
Essentials of Compilation
The Incremental, Nano-Pass Approach

Jeremy G. Siek
Indiana University

with contributions from:
Carl Factora

Andre Kuhlenschmidt
Ryan R. Newton

Ryan Scott
Cameron Swords

Michael M. Vitousek
Michael Vollmer

January 3, 2021

ii

This book is dedicated to the programming
language wonks at Indiana University.

iv

Contents

1 Preliminaries 5
1.1 Abstract Syntax Trees and Racket Structures 5
1.2 Grammars . 7
1.3 Pattern Matching . 9
1.4 Recursive Functions . 11
1.5 Interpreters . 12
1.6 Example Compiler: a Partial Evaluator 14

2 Integers and Variables 17
2.1 The RVar Language . 17

2.1.1 Extensible Interpreters via Method Overriding 19
2.1.2 Definitional Interpreter for RVar 21

2.2 The x86Int Assembly Language 23
2.3 Planning the trip to x86 via the CVar language 27

2.3.1 The CVar Intermediate Language 30
2.3.2 The x86Var dialect . 30

2.4 Uniquify Variables . 31
2.5 Remove Complex Operands 32
2.6 Explicate Control . 34
2.7 Select Instructions . 36
2.8 Assign Homes . 37
2.9 Patch Instructions . 38
2.10 Print x86 . 39
2.11 Challenge: Partial Evaluator for RVar 39

3 Register Allocation 41
3.1 Registers and Calling Conventions 42
3.2 Liveness Analysis . 46
3.3 Build the Interference Graph 50

v

vi CONTENTS

3.4 Graph Coloring via Sudoku 52
3.5 Patch Instructions . 57
3.6 Print x86 . 58
3.7 Challenge: Move Biasing . 59

4 Booleans and Control Flow 65
4.1 The RIf Language . 66
4.2 Type Checking RIf Programs 67
4.3 The CIf Intermediate Language 73
4.4 The x86If Language . 74
4.5 Shrink the RIf Language . 76
4.6 Uniquify Variables . 76
4.7 Remove Complex Operands 77
4.8 Explicate Control . 77
4.9 Select Instructions . 83
4.10 Register Allocation . 84

4.10.1 Liveness Analysis . 84
4.10.2 Build the Interference Graph 86

4.11 Patch Instructions . 86
4.12 An Example Translation . 86
4.13 Challenge: Remove Jumps . 87

5 Tuples and Garbage Collection 91
5.1 The RVec Language . 92
5.2 Garbage Collection . 94

5.2.1 Graph Copying via Cheney’s Algorithm 97
5.2.2 Data Representation 99
5.2.3 Implementation of the Garbage Collector 102

5.3 Shrink . 103
5.4 Expose Allocation . 104
5.5 Remove Complex Operands 105
5.6 Explicate Control and the CVec language 105
5.7 Select Instructions and the x86Global Language 105
5.8 Register Allocation . 111
5.9 Print x86 . 111
5.10 Challenge: Simple Structures 113
5.11 Challenge: Generational Collection 113

CONTENTS vii

6 Functions 117
6.1 The RFun Language . 117
6.2 Functions in x86 . 119

6.2.1 Calling Conventions 122
6.2.2 Efficient Tail Calls . 123

6.3 Shrink RFun . 125
6.4 Reveal Functions and the RFunRef language 125
6.5 Limit Functions . 126
6.6 Remove Complex Operands 126
6.7 Explicate Control and the CFun language 127
6.8 Select Instructions and the x86callq∗ Language 128
6.9 Register Allocation . 131

6.9.1 Liveness Analysis . 131
6.9.2 Build Interference Graph 131
6.9.3 Allocate Registers . 131

6.10 Patch Instructions . 131
6.11 Print x86 . 132
6.12 An Example Translation . 133

7 Lexically Scoped Functions 137
7.1 The Rλ Language . 139
7.2 Reveal Functions and the F2 language 142
7.3 Closure Conversion . 142
7.4 An Example Translation . 144
7.5 Expose Allocation . 144
7.6 Explicate Control and CClos 145
7.7 Select Instructions . 145
7.8 Challenge: Optimize Closures 147

8 Dynamic Typing 151
8.1 Representation of Tagged Values 156
8.2 The RAny Language . 156
8.3 Cast Insertion: Compiling RDyn to RAny 163
8.4 Reveal Casts . 163
8.5 Remove Complex Operands 166
8.6 Explicate Control and CAny 166
8.7 Select Instructions . 166
8.8 Register Allocation for RAny 168

viii CONTENTS

9 Loops and Assignment 171
9.1 The RWhile Language . 171
9.2 Assignment and Lexically Scoped Functions 175
9.3 Cyclic Control Flow and Dataflow Analysis 176
9.4 Convert Assignments . 180
9.5 Remove Complex Operands 183
9.6 Explicate Control and C	 . 184
9.7 Select Instructions . 185
9.8 Register Allocation . 185

9.8.1 Liveness Analysis . 186

10 Gradual Typing 189
10.1 Type Checking R?, Casts, and Rcast 189
10.2 Interpreting Rcast . 197
10.3 Lower Casts . 200
10.4 Differentiate Proxies . 202
10.5 Reveal Casts . 205
10.6 Closure Conversion . 206
10.7 Explicate Control . 206
10.8 Select Instructions . 206
10.9 Further Reading . 208

11 Parametric Polymorphism 211
11.1 Compiling Polymorphism . 214
11.2 Erase Types . 218

12 Appendix 223
12.1 Interpreters . 223
12.2 Utility Functions . 223
12.3 x86 Instruction Set Quick-Reference 225
12.4 Concrete Syntax for Intermediate Languages 227

Index 229

Bibliography 243

List of Figures

1.1 The concrete syntax of RInt. 9
1.2 The abstract syntax of RInt. 9
1.3 Interpreter for the RInt language. 13
1.4 A partial evaluator for RInt. 15

2.1 The concrete syntax of RVar. 18
2.2 The abstract syntax of RVar. 18
2.3 Interpreter for the RVar language. 22
2.4 The syntax of the x86Int assembly language (AT&T syntax). 23
2.5 An x86 program equivalent to (+ 10 32). 24
2.6 An x86 program equivalent to (+ 52 (- 10)). 25
2.7 Memory layout of a frame. 25
2.8 The abstract syntax of x86Int assembly. 27
2.9 Diagram of the passes for compiling RVar. 29
2.10 The abstract syntax of the CVar intermediate language. 30
2.11 Skeleton for the uniquify pass. 32
2.12 RANF

Var is RVar in administrative normal form (ANF). 33
2.13 Skeleton for the explicate-control pass. 35

3.1 A running example for register allocation. 42
3.2 An example with function calls. 45
3.3 Example output of liveness analysis on a short example. . . . 47
3.4 The running example annotated with live-after sets. 48
3.5 Interference results for the running example. 51
3.6 The interference graph of the example program. 51
3.7 A Sudoku game board and the corresponding colored graph. . 53
3.8 The saturation-based greedy graph coloring algorithm. 54
3.9 Diagram of the passes for RVar with register allocation. 59
3.10 The x86 output from the running example (Figure 3.1). . . . 63

ix

x LIST OF FIGURES

4.1 The concrete syntax of RIf, extending RVar (Figure 2.1) with
Booleans and conditionals. 67

4.2 The abstract syntax of RIf. 67
4.3 Interpreter for theRIf language. (See Figure 4.4 for interp-op.) 68
4.4 Interpreter for the primitive operators in the RIf language. . 69
4.5 Type checker for the RVar language. 71
4.6 Type checker for the RIf language. 72
4.7 The abstract syntax of CIf, an extension of CVar (Figure 2.10). 73
4.8 The concrete syntax of x86If (extends x86Int of Figure 2.4). . 74
4.9 The abstract syntax of x86If (extends x86Int of Figure 2.8). . 75
4.10 RANF

if is RIf in administrative normal form (ANF). 77
4.11 Translation from RIf to CIf via the explicate-control. . . 80
4.12 Skeleton for the explicate-pred auxiliary function. 81
4.13 Diagram of the passes for RIf, a language with conditionals. . 87
4.14 Example compilation of an if expression to x86. 88
4.15 Merging basic blocks by removing unnecessary jumps. 89

