observes a program trace, builds a partial order from
that trace called a concurrent trace program (CTP), and then creates an SMT
problem from the CTP that if satisfied indicates a property violation.

Elwakil et al. extend the work of Wang et al. to message passing and claim
the encoding supports both infinite and zero buffer semantics. A careful analysis
of the encoding, however, shows it to not work under infinite-buffer semantics
and to miss behaviors under zero-buffer semantics [6]. Interestingly, the encoding
assumes the user provides a precise set of match pairs as input with the program
trace, and it then uses those match pairs in a non-obvious way to constrain
the happens-before relation in the encoding. The work does not discuss how
to generate the match pairs, which is a non-trivial input to manually generate

Task 0 Task 1 Task 2

00 initialize(NODE_0,&v,&s);

01 e0=create_endpoint(PORT_0,&s);

02 msg_recv_i(e0,A,sizeof(A),&h1,&s);

03 wait(&h1,&size,&s,MCAPI_INF);

04 a=atoi(A);

05 msg_recv_i(e0,B,sizeof(B),&h2,&s);

06 wait(&h2,&size,&s,MCAPI_INF);

07 b=atoi(B);

08 if(b > 0);

09 assert(a == 4);

0a finalize(&s);

10 initialize(NODE_1,&v,&s);

11 e1=create_endpoint(PORT_1,&s);

12 e0=get_endpoint(NODE_0,PORT_0,&s);

13 msg_recv_i(e1,C,sizeof(C),&h3,&s);

14 wait(&h3,&size,&s,MCAPI_INF);

15 msg_send_i(e1,e0,"1",2,N,&h4,&s);

16 wait(&h4,&size,&s,MCAPI_INF);

17 finalize(&s);

20 initialize(NODE_2,&v,&s);

21 e2=create_endpoint(PORT_2,&s);

22 e0=get_endpoint(NODE_0,PORT_0,&s);

23 e1=get_endpoint(NODE_1,PORT_1,&s);

24 msg_send_i(e2,e0,"4",2,N,&h5,&s);

25 wait(&h5,&size,&s,MCAPI_INF);

26 msg_send_i(e2,e1,"Go",3,N,&h6,&s);

27 wait(&h6,&size,&s,MCAPI_INF);

28 finalize(&s);

Fig. 1. An MCAPI concurrent program execution

for large or complex program traces. An early proof claims that the problem of
finding a precise set of match pairs given a program trace is NP-complete [15].

This paper presents a proof that resolving non-determinism in message pass-
ing programs in a way that meets all assertions is NP-complete. The paper
then presents an SMT encoding for MCAPI program executions that works for
both zero and infinite buffer semantics. The encoding does require an input set
of match pairs as in prior work, but unlike prior work, the match-set can be
over-approximated and the encoding is still sound and complete. The encoding
requires fewer terms to capture all possible program behavior when compared
to other proposed methods making it more efficient in the SMT solver. To ad-
dress the problem of generating match pairs, an algorithm to generate the over-
approximated set is given. To summarize, the main contributions in this paper
are

1. a proof that the problem of matching sends to receives in a way that meets
assertions is NP-complete;

2. a correct and efficient SMT encoding of an MCAPI program execution that
detects all program errors under zero or infinite buffer semantics given the
input set of potential match pairs contains at least the precise set of match
pairs; and

3. an O(N2) algorithm to generate an over-approximation of possible match
pairs, where N is the size of the execution trace in lines of code.

The rest of the paper is organized as follows: Section 2 presents an MCAPI
program illustrating the non-determinism in the runtime specification. Section
3 is the proof that the problem is NP-complete. Section 4 defines the SMT
encoding using potential math-pairs. The encoding is shown to be sound and
complete even under an over-approximated set of match pairs. Section 5 provides
a solution to the outstanding problem of generating feasible match pairs. Section
6 presents the experimental results that show the encoding to be efficient. Section
7 discusses related work. And Section 8 presents conclusions and future work.

2 Example

It is a challenge to explain intended behavior in simple scenarios consisting of a
handful of calls when dealing with concurrency. Consider the MCAPI program
execution in Figure 1 that includes three tasks that use send (mcapi msg sen

d i) and receive (mcapi msg recv i) calls to communicate with each other. Line
numbers appear in the first column for each task with the first digit being the
task ID, and the declarations of the local variables are omitted for space.

Picking up the scenario just after the endpoints are defined, lines 02 and
05 receive two messages on the endpoint e0 in variables A and B which are
converted to integer values and stored in variables a and b on lines 04 and 07;
task 1 receives one message on endpoint e1 in variable C on line 13 and then
sends the message “1” on line 15 to e0 ; and finally, task 2 sends messages “4”
and “Go” on lines 24 and 26 to endpoints e0 and e1 respectively. The additional
code (lines 08 - 09) asserts properties of the values in a and b. The mcapi wait

calls block until the associated send or receive buffer is able to be used. Given
the scenario, a developer might ask the question: “What are the possible values
of a and b after the scenario completes?”

24 S2,4(0,&h5)
25 W(&h5)
02 R0,2(2,&h1)
03 W(&h1)
26 S2,6(1,&h6)
27 W(&h6)
04 a = atoi(A);
13 R1,3(2,&h3)
14 W(&h3)
15 S1,5(0,&h4)
16 W(&h4)
05 R0,5(1,&h2)
06 W(&h2)
07 b = atoi(B);
08 assume(b > 0);
09 assert(a == 4);

Fig. 2. A feasible execution traces of the MCAPI program execution in Figure 1

The intuitive trace is shown in Figure 2 using a shorthand notation for the
MCAPI commands: send (denoted as S), receive (denoted as R), or wait (denoted
as W). The shorthand notation further preserves the thread ID and line number as
follows: for each command Oi,j(k,&h), O ∈ {S, R} or W(&h), i represents the task
ID, j represents the source line number, k represents the destination endpoint,
and h represents the command handler. A specific destination task ID is indicated
in the notation when a trace is fully resolved, otherwise “*” notation indicates
that a receive has yet to be matched to a specific send. The lines in the trace
indicate the context switch where a new task executes.

From the trace, variable a should contain 4 and variable b should contain
1 since task 2 must first send message “4” to e0 before it can send message

“Go” to e1 ; consequently, task 1 is then able to send message “1” to e0. The
assume notation asserts the control flow taken by the program execution. In this
example, the program takes the true branch of the condition on line 08. At the
end of execution the assertion on line 09 holds and no error is found.

24 S2,4(0,&h5)
25 W(&h5)
26 S2,6(1,&h6)
27 W(&h6)
13 R1,3(2,&h3)
14 W(&h3)
15 S1,5(0,&h4)
16 W(&h4)
02 R0,2(1,&h1)
03 W(&h1)
04 a = atoi(A);
05 R0,5(2,&h2)
06 W(&h2)
07 b = atoi(B);
08 assume(b > 0);
09 assert(a == 4);

Fig. 3. A second feasible execution traces of the MCAPI program in Figure 1

There is another feasible trace for the example shown in Figure 3 which
is reachable under the infinite-buffer semantics. In this trace, the variable a
contains 1 instead of 4, since the message “1” is sent to e0 after sending the
message “Go” to e1 as it is possible for the send on line 24 to be buffered in
transit. The MCAPI specification indicates that the wait on line 25 returns once
the buffer is available. That only means the message is somewhere in the MCAPI
runtime under the infinite-buffer semantics; it does not mean the message is
delivered. As such, it is possible for the message to be buffered in transit allowing
the send on line 15 to arrive at e0 first and be received in variable “a”. Such a
scenario is a program execution that results in an assertion failure at line 09.

From the discussion above, it is important to consider non-determinism in
the MCAPI runtime when testing or debugging an MCAPI program execution.
The next section presents a proof that the problem of matching sends to re-
ceives in a way that meets all assertions is NP-complete. The proof justifies the
encoding and SMT solver. Following the proof, the algorithm to generate the en-
coding is presented. It takes an MCAPI program execution with a set of possible
send-receive match pairs and generates an SMT problem that if satisfied proves
that non-determinism can be resolved in a way that violates a user provided
assertion (the assertions are negated in the encoding) and if unsatisfiable proves
the trace correct (meaning the user assertions hold on the given execution under
all possible runtime behaviors). The encoding can be solved by an SMT solver
such as Yices [4] or Z3 [12].

3 NP Completeness Proof

The complexity proof is inspired by the NP-completeness proof for memory
coherence and consistency by Cantin et al. that uses a similar reduction from
SAT only in the context of shared memory [2]. The complexity proof is on a new
decision problem: Verifying Assertions in Message Passing (VAMP).

Definition 1. Verifying Assertions in Message Passing.
INSTANCE: A set of constants D, a set of variables X, and a finite set H of

task histories consisting of send, receive, and assert operations over X and
D.

QUESTION: Is there a feasible schedule S for the operations of H that satisfy
all the assertions?

The VAMP problem is NP-complete. The proof is a reduction from SAT.
Given an instance Q of SAT consisting of a set of variables U and set of clauses
C over U , an instance V of VAMP is constructed such that V has a feasible
schedule S that meets all the assertions if and only if there is a satisfying truth
assignment for Q. Feasible in this context means the schedule is allowed by the
MCAPI semantics.

The reduction is illustrated in Figure 4. The figure elides the explicit calls
to wait which directly follow each send and receive operation, and it elides the
subscript notation as it is redundant in the figure. The figure also adds the value
sent and the variable that receives the value to the notation as that information
is pertinent to the reduction.

The reduction relies on non-determinism in the message passing to decide the
value of each variable in U . The tasks hd0 and hd1 repeatedly send the constant
value d0 (false valuation) or d1 (true valuation) to task hC . The key intuition is
that these tasks are synchronized with hC so they essentially wait to send the
value until asked.