5.1 The concrete syntax of RVec, extending RIf (Figure 4.1). . . . 92
5.2 Example program that creates tuples and reads from them. . 92
5.3 The abstract syntax of RVec. 93
5.4 Interpreter for the RVec language. 95
5.5 Type checker for the RVec language. 96
5.6 A copying collector in action. 98
5.7 Depiction of the Cheney algorithm copying the live tuples. . . 100
5.8 Maintaining a root stack to facilitate garbage collection. . . . 101
5.9 Representation of tuples in the heap. 102
5.10 The compiler’s interface to the garbage collector. 103
5.11 Output of the expose-allocation pass, minus all of the

has-type forms. 106
5.12 RANF

Vec is RVec in administrative normal form (ANF). 107
5.13 The abstract syntax of CVec, extending CIf (Figure 4.7). . . . 107
5.14 The concrete syntax of x86Global (extends x86If of Figure 4.8).109
5.15 The abstract syntax of x86Global (extends x86If of Figure 4.9).109
5.16 Output of the select-instructions pass. 110
5.17 Output of the print-x86 pass. 112
5.18 Diagram of the passes for RVec, a language with tuples. . . . 114
5.19 The concrete syntax of Rs3, extending RVec (Figure 5.1). . . . 114

6.1 The concrete syntax of RFun, extending RVec (Figure 5.1). . . 118
6.2 The abstract syntax of RFun, extending RVec (Figure 5.3). . . 118

LIST OF FIGURES xi

6.3 Example of using functions in RFun. 119
6.4 Interpreter for the RFun language. 120
6.5 Type checker for the RFun language. 121
6.6 Memory layout of caller and callee frames. 124
6.7 The abstract syntax RFunRef, an extension of RFun (Figure 6.2).126
6.8 RANF

Fun is RFun in administrative normal form (ANF). 127
6.9 The abstract syntax of CFun, extending CVec (Figure 5.13). . . 128
6.10 The concrete syntax of x86callq∗ (extends x86Global of Fig-

ure 5.14). 128
6.11 The abstract syntax of x86callq∗ (extends x86Global of Fig-

ure 5.15). 129
6.12 Diagram of the passes for RFun, a language with functions. . . 134
6.13 Example compilation of a simple function to x86. 135

7.1 Example of a lexically scoped function. 137
7.2 Example closure representation for the lambda’s in Figure 7.1. 139
7.3 The concrete syntax of Rλ, extending RFun (Figure 6.1) with

lambda. 140
7.4 The abstract syntax of Rλ, extending RFun (Figure 6.2). . . . 140
7.5 Interpreter for Rλ. 141
7.6 Type checking the lambda’s in Rλ. 141
7.7 The abstract syntax F2, an extension of Rλ (Figure 7.4). . . . 142
7.8 Example of closure conversion. 144
7.9 The abstract syntax of CClos, extending CFun (Figure 6.9). . . 145
7.10 Diagram of the passes forRλ, a language with lexically-scoped

functions. 146

8.1 Syntax of RDyn, an untyped language (a subset of Racket). . . 152
8.2 The abstract syntax of RDyn. 152
8.3 Interpreter for the RDyn language. 154
8.4 Auxiliary functions for the RDyn interpreter. 155
8.5 The abstract syntax of RAny, extending Rλ (Figure 7.4). . . . 157
8.6 Type checker for the RAny language, part 1. 158
8.7 Type checker for the RAny language, part 2. 159
8.8 Auxiliary methods for type checking RAny. 160
8.9 Interpreter for RAny. 161
8.10 Auxiliary functions for injection and projection. 162
8.11 Cast Insertion . 164
8.12 The abstract syntax of CAny, extending CClos (Figure 7.9). . . 166
8.13 Diagram of the passes for RDyn, a dynamically typed language.170

xii LIST OF FIGURES

9.1 The concrete syntax of RWhile, extending RAny (Figure 12.1). 172
9.2 The abstract syntax of RWhile, extending RAny (Figure 8.5). . 172
9.3 Interpreter for RWhile. 173
9.4 Type checking SetBang, WhileLoop, and Begin in RWhile. . . 174
9.5 Generic work list algorithm for dataflow analysis 180
9.6 RANF

While is RWhile in administrative normal form (ANF). 183
9.7 The abstract syntax of C	, extending CClos (Figure 7.9). . . . 185
9.8 Diagram of the passes for RWhile (loops and assignment). . . 187

10.1 The concrete syntax of R?, extending RWhile (Figure 9.1). . . 190
10.2 The abstract syntax of R?, extending RWhile (Figure 9.2). . . 190
10.3 A partially-typed version of the map-vec example. 190
10.4 The consistency predicate on types, a method in type-check-gradual-class.191
10.5 The abstract syntax of Rcast, extending RWhile (Figure 9.2). . 192
10.6 A variant of the map-vec example with an error. 192
10.7 Output of type checking map-vec and maybe-add1. 192
10.8 Type checker for the R? language, part 1. 193
10.9 Type checker for the R? language, part 2. 194
10.10Type checker for the R? language, part 3. 195
10.11Auxiliary functions for type checking R?. 196
10.12An example involving casts on vectors. 198
10.13Casting a vector to Any. 198
10.14The apply-cast auxiliary method. 199
10.15The interpreter for Rcast. 201
10.16The guarded-vector auxiliary functions. 202
10.17Output of lower-casts on the example in Figure 10.12. . . . 203
10.18Output of lower-casts on the example in Figure 10.3. . . . 203
10.19Diagram of the passes for R? (gradual typing). 209

11.1 The map-vec example using parametric polymorphism. 211
11.2 The concrete syntax of RPoly, extending RWhile (Figure 9.1). . 212
11.3 The abstract syntax of RPoly, extending RWhile (Figure 9.2). . 212
11.4 An example illustrating first-class polymorphism. 213
11.5 The abstract syntax of RInst, extending RWhile (Figure 9.2). . 214
11.6 Output of the type checker on the map-vec example. 214
11.7 Type checker for the RPoly language. 215
11.8 Auxiliary functions for type checking RPoly. 216
11.9 Well-formed types. 217
11.10The polymorphic map-vec example after type erasure. 218
11.11Diagram of the passes for RPoly (parametric polymorphism). 221

LIST OF FIGURES xiii

12.1 The concrete syntax of RAny, extending Rλ (Figure 7.4) with
Any. 227

12.2 The concrete syntax of the CVar intermediate language. . . . 227
12.3 The concrete syntax of the CIf intermediate language. 228
12.4 The concrete syntax of the CVec intermediate language. . . . 228
12.5 The CFun language, extending CVec (Figure 12.4) with functions.228

xiv LIST OF FIGURES

Preface

The tradition of compiler writing at Indiana University goes back to re-
search and courses on programming languages by Professor Daniel Fried-
man in the 1970’s and 1980’s. Friedman conducted research on lazy evalua-
tion [41] in the context of Lisp [73] and then studied continuations [33] and
macros [65] in the context of the Scheme [95], a dialect of Lisp. One of the
students of those courses, Kent Dybvig, went on to build Chez Scheme [31],
a production-quality and efficient compiler for Scheme. After completing his
Ph.D. at the University of North Carolina, he returned to teach at Indiana
University. Throughout the 1990’s and 2000’s, Professor Dybvig continued
development of Chez Scheme and taught the compiler course.

The compiler course evolved to incorporate novel pedagogical ideas while
also including elements of effective real-world compilers. One of Friedman’s
ideas was to split the compiler into many small “passes” so that the code
for each pass would be easy to understood in isolation. In contrast, most
compilers of the time were organized into only a few monolithic passes for
reasons of compile-time efficiency. Another idea, called “the game”, was to
test the code generated by each pass on interpreters for each intermediate
language, thereby helping to pinpoint errors in individual passes. Dybvig,
with later help from his students Dipanwita Sarkar and Andrew Keep, de-
veloped infrastructure to support this approach and evolved the course, first
to use smaller micro-passes and then into even smaller nano-passes [84, 58].
I was a student in this compiler course in the early 2000’s as part of my
Ph.D. studies at Indiana University. Needless to say, I enjoyed the course
immensely!

During that time, another graduate student named Abdulaziz Ghuloum
observed that the front-to-back organization of the course made it difficult
for students to understand the rationale for the compiler design. Ghuloum
proposed an incremental approach in which the students start by imple-
menting a complete compiler for a very small subset of the language. In
each subsequent stage they add a feature to the language and then add or

1

2 LIST OF FIGURES

modify passes to handle the new feature [44]. In this way, the students see
how the language features motivate aspects of the compiler design.

After graduating from Indiana University in 2005, I went on to teach
at the University of Colorado. I adapted the nano-pass and incremental
approaches to compiling a subset of the Python language [89]. I very much
enjoyed teaching the course organized in this way, and even better, many of
the students learned a lot and got excited about compilers.

I returned to Indiana University in 2013. In my absence the com-
piler course had switched from the front-to-back organization to a back-to-
front [32]. While that organization also works well, I prefer the incremental
approach and started porting and adapting the structure of the Colorado
course back into the land of Scheme. In the meantime Indiana University
had moved on from Scheme to Racket [38], so the course is now about com-
piling a subset of Racket (and Typed Racket) to the x86 assembly language.

This is the textbook for the incremental version of the compiler course
at Indiana University (Spring 2016 - present). With this book I hope to
make the Indiana compiler course available to people that have not had the
chance to study compilers at Indiana University.

Prerequisites

The material in this book is challenging but rewarding. It is meant to
prepare students for a lifelong career in programming languages.

The book uses the Racket language both for the implementation of the
compiler and for the language that is compiled, so a student should be
proficient with Racket or Scheme prior to reading this book. There are many
excellent resources for learning Scheme and Racket [30, 1, 40, 34, 35, 39].

It is helpful but not necessary for the student to have prior exposure
to the x86 assembly language [53], as one might obtain from a computer
systems course [17]. This book introduces the parts of x86-64 assembly lan-
guage that are needed. We follow the System V calling conventions [16, 72],
which means that the assembly code that we generate will work properly
with our runtime system (written in C) when it is compiled using the GNU
C compiler (gcc) on the Linux and MacOS operating systems. (Minor ad-
justments are needed for MacOS which we note as they arise.) The GNU C
compiler, when running on the Microsoft Windows operating system, follows
the Microsoft x64 calling convention [74, 75]. So the assembly code that we
generate will not work properly with our runtime system on Windows. One
option to consider for using a Windows computer is to run a virtual machine

LIST OF FIGURES 3

with Linux as the guest operating system.

Acknowledgments
Many people have contributed to the ideas, techniques, and organization
of this book and have taught courses based on it. Many of the compiler
design decisions in this book are drawn from the assignment descriptions
of [32]. We also would like to thank John Clements, Bor-Yuh Evan Chang,
Daniel P. Friedman, Ronald Garcia, Abdulaziz Ghuloum, Jay McCarthy,
Nate Nystrom, Dipanwita Sarkar, Oscar Waddell, and Michael Wollowski.

Jeremy G. Siek
http://homes.soic.indiana.edu/jsiek

http://homes.soic.indiana.edu/jsiek

4 LIST OF FIGURES

1

Preliminaries

In this chapter we review the basic tools that are needed to implement a
compiler. Programs are typically input by a programmer as text, i.e., a se-
quence of characters. The program-as-text representation is called concrete
syntax. We use concrete syntax to concisely write down and talk about pro-
grams. Inside the compiler, we use abstract syntax trees (ASTs) to represent
programs in a way that efficiently supports the operations that the compiler
needs to perform. The translation from concrete syntax to abstract syntax is
a process called parsing [2]. We do not cover the theory and implementation
of parsing in this book. A parser is provided in the supporting materials for
translating from concrete to abstract syntax.

ASTs can be represented in many different ways inside the compiler,
depending on the programming language used to write the compiler. We use
Racket’s struct feature to represent ASTs (Section 1.1). We use grammars
to define the abstract syntax of programming languages (Section 1.2) and
pattern matching to inspect individual nodes in an AST (Section 1.3). We
use recursive functions to construct and deconstruct ASTs (Section 1.4).
This chapter provides an brief introduction to these ideas.

1.1 Abstract Syntax Trees and Racket Structures

Compilers use abstract syntax trees to represent programs because they
often need to ask questions like: for a given part of a program, what kind
of language feature is it? What are its sub-parts? Consider the program on
the left and its AST on the right. This program is an addition operation
and it has two sub-parts, a read operation and a negation. The negation
has another sub-part, the integer constant 8. By using a tree to represent

5

https://docs.racket-lang.org/guide/define-struct.html

6 1. PRELIMINARIES

the program, we can easily follow the links to go from one part of a program
to its sub-parts.

(+ (read) (- 8))

+

read -

8

(1.1)

We use the standard terminology for trees to describe ASTs: each circle
above is called a node. The arrows connect a node to its children (which are
also nodes). The top-most node is the root. Every node except for the root
has a parent (the node it is the child of). If a node has no children, it is a
leaf node. Otherwise it is an internal node.

We define a Racket struct for each kind of node. For this chapter we re-
quire just two kinds of nodes: one for integer constants and one for primitive
operations. The following is the struct definition for integer constants.
(struct Int (value))

An integer node includes just one thing: the integer value. To create a AST
node for the integer 8, we write (Int 8).
(define eight (Int 8))

We say that the value created by (Int 8) is an instance of the Int structure.
The following is the struct definition for primitives operations.

(struct Prim (op args))

A primitive operation node includes an operator symbol op and a list of
children args. For example, to create an AST that negates the number 8,
we write (Prim ’- (list eight)).
(define neg-eight (Prim '- (list eight)))

Primitive operations may have zero or more children. The read operator
has zero children:
(define rd (Prim 'read '()))

whereas the addition operator has two children:
(define ast1.1 (Prim '+ (list rd neg-eight)))

1.2. GRAMMARS 7

We have made a design choice regarding the Prim structure. Instead of
using one structure for many different operations (read, +, and -), we could
have instead defined a structure for each operation, as follows.
(struct Read ())
(struct Add (left right))
(struct Neg (value))

The reason we choose to use just one structure is that in many parts of the
compiler the code for the different primitive operators is the same, so we
might as well just write that code once, which is enabled by using a single
structure.

When compiling a program such as (1.1), we need to know that the
operation associated with the root node is addition and we need to be able
to access its two children. Racket provides pattern matching to support
these kinds of queries, as we see in Section 1.3.

In this book, we often write down the concrete syntax of a program even
when we really have in mind the AST because the concrete syntax is more
concise. We recommend that, in your mind, you always think of programs
as abstract syntax trees.

1.2 Grammars

A programming language can be thought of as a set of programs. The set
is typically infinite (one can always create larger and larger programs), so
one cannot simply describe a language by listing all of the programs in the
language. Instead we write down a set of rules, a grammar, for building
programs. Grammars are often used to define the concrete syntax of a
language, but they can also be used to describe the abstract syntax. We
write our rules in a variant of Backus-Naur Form (BNF) [9, 64]. As an
example, we describe a small language, named RInt, that consists of integers
and arithmetic operations.

The first grammar rule for the abstract syntax of RInt says that an
instance of the Int structure is an expression:

exp ::= (Int int) (1.2)

Each rule has a left-hand-side and a right-hand-side. The way to read a rule
is that if you have an AST node that matches the right-hand-side, then you
can categorize it according to the left-hand-side. A name such as exp that
is defined by the grammar rules is a non-terminal. The name int is a also

8 1. PRELIMINARIES

a non-terminal, but instead of defining it with a grammar rule, we define it
with the following explanation. We make the simplifying design decision that
all of the languages in this book only handle machine-representable integers.
On most modern machines this corresponds to integers represented with 64-
bits, i.e., the in range −263 to 263 − 1. We restrict this range further to
match the Racket fixnum datatype, which allows 63-bit integers on a 64-bit
machine. So an int is a sequence of decimals (0 to 9), possibly starting with
− (for negative integers), such that the sequence of decimals represent an
integer in range −262 to 262 − 1.