The task hC sequentially requests and receives d0 and d1 values for each
variable in the SAT instance Q. It does not request values for a new variable
until the current variable is resolved. As the values come from two separate tasks
upon request, the messages race in the runtime and may arrive in either order
at hC . As a result, the value in each variable is non-deterministically d0 or d1.

After the value of each variable ui is resolved, the hC task asserts the truth of
each clause in the problem instance. As the clauses are conjunctive, the assertions
are sequentially evaluated. If a satisfying assignment exists for Q, then a feasible
schedule exists that resolves the values of each variable in such a way that every
assert holds.

Lemma 1. S is a feasible schedule for H that satisfies all assertions if and only
if Q is satisfiable.

Proof. Feasible schedule for V implies Q is satisfiable: proof by contra-
diction. Assume that Q is unsatisfiable even though there is a feasible schedule
S for V that meets all the assertions. The reduction in Figure 4 considers all

SAT: U ≡ {u0 , u1 , ..., um}
C ≡ {c0 , c1 , ..., cn}
Q ≡ {c0 ∧ c1 ∧ ... ∧ cn}
VAMPI: H ≡ {hd0 , hd1 , hC}
X ≡ {u0 , ..., um , g0 , g1}
D ≡ {d0 , d1}
hd0 hd1 hC

R(g0, ∗) R(g1, ∗) S(d0, hd0)
S(d0, hC) S(d1, hC) S(d0, hd1)

R(u0, ∗)
R(u0, ∗)

R(g0, ∗) R(g1, ∗) S(d0, hd0)
S(d0, hC) S(d1, hC) S(d0, hd1)

R(u1, ∗)
R(u1, ∗)

.

assert(c0)
assert(c1)
. . .

Fig. 4. General SAT to VAMPI reduction

truth values of the variables in Q, over every combination, by virtue of the non-
determinism, and then asserts the truth of each of the clauses in Q. The complete
set of possibilities is realized by sending in parallel from hd0 and hd1 the two
truth valuations for a given variable to hC . As these messages may be received
in any order, each variable may assume either truth value. Further, each variable
resolved is an independent choice so all combinations of variable valuations must
be considered. This fact is a contradiction to the assumption of Q being unsat-
isfiable as the same truth values that meet the assertions would be a satisfying
assignment in Q.
Q is satisfiable implies feasible schedule for V: the proof is symmetric to
the previous case and proceeds in a like manner.

Theorem 1 (NP-complete). VAMP is NP-complete.

Proof. Membership in NP: a certificate is a schedule matching send and re-
ceives in each of the histories. The schedule is linearly scanned with the histories
and checked that it does not violate MCAPI semantics. The next section con-
structs an operational model of MCAPI semantics that does just such a check
given a schedule. The complexity is linear in the size of the schedule.
NP-hard: polynomial reduction from SAT. The correctness of the reduction is
established by Lemma 1. The remainder of the proof is the complexity of the
reduction. There are two tasks to send values d0 and d1 upon request. For each
variable ui ∈ U , each of these tasks, d0 and d1, needs two operations: one to
synchronize with hC and another to send the value: O(2 ∗ 2 ∗ |U |). The task hC

must request values from hd0 and hd1 and then receive both those values; it must
do this for each variable: O(2 ∗ 2 ∗ |U |). Once all the values are collected, it must
them assert each clause: O(|C|). As every term is linear, the reduction is linear.

ctp ::= (t . . .)
t ::= ([ρ c] . . . ⊥)
c ::= (assume e)
| (assert e)
| (x := e)
| (sndi a α β e ρ)
| (rcvi a β x ρ)
| (wait a)

m ::= ⊥ | δ
δ ::= ((β α) . . . ⊥)

trace ::= (σ . . .)
σ ::= (ρ m)

e ::= (op e e)
| c
| x
| v

v ::= number
| bool

bool ::= true
| false

α ::= γ
β ::= γ

mstate ::= (h η A Pnd s Pnd r Q s ctp trace s)
qstate ::= (Pnd s Q s m s)
estate ::= (h η A Pnd s Pnd r Q s e s k)

h ::= ∅ | (h [l → v])
η ::= ∅ | (η [x → l])
A ::= ((a γ) . . .)

Pnd s ::= ∅ | (Pnd s [β → frm])

frm ::= ∅ | (frm [α → snd])
snd ::= ([a v] . . .)

Pnd r ::= ∅ | (Pnd r [β → rcv])
rcv ::= ([a x] . . .)
Q s ::= ∅ | (Q s [β → q])

q ::= ([a v−⊥] . . .)
v−⊥ ::= ⊥ | v

s ::= success
| failure
| infeasible
| error

k ::= ret
| (assert * → k)
| (assume * → k)
| (x := * → k)
| (op * e → k)
| (op v * → k)

(a) (b)

Fig. 5. The trace language syntax with its evaluation syntax for the operational
semantics–bold face indicates a terminal. (a) The input syntax with terminals x, ρ
(which is unique), and a defined as strings and γ as a number. (b) The evaluation
syntax with terminal l defined as a number.

Machine Step
(Pnd s Q s m s) →∗

q (Pnd sp0 Q sp0 mp sp0)
(h η A Pnd sp0 Pnd r Q sp0 c0 sp0 ret) →∗

e (hp ηp Ap Pnd sp1 Pnd rp Q sp1 e sp1 ret)

(h η A Pnd s Pnd r Q s (t0 . . . ([ρ0 c0] [ρ1 c1] [ρ2 c2] . . .) t2 . . .) ([ρ0 m] σ1 . . .) s)→m

(hp ηp Ap Pnd sp1 Pnd rp Q sp1 (t0 . . . ([ρ1 c1] [ρ2 c2] . . .) t2 . . .) (σ1 . . .) sp1)

Fig. 6. Machine Reductions (→m)

4 Trace Language

The trace language is the theoretical framework for the match-pair encoding.
The language syntax describes a CTP with a single execution trace on the same

Process Queue Movement

([as v] [a1 v1] . . .) = Pnd s(β)(α)
Pnd sp = [Pnd s | β 7→ [Pnd s(β) | α 7→ ([a1 v1] . . .)]] ([a1 v1] . . .) = Q s(β)

Q sp = [Q s | β 7→ ([as v] [a1 v1] . . .)] sp =

{
s if |Pnd s(β)(α)| > 0
error otherwise

(Pnd s Q s ((β α) (β0 α0) . . . ⊥) s)→q (Pnd sp Q sp ((β0 α0) . . . ⊥) sp)

Fig. 7. Queue Reductions (→q)

Variable Lookup
(h η A Pnd s Pnd r Q s x s k) →e

(h η A Pnd s Pnd r Q s h(η(x)) s k)

Left Operand
(h η A Pnd s Pnd r Q s (op e0 e) s k)→e

(h η A Pnd s Pnd r Q s e0 s (op ∗ e→ k))

Right Operand
(h η A Pnd s Pnd r Q s v s (op ∗ e→ k))→e

(h η A Pnd s Pnd r Q s e s (op v ∗ → k))

Binary Operation
(h η A Pnd s Pnd r Q s vr s (op vl ∗ → k))→e

(h η A Pnd s Pnd r Q s op(vl, vr) s k)

Assume Expressions Evaluation
(h η A Pnd s Pnd r Q s (assume e) s k)→e

(h η A Pnd s Pnd r Q s e s (assume ∗ → k))

Assume Command
(h η A Pnd s Pnd r Q s v s (assume ∗ → k))→e

(h η A Pnd s Pnd r Q s v assume(v, s) k)

Assert Expressions Evaluation
(h η A Pnd s Pnd r Q s (assert e) s k)→e

(h η A Pnd s Pnd r Q s e s (assert ∗ → k))

Assert Command
(h η A Pnd s Pnd r Q s v s (assert ∗ → k))→e

(h η A Pnd s Pnd r Q s v assert(v, s) k)

Assign Expressions Evaluation
(h η A Pnd s Pnd r Q s (x := e) s k)→e

(h η A Pnd s Pnd r Q s e s (x := ∗ → k))

Assign Command
(h η A Pnd s Pnd r Q s v s (x := ∗ → k))→e

([h | η(x) 7→ v] η A Pnd s Pnd r Q s v s k)

Sndi Command
([a1 v1] . . .) = Pnd s(β)(α)
Pnd sp = [Pnd s | β 7→ [Pnd s(β) | α 7→ ([a0 h(η(x))] [a1 v1] . . .)]]

(h η ([a γ] . . .) Pnd s Pnd r Q s (sndi a0 α β x) s k)→e (h η ([a0 α] [a γ] . . .) Pnd sp Pnd r Q s true s k)

Rcvi Command
([a1 x1] . . .) = Pnd r(β) Pnd rp = [Pnd r | β 7→ ([a0 x0] [a1 x1] . . .)]

(h η ([a γ] . . .) Pnd s Pnd r Q s (rcvi a0 β x0) s k)→e (h η ([a0 β] [a γ] . . .) Pnd s Pnd rp Q s true s k)

Wait (sndi) Command

(h η A Pnd s Pnd r Q s (wait as) s k)→e (h η A Pnd s Pnd r Q s true s k)

Wait (rcvi) Command

([a0 γ0] . . . [as α] . . . [ar β] . . . [a1 γ1]) = A
(hp as Pnd rp Q sp sp) = getMarkRemove(h, η,Pnd r,Q s, β, ar, s)
Ap = ([a0 γ0] . . . [a1 γ1])

(h η A Pnd s Pnd r Q s (wait ar) s k)→e (hp η Ap Pnd s Pnd rp Q sp true sp k)

Fig. 8. Expression Reductions (→e)

CTP. The evaluation syntax with its operational semantics define how to execute
the CTP, following the specified trace, and define when that execution is a
success (causes no assertion violation), a failure (causes an assertion violation),
infeasible (causes an assume to not hold), or an error (uses a bogus match pair).
Section 5 defines the encoding of a trace language program as an SMT problem
and extends that encoding to capture a set of possible traces using match-pairs.