The second grammar rule is the read operation that receives an input
integer from the user of the program.

exp ::= (Prim read ()) (1.3)

The third rule says that, given an exp node, the negation of that node
is also an exp.

exp ::= (Prim - (exp)) (1.4)

Symbols in typewriter font such as - and read are terminal symbols and
must literally appear in the program for the rule to be applicable.

We can apply these rules to categorize the ASTs that are in the RInt
language. For example, by rule (1.2) (Int 8) is an exp, then by rule (1.4)
the following AST is an exp.

(Prim '- (list (Int 8)))

–

8

(1.5)

The next grammar rule is for addition expressions:

exp ::= (Prim + (exp exp)) (1.6)

We can now justify that the AST (1.1) is an exp in RInt. We know that
(Prim 'read '()) is an exp by rule (1.3) and we have already categorized
(Prim ’- (list (Int 8))) as an exp, so we apply rule (1.6) to show that
(Prim '+ (list (Prim 'read '()) (Prim '- (list (Int 8)))))

is an exp in the RInt language.
If you have an AST for which the above rules do not apply, then the

AST is not in RInt. For example, the program (- (read) (+ 8)) is not
in RInt because there are no rules for + with only one argument, nor for -

1.3. PATTERN MATCHING 9

exp ::= int | (read) | (- exp) | (+ exp exp)
RInt ::= exp

Figure 1.1: The concrete syntax of RInt.

exp ::= (Int int) | (Prim read ()) | (Prim - (exp))
| (Prim + (exp exp))

RInt ::= (Program ’() exp)

Figure 1.2: The abstract syntax of RInt.

with two arguments. Whenever we define a language with a grammar, the
language only includes those programs that are justified by the rules.

The last grammar rule for RInt states that there is a Program node to
mark the top of the whole program:

RInt ::= (Program ’() exp)

The Program structure is defined as follows
(struct Program (info body))

where body is an expression. In later chapters, the info part will be used
to store auxiliary information but for now it is just the empty list.

It is common to have many grammar rules with the same left-hand side
but different right-hand sides, such as the rules for exp in the grammar
of RInt. As a short-hand, a vertical bar can be used to combine several
right-hand-sides into a single rule.

We collect all of the grammar rules for the abstract syntax of RInt in
Figure 1.2. The concrete syntax for RInt is defined in Figure 1.1.

The read-program function provided in utilities.rkt of the support
materials reads a program in from a file (the sequence of characters in the
concrete syntax of Racket) and parses it into an abstract syntax tree. See
the description of read-program in Appendix 12.2 for more details.

1.3 Pattern Matching

As mentioned in Section 1.1, compilers often need to access the parts of
an AST node. Racket provides the match form to access the parts of a
structure. Consider the following example and the output on the right.

10 1. PRELIMINARIES

(match ast1.1
[(Prim op (list child1 child2))
(print op)]) '+

In the above example, the match form takes an AST (1.1) and binds its parts
to the three pattern variables op, child1, and child2, and then prints out
the operator. In general, a match clause consists of a pattern and a body.
Patterns are recursively defined to be either a pattern variable, a structure
name followed by a pattern for each of the structure’s arguments, or an S-
expression (symbols, lists, etc.). (See Chapter 12 of The Racket Guide1 and
Chapter 9 of The Racket Reference2 for a complete description of match.)
The body of a match clause may contain arbitrary Racket code. The pattern
variables can be used in the scope of the body, such as op in (print op).

A match form may contain several clauses, as in the following function
leaf? that recognizes when an RInt node is a leaf in the AST. The match
proceeds through the clauses in order, checking whether the pattern can
match the input AST. The body of the first clause that matches is executed.
The output of leaf? for several ASTs is shown on the right.

(define (leaf? arith)
(match arith
[(Int n) #t]
[(Prim 'read '()) #t]
[(Prim '- (list e1)) #f]
[(Prim '+ (list e1 e2)) #f]))

(leaf? (Prim 'read '()))
(leaf? (Prim '- (list (Int 8))))
(leaf? (Int 8))

#t
#f
#t

When writing a match, we refer to the grammar definition to identify
which non-terminal we are expecting to match against, then we make sure
that 1) we have one clause for each alternative of that non-terminal and 2)
that the pattern in each clause corresponds to the corresponding right-hand
side of a grammar rule. For the match in the leaf? function, we refer to the
grammar for RInt in Figure 1.2. The exp non-terminal has 4 alternatives,
so the match has 4 clauses. The pattern in each clause corresponds to the
right-hand side of a grammar rule. For example, the pattern (Prim ’+
(list e1 e2)) corresponds to the right-hand side (Prim + (exp exp)).

1https://docs.racket-lang.org/guide/match.html
2https://docs.racket-lang.org/reference/match.html

https://docs.racket-lang.org/guide/match.html
https://docs.racket-lang.org/reference/match.html

1.4. RECURSIVE FUNCTIONS 11

When translating from grammars to patterns, replace non-terminals such as
exp with pattern variables of your choice (e.g. e1 and e2).

1.4 Recursive Functions

Programs are inherently recursive. For example, an RInt expression is often
made of smaller expressions. Thus, the natural way to process an entire
program is with a recursive function. As a first example of such a recursive
function, we define exp? below, which takes an arbitrary value and deter-
mines whether or not it is an RInt expression. We say that a function is
defined by structural recursion when it is defined using a sequence of match
clauses that correspond to a grammar, and the body of each clause makes
a recursive call on each child node.3. Below we also define a second func-
tion, named Rint?, that determines whether an AST is an RInt program.
In general we can expect to write one recursive function to handle each
non-terminal in a grammar.

(define (exp? ast)
(match ast
[(Int n) #t]
[(Prim 'read '()) #t]
[(Prim '- (list e)) (exp? e)]
[(Prim '+ (list e1 e2))
(and (exp? e1) (exp? e2))]

[else #f]))

(define (Rint? ast)
(match ast
[(Program '() e) (exp? e)]
[else #f]))

(Rint? (Program '() ast1.1)
(Rint? (Program '()

(Prim '- (list (Prim 'read '())
(Prim '+ (list (Num 8)))))))

#t
#f

You may be tempted to merge the two functions into one, like this:

3This principle of structuring code according to the data definition is advocated in the
book How to Design Programs http://www.ccs.neu.edu/home/matthias/HtDP2e/.

http://www.ccs.neu.edu/home/matthias/HtDP2e/

12 1. PRELIMINARIES

(define (Rint? ast)
(match ast
[(Int n) #t]
[(Prim 'read '()) #t]
[(Prim '- (list e)) (Rint? e)]
[(Prim '+ (list e1 e2)) (and (Rint? e1) (Rint? e2))]
[(Program '() e) (Rint? e)]
[else #f]))

Sometimes such a trick will save a few lines of code, especially when it
comes to the Program wrapper. Yet this style is generally not recommended
because it can get you into trouble. For example, the above function is
subtly wrong: (Rint? (Program '() (Program '() (Int 3)))) returns true
when it should return false.

1.5 Interpreters

In general, the intended behavior of a program is defined by the specifica-
tion of the language. For example, the Scheme language is defined in the
report by [92]. The Racket language is defined in its reference manual [38].
In this book we use interpreters to specify each language that we consider.
An interpreter that is designated as the definition of a language is called a
definitional interpreter [82]. We warm up by creating a definitional inter-
preter for the RInt language, which serves as a second example of structural
recursion. The interp-Rint function is defined in Figure 1.3. The body
of the function is a match on the input program followed by a call to the
interp-exp helper function, which in turn has one match clause per grammar
rule for RInt expressions.

Let us consider the result of interpreting a few RInt programs. The
following program adds two integers.
(+ 10 32)

The result is 42, the answer to life, the universe, and everything: 42!4. We
wrote the above program in concrete syntax whereas the parsed abstract
syntax is:
(Program '() (Prim '+ (list (Int 10) (Int 32))))

The next example demonstrates that expressions may be nested within
each other, in this case nesting several additions and negations.

4The Hitchhiker’s Guide to the Galaxy by Douglas Adams.

1.5. INTERPRETERS 13

(define (interp-exp e)
(match e
[(Int n) n]
[(Prim 'read '())
(define r (read))
(cond [(fixnum? r) r]

[else (error 'interp-exp "read expected an integer" r)])]
[(Prim '- (list e))
(define v (interp-exp e))
(fx- 0 v)]
[(Prim '+ (list e1 e2))
(define v1 (interp-exp e1))
(define v2 (interp-exp e2))
(fx+ v1 v2)]))

(define (interp-Rint p)
(match p
[(Program '() e) (interp-exp e)]))

Figure 1.3: Interpreter for the RInt language.

(+ 10 (- (+ 12 20)))

What is the result of the above program?
As mentioned previously, the RInt language does not support arbitrarily-

large integers, but only 63-bit integers, so we interpret the arithmetic oper-
ations of RInt using fixnum arithmetic in Racket. Suppose

n = 999999999999999999

which indeed fits in 63-bits. What happens when we run the following
program in our interpreter?
(+ (+ (+ n n) (+ n n)) (+ (+ n n) (+ n n)))))

It produces an error:
fx+: result is not a fixnum

We establish the convention that if running the definitional interpreter on a
program produces an error then the meaning of that program is unspecified,
unless the error is a trapped-error. A compiler for the language is under no
obligations regarding programs with unspecified behavior; it does not have
to produce an executable, and if it does, that executable can do anything.
On the other hand, if the error is a trapped-error, then the compiler must

14 1. PRELIMINARIES

produce an executable and it is required to report that an error occurred. To
signal an error, exit with a return code of 255. The interpreters in chapters
8 and 10 use trapped-error.

Moving on to the last feature of the RInt language, the read operation
prompts the user of the program for an integer. Recall that program (1.1)
performs a read and then subtracts 8. So if we run
(interp-Rint (Program '() ast1.1))

and if the input is 50, the result is 42.
We include the read operation in RInt so a clever student cannot imple-

ment a compiler for RInt that simply runs the interpreter during compilation
to obtain the output and then generates the trivial code to produce the out-
put. (Yes, a clever student did this in the first instance of this course.)

The job of a compiler is to translate a program in one language into
a program in another language so that the output program behaves the
same way as the input program does. This idea is depicted in the following
diagram. Suppose we have two languages, L1 and L2, and a definitional in-
terpreter for each language. Given a compiler that translates from language
L1 to L2 and given any program P1 in L1, the compiler must translate it
into some program P2 such that interpreting P1 and P2 on their respective
interpreters with same input i yields the same output o.

P1 P2

o

compile

interp-L2(i)interp-L1(i)
(1.7)

In the next section we see our first example of a compiler.

1.6 Example Compiler: a Partial Evaluator

In this section we consider a compiler that translates RInt programs into
RInt programs that may be more efficient, that is, this compiler is an op-
timizer. This optimizer eagerly computes the parts of the program that do
not depend on any inputs, a process known as partial evaluation [55]. For
example, given the following program
(+ (read) (- (+ 5 3)))

1.6. EXAMPLE COMPILER: A PARTIAL EVALUATOR 15

(define (pe-neg r)
(match r
[(Int n) (Int (fx- 0 n))]
[else (Prim '- (list r))]))

(define (pe-add r1 r2)
(match* (r1 r2)
[((Int n1) (Int n2)) (Int (fx+ n1 n2))]
[(_ _) (Prim '+ (list r1 r2))]))

(define (pe-exp e)
(match e
[(Int n) (Int n)]
[(Prim 'read '()) (Prim 'read '())]
[(Prim '- (list e1)) (pe-neg (pe-exp e1))]
[(Prim '+ (list e1 e2)) (pe-add (pe-exp e1) (pe-exp e2))]))

(define (pe-Rint p)
(match p
[(Program '() e) (Program '() (pe-exp e))]))

Figure 1.4: A partial evaluator for RInt.

our compiler will translate it into the program

(+ (read) -8)

Figure 1.4 gives the code for a simple partial evaluator for the RInt
language. The output of the partial evaluator is an RInt program. In Fig-
ure 1.4, the structural recursion over exp is captured in the pe-exp function
whereas the code for partially evaluating the negation and addition oper-
ations is factored into two separate helper functions: pe-neg and pe-add.
The input to these helper functions is the output of partially evaluating the
children.

The pe-neg and pe-add functions check whether their arguments are
integers and if they are, perform the appropriate arithmetic. Otherwise,
they create an AST node for the arithmetic operation.

To gain some confidence that the partial evaluator is correct, we can
test whether it produces programs that get the same result as the input
programs. That is, we can test whether it satisfies Diagram 1.7. The fol-
lowing code runs the partial evaluator on several examples and tests the
output program. The parse-program and assert functions are defined in

16 1. PRELIMINARIES

Appendix 12.2.
(define (test-pe p)
(assert "testing pe-Rint"

(equal? (interp-Rint p) (interp-Rint (pe-Rint p)))))

(test-pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
(test-pe (parse-program `(program () (+ 1 (+ 3 1)))))
(test-pe (parse-program `(program () (- (+ 3 (- 5))))))

2

Integers and Variables

This chapter is about compiling a subset of Racket to x86-64 assembly
code [53]. The subset, named RVar, includes integer arithmetic and local
variable binding. We often refer to x86-64 simply as x86. The chapter be-
gins with a description of the RVar language (Section 2.1) followed by an
introduction to of x86 assembly (Section 2.2). The x86 assembly language
is large so we discuss only the instructions needed for compiling RVar. We
introduce more x86 instructions in later chapters. After introducing RVar
and x86, we reflect on their differences and come up with a plan to break
down the translation from RVar to x86 into a handful of steps (Section 2.3).
The rest of the sections in this chapter give detailed hints regarding each
step (Sections 2.4 through 2.9). We hope to give enough hints that the
well-prepared reader, together with a few friends, can implement a compiler
from RVar to x86 in a couple weeks. To give the reader a feeling for the
scale of this first compiler, the instructor solution for the RVar compiler is
approximately 500 lines of code.

2.1 The RVar Language

The RVar language extends the RInt language with variable definitions. The
concrete syntax of the RVar language is defined by the grammar in Figure 2.1
and the abstract syntax is defined in Figure 2.2. The non-terminal var may
be any Racket identifier. As in RInt, read is a nullary operator, - is a
unary operator, and + is a binary operator. Similar to RInt, the abstract
syntax of RVar includes the Program struct to mark the top of the program.
Despite the simplicity of the RVar language, it is rich enough to exhibit
several compilation techniques.

17

18 2. INTEGERS AND VARIABLES

exp ::= int | (read) | (- exp) | (+ exp exp)
| var | (let ([var exp]) exp)

RVar ::= exp

Figure 2.1: The concrete syntax of RVar.

exp ::= (Int int) | (Prim read ())
| (Prim - (exp)) | (Prim + (exp exp))
| (Var var) | (Let var exp exp)

RVar ::= (Program ’() exp)

Figure 2.2: The abstract syntax of RVar.

Let us dive further into the syntax and semantics of the RVar language.
The let feature defines a variable for use within its body and initializes
the variable with the value of an expression. The abstract syntax for let is
defined in Figure 2.2. The concrete syntax for let is
(let ([var exp]) exp)

For example, the following program initializes x to 32 and then evaluates
the body (+ 10 x), producing 42.
(let ([x (+ 12 20)]) (+ 10 x))

When there are multiple let’s for the same variable, the closest enclosing
let is used. That is, variable definitions overshadow prior definitions. Con-
sider the following program with two let’s that define variables named x.
Can you figure out the result?
(let ([x 32]) (+ (let ([x 10]) x) x))

For the purposes of depicting which variable uses correspond to which defi-
nitions, the following shows the x’s annotated with subscripts to distinguish
them. Double check that your answer for the above is the same as your
answer for this annotated version of the program.
(let ([x1 32]) (+ (let ([x2 10]) x2) x1))

The initializing expression is always evaluated before the body of the let,
so in the following, the read for x is performed before the read for y. Given
the input 52 then 10, the following produces 42 (not −42).
(let ([x (read)]) (let ([y (read)]) (+ x (- y))))

2.1. THE RVAR LANGUAGE 19

2.1.1 Extensible Interpreters via Method Overriding

To prepare for discussing the interpreter for RVar, we need to explain why
we choose to implement the interpreter using object-oriented programming,
that is, as a collection of methods inside of a class. Throughout this book
we define many interpreters, one for each of the languages that we study.
Because each language builds on the prior one, there is a lot of commonality
between their interpreters. We want to write down those common parts just
once instead of many times. A naive approach would be to have, for example,
the interpreter for RIf handle all of the new features in that language and
then have a default case that dispatches to the interpreter for RVar. The
following code sketches this idea.