4.1 Syntax

Figure 5(a) is the syntax for a trace language program. This presentation uses el-
lipses (. . .) to represent zero or more repetitions, bold-face to indicate terminals,
and omits commas in tuples for cleanliness. A trace language program is a CTP
with a trace defining a sequential run of the CTP. The language defines a CTP
(ctp) as a list of threads. A thread (t) is a list of pairs with each pair being a
program location and a command. For simplicity, commands (c) are restricted to
assume, assert, assignment, non-blocking send (snd) and receive (rcv), and wait.
We model a trace as an order of executed locations identified by (ρ) and a series
of queue movements that move a message from a source queue to a destination
queue. The queue movement (m) is either a special symbol indicating no move-
ment or a list of move commands. The move list (δ) consists of several pairs of
end-points where the first and second end-points are the destination and source
end-points respectively. Each pair in the move list refers to a queue movement
such that the first pending send of the source end-point should be moved to the
send queue of the destination end-point. The non-terminal a in the grammar is a
unique string identifier associated with a send or receive command referred to as
an action ID in the text. The wait command takes a single action ID belonging
to the associated send or receive action. The non-terminals α and β are source
and destination end-points respectively. The non-terminal γ is a number. The
terminal x is any string not mentioned in the grammar definition and represents
a program variable. Expressions (e) are defined using prefix notation over bi-
nary operators. The bottom of Figure 1 is an example ctp in the trace language
(omitting the first and second columns and trivially grouping each thread and
its commands into an appropriate list using parenthesis).

A sequential trace of a CTP in the grammar is a list of trace entries (σ).
A trace entry is a pair consisting of a program location (ρ) and either a queue
movement list (m) or a symbol (⊥). An example of a trace can be seen in the
bottom of Figure 1 in the second column by following the sequential order in the
first column which starts on program location 20 of task 2. Notice that whenever
the trace reaches a wait command on a receive action, the trace includes a queue
movement list where the destination is listed followed by the source. Messages
are delivered from the source queue to the destination queue. In other words,
the trace resolves any non-determinism in scheduling or message buffering that
is present in the CTP.

4.2 Operational Semantics

The operational semantics for the trace language are given by a term rewriting
system using a CESK style machine 1 only the machine is augmented to in-
clude additional structure for modeling message passing. Figure 5(b) defines the
machine state and other syntax relating to evaluation.

A machine step (→m) in Figure 6 moves a thread forward by a single com-
mand. The rules operate on a machine state tuple (mstate) defined in Fig-
ure 5(b). The tuple can be partitioned into members relating to the CESK
machine, members relating to the message passing model, and the trace status.
The CESK machine members are ctp (the list of thread command sequences),
η (an environment mapping a variable x to a location l), h (a store mapping a
location l to a value v), and k (a continuation). Among the members of the mes-
sage passing model, A is a dictionary mapping an action ID a to an end-point γ.
Pnd s is a set of send queues where each queue is uniquely identified first by the
source end-point and then by the destination end-point. The queue itself holds
pairs consisting of an action ID and value (a,v). Pnd r is a set of receive queues
where each queue is uniquely identified by the destination end-point. The queue
itself holds pairs consisting of an action ID and a variable (a,x). Q s is also a set
of queues where each queue is uniquely identified by the destination end-point.
The queue itself holds pairs consisting of an action ID a and either a value v
or a symbol ⊥. Intuitively, Pnd s Q s and Pnd r are end-point queues tracking
actions with associated values (sends) or variables (receives). Both Pnd s and
Q s store the sends. Q s holds delivered messages that are ready to be received.
A message moves from Pnd s to Q s through queue movement lists in the trace
on the CTP.

The trace status in the mstate nine-tuple is given by s which ranges over a
lattice:

success ≺ failure ≺ infeasible ≺ error

The trace status only moves monotonically up the lattice starting from success.
A success trace completes the entire trace, meets all the assume statements, and
does not fail an assertion. A failure trace completes the entire trace, meets all
the assume statements, but fails an assertion. An infeasible trace completes the
entire trace but does not meet all the assume statements. An error is a trace
that does not complete.

We have several CESK machines that handle different aspects of the CTP and
trace. The machine step moves one step on the trace. In each machine step, the
queue machine processes any queue movements in that step, and the expression
machine handles any expressions in the command associated with the trace step.

The Machine Step inference in Figure 6 matches any mstate that has a thread
whose first list entry matches the program location in the head of the trace. A
match on the inference rewrites the mstate with new entries for each member
of the nine-tuple by first applying the queue reduction relation until no more

1 The CESK machine state is represented with a Control string, Environment, Store,
and Kontinuation.

reductions apply (all queue movements are processed in the trace entry first) and
then applying the expression reduction relation until no more reductions apply
(as indicated by the asterisk). Note that queue reductions perform the queue
movement such that all send actions are moved to the destination send queues.
After completing all queue movements, messages can be delivered in the process
of expression reduction.

The queue reduction for each command of the queue movement list in the
trace entry is given in Figure 7. The definition of the qstate four-tuple is presented
in the evaluation syntax in Figure 5(b). The symbol ⊥ in the queue movement m
indicates that no more queue movement follows. A message moves from pending
to delivered through queue movement lists. Each reduction step processes the
first pair of the queue movement list and reduction steps follow until ⊥ is shown.

Expression reductions for each command in the trace language are given in
Figure 8 and are defined over the estate nine-tuple in the evaluation syntax of
Figure 5(b) which includes a continuation k. The ret continuation indicates that
nothing follows, and an asterisk in a continuation is a place holder indication
where evaluation is taking place. For example, the Assume Expressions Evalua-
tion creates a continuation indicating that it is first evaluating the expression in
the assume command. Once that expression reduces to a value, then the Assume
Command inference matches to check the assumptions.

The expression reductions use several helper functions. The function op(vl, vr)
applies the “op” to the left and right operands. The function getMarkRemove is
explained in the later paragraph. The other helper functions are defined below:

assert(v, s) =

 failure if s ≺ failure ∧
v = false

s otherwise

assume(v, s) =

 infeasible if s ≺ infeasible ∧
v = false

s otherwise

Note that the status only moves monotonically up the lattice as mentioned pre-
viously. The notations h(η(x)) (Sndi Command), Pnd r(β) (Rcvi Command),
and Pnd s(β)(α) (Sndi Command) in Figure 8 are used for lookup. For exam-
ple, Pnd s(β)(α) returns a list of pairs of action IDs and values as defined in
Figure 5(b).

The Sndi Command and Rcvi Command in Figure 8 update Pnd r and Pnd s
respectively with information to complete a message send or receive at a wait
command. Consider a portion of the Rcvi Command :

Pnd rp = [Pnd r | β 7→ ([a0 x0] [a1 x1] . . .)]

([a1 x1] . . .) = Pnd r(β)

Pnd rp is a new set, just like the old set Pnd r, only the new set maps the
destination end-point β to its contents in the old set plus the added entry to
the front of the list of the action ID and variable for the receive command being

evaluated. Considering the entire rule in the figure, it also updates the action
ID map, A = ([a0 β] [a γ] . . .), to include the coupling between the action ID
and its destination end-point.

The function of the Wait(SNDI) Command rule in Figure 8 is to consume
the wait command only. The function of the other rule for the wait command is
more involved. The Wait(RCVI) Command rule is complicated because a CTP
can wait on receive actions out of program order. Consider the following trace

(. . . (rcvA ⊥) (rcvB ⊥) (wait(rcvB) ⊥) (wait(rcvA) ⊥) . . .)

omitting the regular definition for the commands and the trace. It is perfectly
valid to now call wait(rcvB) even though it appeared after the rcvA action. The
Wait(RCVI) Command handles this very situation in function getMarkRemove.
Consider the same trace above, we have the following structures of the pending
receive queue and the delivered queue respectively,

Pnd r : (. . . (β → ([rcvA x0] [rcvB x1] . . .)) . . .)

Q s : (. . . (β → ([snd1 v0] [snd2 v1] . . .)) . . .)

Function getMarkRemove in the command wait(rcvB) works as the following
steps: first finding the pair [rcvB x1] in the pending receive queue; then getting
the pair [snd2 v1] in the delivered queue; then marking the pair [snd1 v0] as
first assigning v0 to variable x0 in the heap then updating the pair [snd1 v0] to
[snd1 ⊥]; finally removing the pair [rcvB x1] and [snd2 v1] in Pnd r and Q s,
respectively.

The syntax with the operational semantics, as presented, are implemented
directly in PLT Redex. PLT Redex is a language for testing and debugging
semantics using term rewriting and is part of the Racket runtime.

The following definition is important to the proof of the match pair encoding
in Section 5.

Definition 2. A machine state (h η A Pnd s Pnd r Q s ctp trace s k) is well
formed if and only if it reduces to a final state where the CTP and trace run to
completion, having matched every send and receive call, and the status is either
success, failure, or infeasible:

(h η A Pnd s Pnd r Q s ctp trace s k)→∗m
(hp ηp () Pnd sp Pnd rp Q sp (() ...) () sp ret)

such that
∀β,∀α,Pnd sp(β)(α) = () ∧ ∀β,Pnd rp(β) = () ∧
∀β,Q sp(β) = () ∧ sp ≺ error

For convenience, we define the function status(m) to return the final status after
reduction of a well formed machine state m.

Intuitively, a well-formed machine state completes all the transitions of send
and receive calls, meaning that there are no elements in A, Pnd s, Pnd r and
Q s, the commands in the CTP and the execution trace are correctly executed,
and the status of state never enters error.

Machine Step
(Pnd s Q s m s) →∗

q (Pnd sp0 Q sp0 mp sp0)
(h η A Pnd sp0 Pnd r Q sp0 c0 sp0 ret l smt) →∗

e (hp ηp Ap Pnd sp1 Pnd rp Q sp1 e sp1 ret lp smtp0)
smtp1 = addHB(smtp0 ρ0 ρ1)

(h η A Pnd s Pnd r Q s (t0 . . . ([ρ0 c0] [ρ1 c1] [ρ2 c2] . . .) t2 . . .) ([ρ0 m] σ1 . . .) s l smt)→m

(hp ηp Ap Pnd sp1 Pnd rp Q sp1 (t0 . . . ([ρ1 c1] [ρ2 c2] . . .) t2 . . .) (σ1 . . .) sp1 lp smtp1)

Fig. 9. Machine Reductions to build the SMT model of a trace language program
(→m−smt)

Assume Expressions Evaluation
(h η A Pnd s Pnd r (assume e) s k l (defs (any . . .)))→e (h η A Pnd s Pnd r e s (assume ∗ → k) l (defs (e any . . .)))

Assert Expressions Evaluation
(h η A Pnd s Pnd r (assert e) s k l (defs (any . . .)))→e (h η A Pnd s Pnd r e s (assert ∗ → k) l (defs ((not e) any . . .)))

Assign Expressions Evaluation
(h η A Pnd s Pnd r (x := e) s k l (defs (any . . .)))→e (h η A Pnd s Pnd r e s (x := ∗ → k) l (defs ((= x e) any . . .)))

Sndi Command
([a1 v1] . . .) = Pnd s(β)(α)
Pnd sp = [Pnd s | β 7→ [Pnd s(β) | α 7→ ([a0 h(η(x))] [a1 v1] . . .)]]
any0 = (define a :: send)
any1 = (and (= (select a ep) β) (= (select a value) x))

(h η ([a γ] . . .) Pnd s Pnd r Q s (sndi a0 α β x) s k l ((anyd . . .) (anya . . .)))→e

(h η ([a0 α] [a γ] . . .) Pnd sp Pnd r Q s true s k l ((any0 anyd . . .) (any1 anya . . .)))

Rcvi Command
([a1 x1] . . .) = Pnd r(β)
Pnd rp = [Pnd r | β 7→ ([a0 x0] [a1 x1] . . .)] any0 = (define a :: recv)
any1 = (and (= (select a ep) β) (= (select a var) x0))

(h η ([a γ] . . .) Pnd s Pnd r Q s (rcvi a0 β x0) s k l ((anyd . . .) (anya . . .)))→e

(h η ([a0 β] [a γ] . . .) Pnd s Pnd rp Q s true s k l ((any0 anyd . . .) (any1 anya . . .)))

Wait (rcvi) Command

([a0 γ0] . . . [as α] . . . [ar β] . . . [a1 γ1]) = A
(hp as Pnd rp Q sp sp) = getMarkRemove(h, η,Pnd r,Q s, β, ar, s)
Ap = ([a0 γ0] . . . [a1 γ1]) (lp last as) = getlastsend/replace(l, as, α, β)

(h η A Pnd s Pnd r Q s (wait ar) s k l (defs (anya . . .)))→e

(hp η Ap Pnd s Pnd rp Q sp true sp k lp (defs ((HB (select last as) MP) (select as MP)) (MATCH ar as) anya . . .)))

Fig. 10. Expression Reductions to build the SMT model of a trace language program
(→e−smt)

5 SMT Encoding

The new SMT encoding is based on (1) a trace of events during an execution of
an MCAPI program including control-flow assumptions and property assertions,
such as Figure 2; and (2) a set of possible match pairs. A match pair is the
coupling of a receive to a particular send. In the running example, the set admits,
for example, that R0,2 can be matched with either S1,5 or S2,4. This direct use
of match pairs, rather than a state-based or indirect use of match pairs in an
order-based encoding, [6] and [5], is novel.

The purpose of the SMT encoding is to force the SMT solver to resolve
the match pairs for the system in such a way that the final values of program
variables meet the assumptions on control flow but violate some assertion. In
essence, the SMT solver completes a partial order on operations into a total
order that determines the final match pair relationships.

5.1 Definitions

The encoding needs to express the partial order imposed by the MCAPI seman-
tics as SMT constraints. The partial order is based on a Happens-Before relation
over operations such as send, receive, wait, or assert:

Definition 3 (Happens-Before). The Happens-Before (HB) relation, denoted
as ≺HB, is a partial order over operations.

Given two operations, A and B, if A must complete before B in a valid
program execution, then A ≺HB B will be an SMT constraint.

The relation is derived from the program source and potential match pairs. In
order to specify the constraints from the program source, each program operation
is mapped to a set of variables that can be manipulated by the SMT solver.

Definition 4 (Wait). The occurrence of a wait operation, W, is captured by a
single variable, orderW, that constrains when the wait occurs.

It is not enough to represent all events as simple numbers that will be ordered
in this way. Such an encoding would not allow the solver to discover what values
would flow across communication primitives. Instead, some events in the trace
are modeled as a set of SMT variables that record the pertinent information
about the event. For example,

Definition 5 (Send). A send operation S, is a four-tuple of variables:
1. MS, the order of the matching receive event;
2. orderS, the order of the send;
3. eS, the endpoint; and,
4. valueS, the transmitted value.

The most complex operation in MCAPI is a receive. Since receives are inher-
ently asynchronous, it is not possible to represent them atomically. Instead, we

need to associate each receive with a wait that marks where in the program the
receive operation is guaranteed to be complete. The MCAPI runtime semantics
allow a single wait to witness the completion of many receives due to the message
non-overtaking property. A wait that witnesses the completion of one or more
receives is the nearest-enclosing wait.

Definition 6 (Nearest-Enclosing Wait). A wait that witnesses the comple-
tion of a receive by indicating that the message is delivered and that all the
previous receives in the same task issued earlier are complete as well.

Task 0 Task 1

R0,1(∗,&h1) S1,1(0,&h3)
R0,2(∗,&h2) W(&h3)
W(&h2) S1,2(0,&h4)
W(&h1) W(&h4)

Fig. 11. Nearest-enclosing Wait example

Figure 11 shows that the wait W(&h2) witnesses the completion of the receive
R0,1 and R0,2 in task 0. Thus, W(&h2) is their nearest-enclosing wait.

The encoding requires that every receive operation have a nearest-enclosing
wait as it makes match pair decisions at the wait operation. The requirement is
not a limitation of the encoding, as accessing a buffer from a receive that does
not have a nearest-enclosing wait is an error. Rather, the wait is a convenience in
the encoding to mark where a receive actually takes place. The same requirement
can be made for sends for correctness but is not required for the encoding as send
buffering is handled differently than receive buffering. The encoding effectively
ignores wait operations for sends as will be seen.

Definition 7 (Receive). A receive operation R is modeled by a five-tuple of
variables:
1. MR, the order of the matching send event;
2. orderR, the order of the receive;
3. eR, the endpoint;
4. valueR, the received value; and,
5. nwR, the order of the nearest enclosing wait.

5.2 Assumptions, Assertions, and match pairs

The definitions so far merely establish the pertinent information about each
event in the trace as SMT variables. It is necessary to now express constraints
on those variables.

The most trivial kind of constraints are those for control-flow assumptions.

Definition 8 (Assumption). Every assumption A is added as an SMT asser-
tion.

It may seem strange to turn assumptions into assertions, but from a con-
straint perspective, the assumption that we have already observed some property
(during control-flow) is equivalent to instructing the SMT solver to treat it as
inviolate truth, or an assertion.

The next level of constraint complexity comes from property assertions.
These correspond to the invariants of the program. The goal is to discover if
they can be violated, so we instruct the SMT solver to seek for a way to satisfy
their negation given all the other constraints.

Definition 9 (Property Assertion). For every property assertion P, ¬P is
added as an SMT assertion.

Finally, we must express the relation in a given match pair as a set of SMT
constraints. Informally, a match pair equates the shared components of a send
and receive and constrains the send to occur before the nearest-enclosing wait
of the receive. Formally:

Definition 10 (Match Pair). A match pair, 〈R, S〉, for a receive R and a send
S corresponds to the constraints:
1. MR = orderS

2. MS = orderR

3. eR = eS
4. valueR = valueS and
5. orderS ≺HB nwR

The encoding is given a set of potential match pairs over all the sends and
receives in the program trace. The constraints from these match pairs are not
simply joined in a conjunctions. If we were to do that, then we would be con-
straining the system such that a single receive must be paired with all possible
sends in a feasible execution rather than a single send. Therefore, we combine
all the constraints for a given receive with all possible sends as specified by the
input match pairs into a single disjunction:

Definition 11 (Receive Matches). For each receive R, if 〈R, S0〉 through 〈R, Sn〉
are match pairs, then

∨n
i 〈R, Si〉 is used as an SMT constraint.

This encoding of the input ensures that the SMT solver can only use compat-
ible send/receive pairs and ensures that sends happen before nearest-enclosing
waits on receives.

5.3 Program Order Constraints

The encoding thus far is missing additional constraints on the Happens-Before
relation stemming from program order. These constraints are added in four steps:
we must ensure that sends to common endpoints occur in program order in a
single task (step 1); similarly for receives (step 2); receives occur before their
nearest-enclosing wait (step 3); and, that sends are received in the order they
are sent (step 4).