(define (interp-Rvar e)
(match e
[(Prim '- (list e))
(fx- 0 (interp-Rvar e))]
...))

(define (interp-Rif e)
(match e
[(If cnd thn els)
(match (interp-Rif cnd)
[#t (interp-Rif thn)]
[#f (interp-Rif els)])]

...
[else (interp-Rvar e)]))

The problem with this approach is that it does not handle situations in
which an RIf feature, like If, is nested inside an RVar feature, like the -
operator, as in the following program.
(Prim '- (list (If (Bool #t) (Int 42) (Int 0))))

If we invoke interp-Rif on this program, it dispatches to interp-Rvar to
handle the - operator, but then it recurisvely calls interp-Rvar again on the
argument of -, which is an If. But there is no case for If in interp-Rvar,
so we get an error!

To make our interpreters extensible we need something called open recur-
sion, where the tying of the recursive knot is delayed to when the functions
are composed. Object-oriented languages provide open recursion with the
late-binding of overridden methods. The following code sketches this idea
for interpreting RVar and RIf using the class feature of Racket. We define
one class for each language and define a method for interpreting expressions
inside each class. The class for RIf inherits from the class for RVar and the
method interp-exp in RIf overrides the interp-exp in RVar. Note that
the default case of interp-exp in RIf uses super to invoke interp-exp,
and because RIf inherits from RVar, that dispatches to the interp-exp in
RVar.

https://docs.racket-lang.org/guide/classes.html

20 2. INTEGERS AND VARIABLES

(define interp-Rvar-class
(class object%
(define/public (interp-exp e)
(match e
[(Prim '- (list e))
(fx- 0 (interp-exp e))]
...))

...))

(define interp-Rif-class
(class interp-Rvar-class
(define/override (interp-exp e)
(match e
[(If cnd thn els)
(match (interp-exp cnd)
[#t (interp-exp thn)]
[#f (interp-exp els)])]

...
[else (super interp-exp e)]))

...
))

Getting back to the troublesome example, repeated here:
(define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))

We can invoke the interp-expmethod for RIf on this expression by creating
an object of the RIf class and sending it the interp-exp method with the
argument e0.
(send (new interp-Rif-class) interp-exp e0)

The default case of interp-exp in RIf handles it by dispatching to the
interp-exp method in RVar, which handles the - operator. But then for
the recursive method call, it dispatches back to interp-exp in RIf, where
the If is handled correctly. Thus, method overriding gives us the open
recursion that we need to implement our interpreters in an extensible way.

2.1. THE RVAR LANGUAGE 21

2.1.2 Definitional Interpreter for RVar

Association Lists as Dictionaries

An association list (alist) is a list of key-
value pairs. For example, we can map peo-
ple to their ages with an alist.

(define ages
'((jane . 25) (sam . 24) (kate . 45)))

The dictionary interface is for mapping
keys to values. Every alist implements this
interface. The package racket/dict pro-
vides many functions for working with dic-
tionaries. Here are a few of them:

(dict-ref dict key) returns the value as-
sociated with the given key.

(dict-set dict key val) returns a new dic-
tionary that maps key to val but
otherwise is the same as dict.

(in-dict dict) returns the sequence of
keys and values in dict. For exam-
ple, the following creates a new alist
in which the ages are incremented.

(for/list ([(k v) (in-dict ages)])
(cons k (add1 v)))

Having justified the use of classes and meth-
ods to implement interpreters, we turn to
the definitional interpreter for RVar in Fig-
ure 2.3. It is similar to the interpreter
for RInt but adds two new match cases
for variables and let. For let we need
a way to communicate the value bound to
a variable to all the uses of the variable.
To accomplish this, we maintain a map-
ping from variables to values. Throughout
the compiler we often need to map vari-
ables to information about them. We re-
fer to these mappings as environments.1
For simplicity, we use an association list
(alist) to represent the environment. The
sidebar to the right gives a brief introduc-
tion to alists and the racket/dict package.
The interp-exp function takes the current
environment, env, as an extra parameter.
When the interpreter encounters a variable,
it finds the corresponding value using the
dict-ref function. When the interpreter
encounters a Let, it evaluates the initial-
izing expression, extends the environment
with the result value bound to the variable,
using dict-set, then evaluates the body of the Let.

The goal for this chapter is to implement a compiler that translates any
program P1 written in the RVar language into an x86 assembly program P2
such that P2 exhibits the same behavior when run on a computer as the P1
program interpreted by interp-Rvar. That is, they output the same integer
n. We depict this correctness criteria in the following diagram.

P1 P2

n

compile

interp-Rvar interp-x86int

1Another common term for environment in the compiler literature is symbol table.

https://docs.racket-lang.org/reference/dicts.html
https://docs.racket-lang.org/reference/sequences.html

22 2. INTEGERS AND VARIABLES

(define interp-Rvar-class
(class object%
(super-new)

(define/public ((interp-exp env) e)
(match e
[(Int n) n]
[(Prim 'read '())
(define r (read))
(cond [(fixnum? r) r]

[else (error 'interp-exp "expected an integer" r)])]
[(Prim '- (list e)) (fx- 0 ((interp-exp env) e))]
[(Prim '+ (list e1 e2))
(fx+ ((interp-exp env) e1) ((interp-exp env) e2))]
[(Var x) (dict-ref env x)]
[(Let x e body)
(define new-env (dict-set env x ((interp-exp env) e)))
((interp-exp new-env) body)]))

(define/public (interp-program p)
(match p
[(Program '() e) ((interp-exp '()) e)]))

))

(define (interp-Rvar p)
(send (new interp-Rvar-class) interp-program p))

Figure 2.3: Interpreter for the RVar language.

2.2. THE X86INT ASSEMBLY LANGUAGE 23

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

callq label | pushq arg | popq arg | retq | jmp label
label: instr

x86Int ::= .globl main
main: instr . . .

Figure 2.4: The syntax of the x86Int assembly language (AT&T syntax).

In the next section we introduce the x86Int subset of x86 that suffices for
compiling RVar.

2.2 The x86Int Assembly Language

Figure 2.4 defines the concrete syntax for x86Int. We use the AT&T syn-
tax expected by the GNU assembler. A program begins with a main label
followed by a sequence of instructions. The globl directive says that the
main procedure is externally visible, which is necessary so that the operating
system can call it. In the grammar, ellipses such as . . . are used to indicate
a sequence of items, e.g., instr . . . is a sequence of instructions. An x86 pro-
gram is stored in the computer’s memory. For our purposes, the computer’s
memory is as a mapping of 64-bit addresses to 64-bit values. The computer
has a program counter (PC) stored in the rip register that points to the
address of the next instruction to be executed. For most instructions, the
program counter is incremented after the instruction is executed, so it points
to the next instruction in memory. Most x86 instructions take two operands,
where each operand is either an integer constant (called immediate value),
a register , or a memory location.

A register is a special kind of variable. Each one holds a 64-bit value;
there are 16 general-purpose registers in the computer and their names are
given in Figure 2.4. A register is written with a % followed by the register
name, such as %rax.