Step 1 For each task, if there are sequential send operations, say S and S′, from
that task to a common endpoint, eS = eS′ , then those sends must follow program
order: orderS ≺HB orderS′ .

Step 2 For each task, if there are sequential receive operations, say R and R′,
in that task on a common endpoint, eR = eR′ , then those receives must follow
program order: orderR ≺HB orderR′ .

Step 3 For every receive R and its nearest enclosing wait W, orderR ≺HB orderW.

Step 4 For any pair of sends S and S′ on common endpoints, eS = eS′ , such
that orderS ≺HB orderS′ , then those sends must be received in the same order:
MS ≺HB MS′ .

For example, consider two tasks where task 0 sends two messages to task 1
as shown in Figure 12.

Task 0 Task 1

S0,1(1,&h1) R1,1(∗,&h3)
S0,2(1,&h2) R1,2(∗,&h4)
W(&h1) W(&h3)
W(&h2) W(&h4)

Fig. 12. Send Ordering Example

The MS variables from the sends will be assigned to the orders for R1,1 and
R1,2 by the match pairs selected by the SMT solver. The constraints added in
this step force the send to be received in program order using the HB relation
which for this example yields MS0,1 ≺HB MS0,2 .

5.4 Zero Buffer Semantics

The constraints presented so far correspond to an infinite-buffer semantics, be-
cause we do not constrain how many messages may be in transit at once. We can
add additional, orthogonal, constraints to further restrict behavior and enforce
a zero-buffer semantics. There are two kinds of such constraints.

First, for each task, if there are two sends S and S′ such that orderS ≺HB orderS′ ,
and S and S′ can both match a receive R, then we add the following constraint
to the encoding: orderW ≺HB orderS′ where W is the nearest-enclosing wait that
witnesses the completion of R in execution.

The second constraint relies on a dependence relation between two match
pairs.

Definition 12. To match pairs are dependent, denoted as 〈R, S〉 ⇀ 〈R′, S′〉, if
and only if

...

01 orderR0,2 ≺HB orderW(&h1)

02 orderR0,5 ≺HB orderW(&h2)

03 orderR0,2 ≺HB orderR0,5
04 orderR1,3 ≺HB orderW(&h3)

05 (assert (> b 0))

06 (assert (not (= a 4)))

07 〈R0,2,S2,4〉 ∨ 〈R0,2,S1,5〉
08 〈R0,5,S2,4〉 ∨ 〈R0,5,S1,5〉
09 〈R1,3,S2,7〉

Fig. 13. SMT Encoding

1. the nearest-enclosing wait W of R′ issues before S on an identical endpoint;
or

2. ∃〈R′′S′′〉 such that 〈R, S〉⇀ 〈R′′, S′′〉 ∧ 〈R′′, S′′〉⇀ 〈R′, S′〉.

With the dependence relation, the second set of constraints for the zero-buffer
semantics is give as: for each pair of sends S and S′ that can both match an
receive R, if there is a send S′′ issued after the issuing of S′ by an identical
endpoint, and a receive R′ such that 〈R, S〉⇀ 〈R′, S′′〉, then we add the following
constraint to the encoding: orderW ≺HB orderS where W is the nearest-enclosing
wait that witnesses the completion of R.

5.5 Example

Figure 13 shows the encoding of Figure 1 as an SMT problem. We elide the
basic definition of the variables discussed in Section 5.1. Lines 05 through 09

give the assumptions, assertions, and match pairs. The first four lines reflect
the program order constraints: receives happen before corresponding wait oper-
ations and receives from a common endpoint follow program order. There are
no constraints between sends because there are no sequential sends from a com-
mon endpoint to a common endpoint. To encode the zero-buffer semantics, the
constraint orderW(&h1) ≺HB orderS1,5 would need to be added to force the receive
to complete before another send is issued.

5.6 Correctness

Before we can state our correctness theorem, we must define a few terms. We
define our encoder as a function from programs and match pair sets to SMT
problems:

Definition 13 (Encoder). For all programs, p, and match pair sets m, let
SMT (p,m) be our encoding as an SMT problem.

We assume that an SMT solver can be represented as a function that takes a
problem and returns a satisfying assignment of variables or an unsatisfiable flag:

Definition 14 (SMT Solver). For all SMT problems, s, let SOL(s) be in
σ + UNSAT, where σ is a satisfying assignment of variables to values.

We assume that from a satisfying assignment to one of our SMT problems,
we can derive an execution trace by observing the values given to each of the
ordere variables. In other words, we can view the SMT solver as returning traces
and not assignments.

We assume a semantics for traces that gives their behavior as either having
an assertion violation or being correct. This formal semantics is presented in
Section 4.

Definition 15 (Semantics). For all programs, p, and traces t, SEM(p, t) is
either BAD or OK.

Given this framework, our SMT encoding technique is sound if

Theorem 2 (Soundness). For all programs, p, and match pair sets, m, SOL(SMT (p,m)) =
t⇒ SEM(p, t) = BAD.

Our soundness proof relies on the following lemma:

Lemma 2. Any match pair 〈R, S〉 used in a satisfying assignment of an SMT
encoding is a valid match pair and reflects an actual possible MCAPI program
execution.

Proof. We prove this by contradiction. First, assume that 〈R, S〉 is an invalid
match pair (i.e. one that is not valid in an actual MCAPI execution). Second,
assume that the SMT solver finds a satisfying assignment.

Since 〈R, S〉 is not a valid match pair, match R and S requires program order,
message non-overtaking, or no-multiple match to be violated. In other words,
the Happens-Before constraints encoded in the SMT problem are not satisfied.

This is a contradiction: either the SMT solver would not return an assignment
or the match pair was actually valid.

The correctness of our technique relies on completeness:

Theorem 3 (Completeness). For all programs, p, and traces, t, SEM(p, t) =
BAD⇒ ∃m.SOL(SMT (p,m)) = t.

To completely prove completeness, we give the following modified framework
that produces a correlating SMT problem for a given execution trace. The eval-
uation syntax for the machine reductions to build the SMT model of a trace

language program are largely those of the regular machine reductions with a few
changes below

mstate ::= (h η A Pnd s Pnd r Q s ctp trace s k l smt)
estate ::= (h η A Pnd s Pnd r Q s e s k l smt)

smt ::= (defs constraints ML)
defs ::= (any . . .)

constraints ::= (any . . .)
ML ::= (ML = ∅ | (ML [µ →[(µ ν). . .]]))

The new syntax adds the smt member to the mstate and estate where the “any”
term in defs and constraints matches any structure. The lists will be filled with
definitions, HB entries, MATCH entries, etc. as defined by the SMT machine
reductions. A match-list ML is a set of match pair lists uniquely identified by a
receive action ID, and each list consists of a set of match pairs for this receive
action ID and a send action ID. Note that we alpha renamed so that µ and ν are
all unique labels. For convenience, we define function dom(ML) and range(ML)
that return the set of receive action IDs in the set of match pairs of ML and
the set itself, respectively. The symbol l is another member added to the mstate
and estate. It records the last send operation that happens before the current
one in the same thread. The qstate does not contain any SMT encodings in the
reductions and it is not changed.

The changes for the reduction rules are presented in Figure 9 and Figure 10.
The support function addHB(((anyd...) (anyc...)) ρ0 ρ1) adds program location
to the definition list and adds a happens before relation

≡ (((define ρ0 :: int) anyd...)((HB ρ0 ρ1) anyc...))

The reduction rules in Figure 9 and Figure 10 add constraints to the SMT
problem with respect to the semantic definition of the trace language. The
Machine Step in Figure 9 adds the program order of actions in the same thread
to the SMT problem. The evaluation of assume, assert and assign in Figure 10
adds assertions to the SMT problem. The Sndi and Rcvi commands define
the send and receive actions in the SMT problem, and the Wait(Rcvi) reduc-
tion adds the ”match” constraints to the SMT problem. Note that the function
getlastsend/replace picks up the last send operation, last as, that happens be-
fore the current one in the same thread, and adds a HB relation between the MP
of last as and that of the current send operation. The added relation ensures the
messages from a common endpoint are non-overtaking (i.e., FIFO ordered).

The following definition supports the rest of the section.

Definition 16. A machine state (h η A Pnd s Pnd r ctp trace s k) is smt-
enabled if it is well formed. The SMT problem is taken from the final SMT
reduced state:

(h η A Pnd s Pnd r ctp trace s k (()()))→∗m−smt

(hp ηp Ap Pnd sp Pnd rp ctpp tracep sp kp smt)

For convenience, we define the function getSMT(m) 7→ smt to return the SMT
problem in the final state, and ANS(getSMT(m)) 7→ {SAT,UNSAT} to return
the status of the SMT problem in the final state of m. Also, we define the relation
of the range of function ANS such that UNSAT > SAT.

defs is not shown;

constraints ;

00 eventR0,2 ≺HB eventW(&h1)

01 eventR0,5 ≺HB eventW(&h2)

02 eventR0,2 ≺HB eventR0,5
03 eventR1,3 ≺HB eventW(&h3)

04 eventS1,5 ≺HB eventW(&h4)

05 eventS2,4 ≺HB eventW(&h5)

06 eventS2,7 ≺HB eventW(&h6)

07 (assert (> b 0))

08 (assert (not (= a 4)))

match ;

09 〈R0,2,S2,4〉
10 〈R0,5,S1,5〉
11 〈R1,3,S2,7〉

defs is not shown;

constraints ;

00 eventR0,2 ≺HB eventW(&h1)

01 eventR0,5 ≺HB eventW(&h2)

02 eventR0,2 ≺HB eventR0,5
03 eventR1,3 ≺HB eventW(&h3)

04 eventS1,5 ≺HB eventW(&h4)

05 eventS2,4 ≺HB eventW(&h5)

06 eventS2,7 ≺HB eventW(&h6)

07 (assert (> b 0))

08 (assert (not (= a 4)))

match ;

09 〈R0,2,S1,5〉
10 〈R0,5,S2,4〉
11 〈R1,3,S2,7〉

...

01 orderR0,2 ≺HB orderW(&h1)

02 orderR0,5 ≺HB orderW(&h2)

03 orderR0,2 ≺HB orderR0,5
04 orderR1,3 ≺HB orderW(&h3)

05 (assert (> b 0))

06 (assert (not (= a 4)))

07 〈R0,2,S2,4〉 ∨ 〈R0,2,S1,5〉
08 〈R0,5,S2,4〉 ∨ 〈R0,5,S1,5〉
09 〈R1,3,S2,7〉

(a) (b) (c)

Fig. 14. SMT problems. (a) SMT problem based on the first trace. (b) SMT problem
based on a second trace. (c) SMT problem built from the preceding two problems.

Figure 14 shows the SMT problem (minus the event definitions) generated
from our new CESK SMT encoding machines for the program in Figure 1 on
two different traces (parts (a) and (b)). Note that the encodings in Figure 14
(a) and (b) are identical except for the MATCH clauses, which are generated
from the trace parts of the program. Furthermore, the encoding in Figure 14(a)
violates the properties of interest encoded in the assert clauses, and the answer
for the encoding in Figure 14 (a) is SAT. From this observation, we present the
following lemma that indicates the equivalence between the status of our CESK
machines and the satisfiability of the generated SMT encoding.

Lemma 3. For a well-formed machine state m,

status(m) = failure ⇐⇒ ANS(getSMT(m)) = SAT

Proof. The generated SMT problem in Figure 9 and Figure 10 captures the
execution trace from the initial state up to the final state by looking at the
following facts. First, the machine step in Figure 9 adds an HB relation for two
consecutive program locations ρ0 and ρ1 in an identical thread, with respect to
the program order constraint. Second, the assume, assert and assign expression
evaluations in Figure 10 add assert constraints for variable x or expression e

with respect to the trace constraint. Note that the negated system is used in the
assert evaluation when generating the SMT statement. Third, the sndi and rcvi
commands in Figure 10 add any0 as the definition of a receive or send operation,
followed by any1 as the initialization of operation fields. Finally, the wait(rcvi)
command in Figure 10 adds a match pair for the receive operation ar and the
send operation as where as is obtained by applying the process we described in
Section 3.2. Furthermore, an HB relation is added with respect to the program
order, such that the messages from a common endpoint are non-overtaking. The
observations described above either adds program order constraints for the exe-
cution trace modeled in the machine states, or adds constraints for variables or
expressions that are also modeled in the machine state. In a word, the generated
SMT problem captures the execution trace in the machine.

Notice the fact above, we suppose the status of the final machine state is
failure. From the reduction rules, we know that there exists at least one assert
action that is evaluated false. In Figure 10, we know that expression “e” is
negated and added to the SMT encoding for the second reduction rule. Since e is
evaluated false, (not e) is evaluated true trivially in the generated SMT problem.
Other statements are all evaluated true due to the trace capture fact that the
program order is assigned correctly based on the execution trace modeled in
the machine states, and the variables and expressions are also evaluated true in
assume and assign commands. Thus, the SMT problem is evaluated SAT. On
the other hand, suppose the SMT problem is evaluated SAT, indicating that
all statements of the SMT problem are satisfiable. Since the reduction rules in
Figure 10 add statements with respect to the transition flow of the trace, it
implies that each transition of the trace is executed correctly except for some
assert action. Because of the same reason above, we know that expression e for
the assert action is evaluated false. Thus, the status of the final machine state
is failure. �

As we discussed early, Figure 14 (a) and (b) are generated from the same
program with two different traces. The encoding in Figure 14 (c) combines part
(a) and (b) into one, the answer of which implies the non-deterministic behavior
of the program. By solving the problem in Figure 14 (c), we implicitly solve two
problems in Figure 14 (a) and (b) respectively. The following definition defines
the “combination” behavior of two SMT problems.

Definition 17. A combination operator COMB for two SMT problems, repre-
sented as three-tuples smt1 and smt2, where smt1 = (defs constraints ML1) and
smt2 = (defs constraints ML2), returns a new SMT tuple, such that,

COMB(smt1, smt2) = (defs constraints MLnew)

where MLnew is a new relation such that ∀µ ∈ dom(ML1)∪dom(ML2), MLnew(µ) =
ML1(µ) ·ML2(µ). Note that two SMT problems are assumed to hold the same
defs and constraints excluding the match constraints.

To further finding the correlation between the combined SMT problem and
the single SMT problems, we get the following lemma and proof.

Lemma 4. For a set of traces Tn for the same CTP, and a set of SMT problems
SMTn = {smt0, smt1, . . . , smtn}, where each member in SMTn encodes a trace
in Tn according to our trace machine, there exists a new SMT problem smt total,
where

smt total = COMB(smtn,COMB(smtn−1,COMB(smtn−2,COMB(. . .))))

and

ANS(smt total) =

{
SAT iff ∃smt i ∈ SMTn, s.t. ANS(smt i) = SAT

UNSAT otherwise

Proof. We Prove it by induction.
We consider the base case as a SMT problem that encodes a single trace and

the answer can be trivially proved by definition.
Induction. Assume we have combined n SMT problems and the combined

SMT problem smt total is evaluated UNSAT. We combine an additional SMT
problem smtn+1, which is different from any existent SMT problems. If ANS(smtn+1)
is equal to SAT, the newly combined SMT problem, smt ′total, is evaluated
SAT because the match pairs defined in smtn+1 are combined into smt ′total.
If ANS(smtn+1) is equal to UNSAT, on the other hand, smt ′total is then evalu-
ated UNSAT because all the traces implied in smt ′total are evaluated UNSAT.
Additionally, it can be trivially proved if smt total is evaluated SAT then the
newly added SMT problem smtn+1 do not change the answer. �

From Lemma 2, the combined SMT problem is more powerful because it
can find the violation of an assertion among several trace encodings. The follow-
ing theorem states the relation between the ability of finding violation and the
content of the match-list ML.

Theorem 4. For two SMT problems, smtφ = (defs constraints MLφ) and smt =
(defs constraints ML), if range(MLφ) ⊆ range(ML),

ANS(smtφ) ≥ ANS(smt)

Proof. Since the range of MLφ is the subset of the range of ML, we can obtain
smt by combining smtφ with other SMT problems. Suppose ANS(smtφ) is equal
to SAT, by Lemma 2, ANS(smt) is equal to SAT as well. If ANS(smtφ) is
equal to UNSAT, ANS(smt) is equal to either UNSAT or SAT, depending
on the answers of other single SMT problems that combine smt . In either case,
ANS(smtφ) ≥ ANS(smt).

These theorems above obscure an important problem: how do we know which
match pair set to use? Soundness assumes we have one, while completeness
merely asserts that one exists. Although Section 7 discusses our generation al-
gorithm, we prove here an additional theorem that asserts that any conservative
over-approximation of match pair sets is safe.

Theorem 5 (Approximation). Give two match pair sets m and m′, m ⊆
m′ ⇒ SOL(SMT (p,m)) v SOL(SMT (p,m′)), where UNSAT v σ.

Informally, this is true because larger match pair sets only allow more be-
havior, which means that the SMT solver has more freedom to find violations,
but that all prior violations are still present. However, because of soundness, it
is not possible that using a larger match pair set will discover false violations.

6 Experiments and Results

To assess the new encoding in this paper, three experiments with results are
presented: a comparison to prior SMT encodings on a zero-buffer semantics,
a scalability study on the effects of non-determinism in the execution time on
infinite buffer semantics, and an evaluation on typical benchmark programs again
with infinite buffer semantics. All of the experiments use the Z3 SMT solver ([12])
and are measured on a 2.40 GHz Intel Quad Core processor with 8 GB memory
running Windows 7.

The initial program trace for the experiments is generated using the MCA
provided reference solution with fixed input. In other words, the only non-
determinism in the programs is that allowed by the MCAPI specification. As
such, the experiments only consider one path of control flow through the pro-
gram. Complete coverage of the program for verification purposes would need to
generate input to exercise different control flow paths. Where appropriate, the
time to generate the match pair sets from the input trace is reported separately.

6.1 Comparison to Prior SMT Encoding

To our best knowledge, the current most effective SMT encoding for verification
of message passing program traces is the order-based encoding that describes
the happens-before relation directly in the encoding and is only functional for
zero-buffer semantics in its current form [6]. Although the tool to generate the
encoding is not publicly available, the authors of the order-based encoding gra-
ciously encoded several contrived benchmarks used for correctness testing. These
benchmarks are best understood as toy examples that plumb the MCAPI seman-
tics to clarify intuition on expected behavior.

The zero-buffer encoding in this paper is compared directly to the order-
based encoding on the contrived benchmarks. The order-based encoding yields
incorrect answers for several programs. Where the order-based encoding returns
correct answers, the new encoding, on average, requires 70% fewer clauses, uses
half the memory as reported by the SMT solver, and runs eight times faster.
The dramatic improvement of the new encoding over the order-based encoding
is a direct result of the match pairs that simplify the happens-before constraints
and avoids redundant constraints in the transitive closure of the happens-before
relation.