An immediate value is written using the notation $n where n is an inte-
ger. An access to memory is specified using the syntax n(%r), which obtains
the address stored in register r and then adds n bytes to the address. The
resulting address is used to load or store to memory depending on whether

24 2. INTEGERS AND VARIABLES

.globl main
main:

movq $10, %rax
addq $32, %rax
retq

Figure 2.5: An x86 program equivalent to (+ 10 32).

it occurs as a source or destination argument of an instruction.
An arithmetic instruction such as addq s, d reads from the source s and

destination d, applies the arithmetic operation, then writes the result back
to the destination d. The move instruction movq s, d reads from s and
stores the result in d. The callq label instruction jumps to the procedure
specified by the label and retq returns from a procedure to its caller. We
discuss procedure calls in more detail later in this chapter and in Chapter 6.
The instruction jmp label updates the program counter to the address of the
instruction after the specified label.

Appendix 12.3 contains a quick-reference for all of the x86 instructions
used in this book.

Figure 2.5 depicts an x86 program that is equivalent to (+ 10 32). The
instruction movq $10, %rax puts 10 into register rax and then addq $32, %rax
adds 32 to the 10 in rax and puts the result, 42, back into rax. The last
instruction, retq, finishes the main function by returning the integer in rax
to the operating system. The operating system interprets this integer as
the program’s exit code. By convention, an exit code of 0 indicates that
a program completed successfully, and all other exit codes indicate various
errors. Nevertheless, in this book we return the result of the program as the
exit code.

The x86 assembly language varies in a couple ways depending on what
operating system it is assembled in. The code examples shown here are
correct on Linux and most Unix-like platforms, but when assembled on Mac
OS X, labels like main must be prefixed with an underscore, as in _main.

We exhibit the use of memory for storing intermediate results in the
next example. Figure 2.6 lists an x86 program that is equivalent to (+ 52
(- 10)). This program uses a region of memory called the procedure call
stack (or stack for short). The stack consists of a separate frame for each
procedure call. The memory layout for an individual frame is shown in
Figure 2.7. The register rsp is called the stack pointer and points to the
item at the top of the stack. The stack grows downward in memory, so we

2.2. THE X86INT ASSEMBLY LANGUAGE 25

start:
movq $10, -8(%rbp)
negq -8(%rbp)
movq -8(%rbp), %rax
addq $52, %rax
jmp conclusion

.globl main
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
jmp start

conclusion:
addq $16, %rsp
popq %rbp
retq

Figure 2.6: An x86 program equivalent to (+ 52 (- 10)).

Position Contents
8(%rbp) return address
0(%rbp) old rbp
-8(%rbp) variable 1

-16(%rbp) variable 2
.

0(%rsp) variable n

Figure 2.7: Memory layout of a frame.

increase the size of the stack by subtracting from the stack pointer. In the
context of a procedure call, the return address is the instruction after the call
instruction on the caller side. The function call instruction, callq, pushes
the return address onto the stack prior to jumping to the procedure. The
register rbp is the base pointer and is used to access variables that are stored
in the frame of the current procedure call. The base pointer of the caller
is pushed onto the stack after the return address and then the base pointer
is set to the location of the old base pointer. In Figure 2.7 we number the
variables from 1 to n. Variable 1 is stored at address −8(%rbp), variable 2
at −16(%rbp), etc.

Getting back to the program in Figure 2.6, consider how control is trans-

26 2. INTEGERS AND VARIABLES

ferred from the operating system to the main function. The operating sys-
tem issues a callq main instruction which pushes its return address on the
stack and then jumps to main. In x86-64, the stack pointer rsp must be
divisible by 16 bytes prior to the execution of any callq instruction, so
when control arrives at main, the rsp is 8 bytes out of alignment (because
the callq pushed the return address). The first three instructions are the
typical prelude for a procedure. The instruction pushq %rbp saves the base
pointer for the caller onto the stack and subtracts 8 from the stack pointer.
The second instruction movq %rsp, %rbp changes the base pointer so that
it points the location of the old base pointer. The instruction subq $16,
%rsp moves the stack pointer down to make enough room for storing vari-
ables. This program needs one variable (8 bytes) but we round up to 16
bytes so that rsp is 16-byte aligned and we’re ready to make calls to other
functions. The last instruction of the prelude is jmp start, which transfers
control to the instructions that were generated from the Racket expression
(+ 52 (- 10)).

The first instruction under the start label is movq $10, -8(%rbp),
which stores 10 in variable 1. The instruction negq -8(%rbp) changes vari-
able 1 to −10. The next instruction moves the −10 from variable 1 into the
rax register. Finally, addq $52, %rax adds 52 to the value in rax, updating
its contents to 42.

The three instructions under the label conclusion are the typical con-
clusion of a procedure. The first two instructions restore the rsp and rbp
registers to the state they were in at the beginning of the procedure. The
instruction addq $16, %rsp moves the stack pointer back to point at the
old base pointer. Then popq %rbp returns the old base pointer to rbp and
adds 8 to the stack pointer. The last instruction, retq, jumps back to the
procedure that called this one and adds 8 to the stack pointer.

The compiler needs a convenient representation for manipulating x86
programs, so we define an abstract syntax for x86 in Figure 2.8. We refer
to this language as x86Int. The main difference compared to the concrete
syntax of x86Int (Figure 2.4) is that labels are not allowed in front of every
instructions. Instead instructions are grouped into blocks with a label associ-
ated with every block, which is why the X86Program struct includes an alist
mapping labels to blocks. The reason for this organization becomes apparent
in Chapter 4 when we introduce conditional branching. The Block structure
includes an info field that is not needed for this chapter, but becomes useful
in Chapter 3. For now, the info field should contain an empty list. Also,
regarding the abstract syntax for callq, the Callq struct includes an inte-
ger for representing the arity of the function, i.e., the number of arguments,

2.3. PLANNING THE TRIP TO X86 VIA THE CVAR LANGUAGE 27

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= (Imm int) | (Reg reg) | (Deref reg int)
instr ::= (Instr addq (arg arg)) | (Instr subq (arg arg))

| (Instr movq (arg arg)) | (Instr negq (arg))
| (Callq label int) | (Retq) | (Pushq arg) | (Popq arg) | (Jmp label)

block ::= (Block info (instr . . .))
x86Int ::= (X86Program info ((label . block) . . .))

Figure 2.8: The abstract syntax of x86Int assembly.

which is helpful to know during register allocation (Chapter 3).

2.3 Planning the trip to x86 via the CVar language
To compile one language to another it helps to focus on the differences
between the two languages because the compiler will need to bridge those
differences. What are the differences between RVar and x86 assembly? Here
are some of the most important ones:

(a) x86 arithmetic instructions typically have two arguments and update
the second argument in place. In contrast, RVar arithmetic operations
take two arguments and produce a new value. An x86 instruction may
have at most one memory-accessing argument. Furthermore, some
instructions place special restrictions on their arguments.

(b) An argument of an RVar operator can be a deeply-nested expression,
whereas x86 instructions restrict their arguments to be integers con-
stants, registers, and memory locations.

(c) The order of execution in x86 is explicit in the syntax: a sequence
of instructions and jumps to labeled positions, whereas in RVar the
order of evaluation is a left-to-right depth-first traversal of the abstract
syntax tree.

(d) A program in RVar can have any number of variables whereas x86 has
16 registers and the procedure calls stack.

(e) Variables in RVar can overshadow other variables with the same name.
In x86, registers have unique names and memory locations have unique
addresses.

28 2. INTEGERS AND VARIABLES

We ease the challenge of compiling from RVar to x86 by breaking down
the problem into several steps, dealing with the above differences one at a
time. Each of these steps is called a pass of the compiler. This terminology
comes from the way each step passes over the AST of the program. We begin
by sketching how we might implement each pass, and give them names. We
then figure out an ordering of the passes and the input/output language
for each pass. The very first pass has RVar as its input language and the
last pass has x86Int as its output language. In between we can choose
whichever language is most convenient for expressing the output of each
pass, whether that be RVar, x86Int, or new intermediate languages of our
own design. Finally, to implement each pass we write one recursive function
per non-terminal in the grammar of the input language of the pass.

select-instructions handles the difference between RVar operations and
x86 instructions. This pass converts each RVar operation to a short
sequence of instructions that accomplishes the same task.

remove-complex-opera* ensures that each subexpression of a primitive op-
eration is a variable or integer, that is, an atomic expression. We refer
to non-atomic expressions as complex. This pass introduces temporary
variables to hold the results of complex subexpressions.2

explicate-control makes the execution order of the program explicit.
It convert the abstract syntax tree representation into a control-flow
graph in which each node contains a sequence of statements and the
edges between nodes say which nodes contain jumps to other nodes.

assign-homes replaces the variables in RVar with registers or stack locations
in x86.

uniquify deals with the shadowing of variables by renaming every variable
to a unique name.