6.2 Scalability Study

The intent of the scalability study is to understand how performance is affected
by the number of messages in the program trace and the level of non-determinism
in choosing match pairs where multiple sends are able to match to multiple re-
ceives. The programs for this study consist of a simple pattern of a single thread
to receive messages and N threads to send messages. The single thread sequen-
tially receives N messages containing integer values and then asserts that every
message did not receive a specific value. In other words, a violation is one where
each message has a specific value. The remaining N threads send a message,
each containing a different unique integer value, to the single thread that re-
ceives. These programs represent the worst-case scenario for non-determinism
in a message passing program as any send is able to match with any receive in
the runtime, and the assertion is only violated when each send is paired with
a specific receive. The SMT solver must search through the multitude of match
pairs, N × N , to find the single precise subset of match pairs that triggers the
violation. In this program structure, there are N ! feasible ways to match N sends
to N receives.

Table 1. Scaling as a function of non-determinism

Test Programs Performance
N Feasible Sets Time (hh:mm:ss) Memory(MB)
30 30!(∼3E32) 00:00:36 20.11
40 40!(∼8E47) 00:03:22 47.12
50 50!(∼3E64) 00:16:11 102.65
60 60!(∼8E81) 00:47:29 189.53
70 70!(∼1E100) 02:00:30 364.25

The study takes an initial program of N = 30, so 31 threads, and varies N
to see how the SMT solver scales. A small N is an easy program while a large N
is a hard program. Table 1 shows how the new encoding scales with hardness.
The first column is the number of messages, or N , and the second column is
the number of feasible match pair subsets that correctly match every receive to
a unique send. As expected, running time and memory consumption increase
non-linearly with hardness.

The case where N = 70 represents having 70 concurrent messages in flight
from 70 different threads of execution. Such a scenario is not entirely uncommon
in a high performance computing application, and it appears the new encoding
is able to reasonably scale to such a level of concurrency. The result provides
a bound on expected cost for analysis given the message passing behavior in a
program. It is expected that the analysis of any program with fewer than 70!
possible choices of feasible match pair resolutions will complete in a reasonable
amount of time. Regardless, such a high-level concurrency seems unlikely in the
embedded space to which MCAPI is targeted.

6.3 Typical Benchmark Programs

The results in the prior section suggest that the number of messages is not the
deciding factor in hardness for the new encoding; rather, hardness is measured
by the number of feasible match pair sets. This section further explores the ob-
servation to show that some programs are easy, even if there are many messages,
while other programs are hard, even though there are only a few messages.

The goal of these experiments is to measure the new encoding on several
benchmark programs. MCAPI is a new interface, and to date, the authors are
not aware of publicly available programs written against the interface aside from
the few toy programs that come with the library distribution. As such, the
benchmarks in the experiments come from a variety of sources.
– LE is the leader election problem and is common to benchmarking verifica-

tion algorithms.
– Router is an algorithm to update routing tables. Each router node is in a

ring and communicates only with immediate neighbors to update the tables.
The program ends when all the routing tables are updated.

– MultiM is an extension to an program in the MCAPI library distribution and
is similar to the program in Figure 16. The extension adds extra iterations
to the original program execution to generate longer execution trace.

– Pktuse is a benchmark from the MPI test suite [13]. The program creates 5
tasks—each of which randomly sends several messages to the other tasks.
The benchmark programs are intended to cover a spectrum of program prop-

erties. As before, the primary measure of hardness in the programs in not the
number of messages but rather the size of the match pair set and the number of
feasible subsets. The LE program is the easiest program in the suite. Although it
sends 620 messages, there is only a single feasible match pair set. The programs
Router, MultiM, and Pktuse respectively increase in hardness, which again is not
related to the total number of messages but rather the total number of feasible
match-sets that must be considered. For example, even though Router has 200
messages, it is an easier problem that MultiM that has 100 messages. The Pk-
tuse program does have the most number of messages, 512, and in this case, the
largest number of feasible match pair sets.

Table 2. Performance on selected benchmarks

Test Programs Performance
Name # Mesg Feasible Sets EG(s) MG(s) Time (hh:mm:ss) Memory(MB)
LE 620 1 1.49 0.051 <00:00:01 33.41
Router 200 ∼6E2 0.417 0.032 00:00:02 15.03
MultiM 100 ∼1E40 0.632 0.436 00:16:40 135.19
Pktuse 512 ∼1E81 10.190 9.088 02:06:09 1539.90

Table 2 shows the results for the benchmark suite. Other than the metrics
used in Table 1, the time of generating the encoding and the match pairs is
included in the third and fourth columns respectively. Note that the time shown

in the third column includes the time in the fourth column. As before, the
running time tracks hardness and not the total number of messages. The table
also shows the cost of match pair generation as it dominates the encoding time
for the Pktuse program. Future work is to address the high-cost of match pair
generation, which the authors believe to be NP-complete [15].

The benchmark suite demonstrates that a message passing program may
have a large degree of non-determinism in the runtime that is prohibitive to ver-
ification approaches that directly enumerate non-determinism such as a model
checker. The SMT encoding, however, pushes the problem to the SMT solver
by generating the possible match pairs and then relying on advances in SMT
technology to resolve the non-determinism in a way that violates the assertion.
Of course, the SMT problem itself is NP-complete, so performance is only rea-
sonable for small problem instances. The benchmark suite suggests that problem
instances with astonishingly large numbers of feasible match pair sets are able to
complete in a reasonable amount of time using the new encoding in this paper;
though, the time to generate the match pairs may quickly become prohibitive.

7 Generating Match Pairs

The exact set of match pairs can be generated by simulating the program trace
and using a depth-first search to enumerate non-determinism arising from con-
current sends and receives. Such an effort, however, solves the entire problem at
once because if you simulate the program trace exploring all non-determinism,
then you may as well verify all runtime choices for property violations at the
same time.

In this section, we present an algorithm that does not require an exhaustive
enumeration of runtime behavior in simulation. Our algorithm over-approximates
the match pairs such that match pairs that can exist in the runtime are all in-
cluded and some bogus match pairs that cannot exist in the runtime may or
may not be included.

The algorithm generates the over-approximated match pair set by matching
each pair of the send and receive commands at common endpoints and then
pruning obvious matches that cannot exist in any runtime implementation of
the specification.

Figure 15 presents the major steps of the algorithm. The algorithm proceeds
by first linearly traversing each task of the program storing each receive and send
command into two distinct structured lists. The receive list, list r, is structured
as in (1) and the send list, list s, is structured as in (2).

(e0 → ((0, R0,1), (1, R0,2), . . .))
(e1 → ((0, R1,1), (1, R1,2), . . .))
. . .
(en → ((0, Rn,1), (1, Rn,2), . . .))

(1)

The list list r groups receives by the issuing endpoint. The integer field merely
records the order in which the receives are issued and increases by one on each

// initialization

input an MCAPI program

initialize list_r

initialize list_s

// check each receive and send with the same endpoint

for r in list_r

for s in list_s

let dest = destination endpoint(s)

let src = source endpoint(s)

// check matching criteria for r and s

if

1. endpoint(r) = dest

2. index(r) >= index(s)

3. index(r) =< (index(s)

+ count(sends(dest=dest))

- count(sends(src=src, dest=dest)))

then

add pair (r, s) to match_set

else

continue

end if

end for

end for

output match_set;

Fig. 15. Pseudocode for generating over-approximated match pairs

receive. Similarly, the list list s groups sends first by the destination endpoint
and then by the source endpoint. Like list r, an index increases by one to track
the issue order. As the input is a program execution trace, any sends or receives
in loops already have unique identifiers.

“dest” “src” “src”
(e0 → ((e1 → ((0, S1,1), (1, S1,2), . . .), (e2 → (. . .),
. . .))))
(e1 → ((e0 → ((0, S0,1), (1, S0,2), . . .), (e2 → (. . .),
. . .))))
. . .
(en → ((e0 → ((0, S0,3), (1, S0,4), . . .), (e1 → (. . .),
. . .))))

(2)

Consider the program in Figure 16. The lists list r and list s for the
program are

(0 → ((0, R0,1), (1, R0,2), (2, R0,4)))
(1 → ((0, R1,2)))

(3)

(0 → ((1 → ((0, S1,1), (1, S1,3)), (2 → ((0, S2,1))))))
(1 → ((0 → ((0, S0,3)))))

(4)

The sends S1,1, S1,3, and S2,1 have task 0 as an identical destination endpoint.
The send S0,3 has task 1 as the destination endpoint. The list list s in (4)
reflects this partition. Receive R0,1 is the first receive operation in endpoint 0.
This fact is again reflected in list r in (3).

Task 0 Task 1 Task 2

R0,1(∗,&h1) S1,1(0,&h5) S2,1(0,&h8)
W(&h1) W(&h5) W(&h8)
R0,2(∗,&h2) R1,2(∗,&h6)
W(&h2) W(&h6)
S0,3(1,&h3) S1,3(0,&h7)
W(&h3) W(&h7)
R0,4(∗,&h4)
W(&h4)

Fig. 16. Another MCAPI concurrent program

The algorithm traverses the two lists in a nested loop to generate match pairs
between send and receive commands. The function index(r) takes the endpoint
of the receive and returns the issue order of that receive in the list r structure.
Similarly, the function index(s) takes the destination and source endpoints in
the send and returns the issue order of that send in the list s structure. These
indexes essentially capture message non-overtaking.

The criteria to generate a match pair first requires the send and receive to
be compatible (check 1), consistent with message non-overtaking (check 2), and
that message non-overtaking does not preclude the match (check 3). A match
is precluded by message non-overtaking when a receive cannot possibly match
a send because by the time the program issues the receive, the send must have
already been matched somewhere else. The function count gives the number of
sends to a specific destination or the number of sends to a specific source and
destination. As long as a receive is issued early enough to still match the send
given the message non-overtaking rule, then the match is possible.

In our concrete example, R0,1 is matched with S1,1 or S2,1, but it cannot be
matched with S1,3 since the second rule is not satisfied such that the order of
R0,1 is less than the order of S1,3 (i.e., S1,3 would have to overtake S1,1 to satisfy
the rule). The match between R0,4 and S1,1 is also precluded by check 3 as S1,1
must have already matched an earlier receive by message non-overtaking.

The generated set of match pairs for our example in Figure 16 is over-
approximated by the algorithm because it includes pairs that cannot exist in
any feasible execution. For example, the match pair (S2,1 R0,4) is not feasible
because it is not possible to order S1,3 before R0,2 since R1,2 can only match with
S0,3 that must occur after R0,2. Fortunately, a satisfying solution is only possi-
ble using feasible match pairs. Non-feasible match pairs merely result in extra
clauses in the encoding and potentially slow down the SMT solver.

The complexity of the algorithm is quadratic. Traversing the tasks to initialize
the lists is O(N), where N is the total lines of code of the program. Traversing
the list of receives and the list of sends takes O(mn) to complete, where m is
the total number of sends and n is the total number of receives. As m+ n ≤ N ,
the algorithm takes O(N +mn) ≤ O(N +N2) ≈ O(N2) to complete.

8 Related Work

Morse et al. provided a formal modeling paradigm that is callable from the
C language for the MCAPI interface [11]. This model correctly captures the
behavior of the interface and can be applied to model checking C programs that
use the API. The work is a direct application of model checking and directly
enumerates the non-determinism in the runtime to construct an exhaustive proof.
The SMT encoding in this paper pushes that complexity to the SMT solver and
leverages recent advances in SMT technology to find a satisfying assignment.

Sharma et al. present an dynamic model checker for MCAPI programs built
on top of the MCA provided MCAPI runtime [16]. MCC systematically enumer-
ates all non-determinism in the MCAPI runtime under zero-buffer semantics. It
employs a novel dynamic partial order reduction to avoid enumerating redundant
message orders. This work claims SMT technology is more efficient in practice
in resolving non-determinism in a away to violate correctness properties.

Wang et al. present an SMT encoding for shared memory semantics for a
given input trace from a multi-threaded program [19]. As mentioned previously,
the program is partitioned into several concurrent trace programs, and the en-
coding for each program is verified using SMT technology. Elwakil et al. extend
the encoding to message passing programs using the MCAPI semantics [5, 6].
The comparison to the encoding in this work is already discussed previously.

An important body of work is being pursued for MPI program verification
[17, ?,?,?,?,18, ?]. Highlights include an extension to the SPIN model checker
for MPI programs, symbolic execution tools for MPI programs including new
approaches to computing loop invariants, and various dynamic verification tools
for MPI programs. Although MPI is more expressive than MCAPI, the correct-
ness properties in MCAPI are similar to those in MPI. More importantly, the
encoding in this work should be applicable to MPI programs that do not in-
clude collective operations. An important aspect of future work is to extend the
encoding to collectives.

There is a rich body of literature for SMT/SAT based Bounded Model
Checking. Burckhardt et al. exhaustively check all executions of a test pro-
gram by translating the program implementation into SAT formulas [1]. The
approach relies on counter-examples from the solvers the refine the encoding.
The SMT encoding in this work is able to directly resolve the match-pair set
over-approximation directly without needing to check a counter-example.

Dubrovin et al. give a method to translate an asynchronous system into
a transition formula over three partial order semantics [3]. The encoding adds
constraints to compress the search space and decrease the bound on the program
unwinding. The encoding in this paper operates on a program execution and does
not need to resolve a bound.

Kahlon et al. presented a partial order reduction, MPOR, that operates in
the bounded model checking space [7]. It guarantees that exactly one execution
is calculated per each Mazurkiewicz trace to reduce the search space. It would
be interesting to see if MPOR is able to extend to message passing semantics.

Other work in bounded model checking explores heap-manipulating programs
and challenges in sequential systems code [8, ?].

The application of static analysis is another interesting thread of research to
test or debug message passing programs with some work in the MPI domain [20,
?,?]. The work is important as it lays the foundation for refining match-pair sets
to only include those that cannot be statically pruned.

9 Conclusions and Future Work

The paper presents a proof that the problem of resolving non-determinism in
message passing in a way that meets asserts is NP-complete. The paper then
presents an SMT encoding of an MCAPI program execution that uses match
pairs directly rather than the state-based or order-based encoding in the prior
work. The encoding is generated from a given execution trace and a set of po-
tential match pairs that can be over-approximated. The encoding takes extra
care in the forming the SMT problem to preclude bogus match pairs in any
over-approximation of the match pair input set. Critically, the encoding is the
first to correctly capture the non-deterministic behaviors of an MCAPI program
execution under infinite-buffer semantics.

The paper further defines an algorithm with O(N2) time complexity to over-
approximate the true set of match pairs, whereN is the total number of code lines
of the program. A comparison to prior work, [6], for a set of “toy” examples under
zero-buffer semanics shows the new encoding capable and efficient in capturing
correct behaviors of an MCAPI program execution. Experiments further show
that the encoding scales to programs with significant levels of non-determinism
in how sends are match to receives.

The results show that a large match-pair set does affect the runtime per-
formance of the encoding in the SMT problem even if the encoding is sound
under an over-approximation. Future work explores new methods for generating
a much more precise set of match pairs. The encoding is dependent on an input
execution trace of the program. Future work explores integrating the encoding
into a model checker. The model checker generates a program trace that is en-
coded and verified. The result is then used to inform the model checker as to
where it needs to backtrack to generate a new execution trace. The goal is to use
the trace verification to construct a better partial order reduction in the model
checker.

Finally, given the importance of high performance computing, future work
looks to extend the encoding to account for MPI collective operations. This
direction is motivated by the results where the encoding seems to scale to sig-
nificant levels of concurrency. It should be possible to express MPI collectives as
additional constraints in the encoding and apply the technique to MPI programs
directly.

References

1. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: Checking consistency of
concurrent data types on relaxed memory models. In: ACM SIGPLAN PLDI. San
Diego, California, USA (June 10–13, 2007)

2. Cantin, J.F., Lipasti, M.H., Smith, J.E.: The complexity of verifying memory co-
herence and consistency. IEEE Trans. Parallel Distrib. Syst. 16(7), 663–671 (Jul
2005), http://dx.doi.org/10.1109/TPDS.2005.86

3. Dubrovin, J., Junttila, T., Heljanko, K.: Exploiting step semantics for efficient
bounded model checking of asynchronous systems. In: Science of Computer Pro-
gramming. pp. 77(10–11):1095–1121 (2012)

4. Dutertre, B., de Moura Leonardo: A fast linear-arithmetic solver for DPLL(T). In:
CAV. vol. 4144 of LNCS, pp. 81–94. Springer-Verlag (2006)

5. Elwakil, M., Yang, Z.: CRI: Symbolic debugger for MCAPI applications. In: Au-
tomated Technology for Verification and Analysis (2010)

6. Elwakil, M., Yang, Z.: Debugging support tool for mcapi applications. In: PADTAD
’10: Proceedings of the 8th Workshop on Parallel and Distributed Systems (2010)

7. Kahlon, V., Wang, C., Gupta, A.: Monotonic partial order reduction: An optimal
symbolic partial order reduction technique. In: ACM CAV. pp. 398–413. Springer,
Berlin/Heidelberg, Grenoble, France (June 26–July 02, 2009)

8. Lahiri, S., Qadeer, S.: Back to the future revisiting precise program verification
using SMT solvers. In: POPL. ACM, San Francisco, California, USA (2008)

9. MCA: The multicore association, http://www.multicore-
association.org

10. MCA: The multicore association resource management API,
http://www.multicore-association.org/workgroup
/mcapi.php

11. Morse, E., Vrvilo, N., Mercer, E., McCarthy, J.: Modeling asynchronous message
passing for C program. In: Verification, Model Checking, and Abstract Interpreta-
tion. vol. 7148 of LNCS, pp. 332–347. Springer-Verlag (2012)

12. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. vol. 4963, pp.
337–340. Springer, Heidelberg (2008)

13. MPPTest: MPPTest benchmark, http://www.mcs.anl.gov
/research/projects/mpi/mpptest/

14. Netzer, R., Brennan, T., Damodaran-Kamal, S.: Debugging race conditions in
message-passing programs. In: ACM SIGMETRICS Symposium on Parallel and
Distributed Tools. pp. 31–40. Philadelphia, PA, USA (1996)

15. Sharma, S.: Private conversation on active research.
16. Sharma, S., Gopalakrishanan, G., Mercer, E., Holt, J.: MCC - a runtime verification

tool for MCAPI user applications. In: FMCAD (2009)
17. Siegel, S.F., Zirkel, T.K.: Loop invariant symbolic execution for parallel program.

In: Kuncak, V., Rybalchenko, A. (eds.) Verification, Model Checking, and Ab-
stract Interpretation: 13th International Conference, VMCAI 2012. Lecture Notes
in Computer Science, vol. 7148, pp. 412–427. Springer (2012)

18. Vakkalanka, S., Vo, A., Gopalakrishnan, G., Kirby, R.: Reduced execution seman-
tics of MPI: From theory to pratice. In: FM. pp. 724–740 (2009)

19. Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolic pruning of concurrent
program executions. In: ESEC/FSE. pp. 23–32. ACM, New York, NY, USA (2009)

20. Zhang, Y., Evelyn, D.: Barrier matching for programs with textually unaligned
barriers. In: PPoPP. pp. 194–204. ACM, San Jose, California, USA (2007)