The next question is: in what order should we apply these passes? This
question can be challenging because it is difficult to know ahead of time
which orderings will be better (easier to implement, produce more efficient
code, etc.) so oftentimes trial-and-error is involved. Nevertheless, we can
try to plan ahead and make educated choices regarding the ordering.

What should be the ordering of explicate-control with respect to
uniquify? The uniquify pass should come first because explicate-control

2The subexpressions of an operation are often called operators and operands which
explains the presence of opera* in the name of this pass.

2.3. PLANNING THE TRIP TO X86 VIA THE CVAR LANGUAGE 29

RVar RVar RANF
Var

CVar

x86Var x86Var x86Int x86Int

uniquify remove-complex.

explicate-control

select-instr.
assign-homes patch-instr. print-x86

Figure 2.9: Diagram of the passes for compiling RVar.

changes all the let-bound variables to become local variables whose scope
is the entire program, which would confuse variables with the same name.
We place remove-complex-opera* before explicate-control because the
later removes the let form, but it is convenient to use let in the out-
put of remove-complex-opera*. The ordering of uniquify with respect to
remove-complex-opera* does not matter so we arbitrarily choose uniquify
to come first.

Last, we consider select-instructions and assign-homes. These two
passes are intertwined. In Chapter 6 we learn that, in x86, registers are used
for passing arguments to functions and it is preferable to assign parameters
to their corresponding registers. On the other hand, by selecting instructions
first we may run into a dead end in assign-homes. Recall that only one
argument of an x86 instruction may be a memory access but assign-homes
might fail to assign even one of them to a register. A sophisticated approach
is to iteratively repeat the two passes until a solution is found. However,
to reduce implementation complexity we recommend a simpler approach in
which select-instructions comes first, followed by the assign-homes,
then a third pass named patch-instructions that uses a reserved register
to fix outstanding problems.

Figure 2.9 presents the ordering of the compiler passes and identifies
the input and output language of each pass. The last pass, print-x86,
converts from the abstract syntax of x86Int to the concrete syntax. In the
following two sections we discuss the CVar intermediate language and the
x86Var dialect of x86. The remainder of this chapter gives hints regarding
the implementation of each of the compiler passes in Figure 2.9.

30 2. INTEGERS AND VARIABLES

atm ::= (Int int) | (Var var)
exp ::= atm | (Prim read ()) | (Prim - (atm))

| (Prim + (atm atm))
stmt ::= (Assign (Var var) exp)
tail ::= (Return exp) | (Seq stmt tail)
CVar ::= (CProgram info ((label . tail) . . .))

Figure 2.10: The abstract syntax of the CVar intermediate language.

2.3.1 The CVar Intermediate Language

The output of explicate-control is similar to the C language [61] in that
it has separate syntactic categories for expressions and statements, so we
name it CVar. The abstract syntax for CVar is defined in Figure 2.10. (The
concrete syntax for CVar is in the Appendix, Figure 12.2.) The CVar lan-
guage supports the same operators as RVar but the arguments of operators
are restricted to atomic expressions. Instead of let expressions, CVar has
assignment statements which can be executed in sequence using the Seq
form. A sequence of statements always ends with Return, a guarantee that
is baked into the grammar rules for tail. The naming of this non-terminal
comes from the term tail position, which refers to an expression that is the
last one to execute within a function.

A CVar program consists of a control-flow graph represented as an alist
mapping labels to tails. This is more general than necessary for the present
chapter, as we do not yet introduce goto for jumping to labels, but it saves
us from having to change the syntax in Chapter 4. For now there will be
just one label, start, and the whole program is its tail. The info field of
the CProgram form, after the explicate-control pass, contains a mapping
from the symbol locals to a list of variables, that is, a list of all the vari-
ables used in the program. At the start of the program, these variables are
uninitialized; they become initialized on their first assignment.

The definitional interpreter for CVar is in the support code for this book,
in the file interp-Cvar.rkt. The support code is in a github repository at
the following URL:

https://github.com/IUCompilerCourse/public-student-support-code

2.3.2 The x86Var dialect

The x86Var language is the output of the pass select-instructions. It
extends x86Int with an unbounded number of program-scope variables and

https://github.com/IUCompilerCourse/public-student-support-code

2.4. UNIQUIFY VARIABLES 31

removes the restrictions regarding instruction arguments.

2.4 Uniquify Variables
The uniquify pass compiles RVar programs into RVar programs in which
every let binds a unique variable name. For example, the uniquify pass
should translate the program on the left into the program on the right.
(let ([x 32])
(+ (let ([x 10]) x) x)) ⇒ (let ([x.1 32])

(+ (let ([x.2 10]) x.2) x.1))

The following is another example translation, this time of a program with a
let nested inside the initializing expression of another let.
(let ([x (let ([x 4])

(+ x 1))])
(+ x 2))

⇒
(let ([x.2 (let ([x.1 4])

(+ x.1 1))])
(+ x.2 2))

We recommend implementing uniquify by creating a structurally recur-
sive function named uniquify-exp that mostly just copies an expression.
However, when encountering a let, it should generate a unique name for
the variable and associate the old name with the new name in an alist.3 The
uniquify-exp function needs to access this alist when it gets to a variable
reference, so we add a parameter to uniquify-exp for the alist.

The skeleton of the uniquify-exp function is shown in Figure 2.11. The
function is curried so that it is convenient to partially apply it to an alist and
then apply it to different expressions, as in the last case for primitive opera-
tions in Figure 2.11. The for/list form of Racket is useful for transforming
each element of a list to produce a new list.

Exercise 1. Complete the uniquify pass by filling in the blanks in Fig-
ure 2.11, that is, implement the cases for variables and for the let form in
the file compiler.rkt in the support code.

Exercise 2. Create five RVar programs that exercise the most interest-
ing parts of the uniquify pass, that is, the programs should include let
forms, variables, and variables that overshadow each other. The five pro-
grams should be placed in the subdirectory named tests and the file names
should start with var_test_ followed by a unique integer and end with the
file extension .rkt. The run-tests.rkt script in the support code checks
whether the output programs produce the same result as the input pro-
grams. The script uses the interp-tests function (Appendix 12.2) from

3The Racket function gensym is handy for generating unique variable names.

https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29

32 2. INTEGERS AND VARIABLES

(define (uniquify-exp env)
(lambda (e)
(match e
[(Var x) ___]
[(Int n) (Int n)]
[(Let x e body) ___]
[(Prim op es)
(Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))

(define (uniquify p)
(match p
[(Program '() e) (Program '() ((uniquify-exp '()) e))]))

Figure 2.11: Skeleton for the uniquify pass.

utilities.rkt to test your uniquify pass on the example programs. The
passes parameter of interp-tests is a list that should have one entry for
each pass in your compiler. For now, define passes to contain just one entry
for uniquify as follows.
(define passes
(list (list "uniquify" uniquify interp-Rvar type-check-Rvar)))

Run the run-tests.rkt script in the support code to check whether the
output programs produce the same result as the input programs.

2.5 Remove Complex Operands
The remove-complex-opera* pass compiles RVar programs into RVar pro-
grams in which the arguments of operations are atomic expressions. Put
another way, this pass removes complex operands, such as the expression
(- 10) in the program below. This is accomplished by introducing a new
let-bound variable, binding the complex operand to the new variable, and
then using the new variable in place of the complex operand, as shown in
the output of remove-complex-opera* on the right.

(+ 52 (- 10)) ⇒ (let ([tmp.1 (- 10)])
(+ 52 tmp.1))

Figure 2.12 presents the grammar for the output of this pass, the lan-
guage RANF

Var . The only difference is that operator arguments are required to
be atomic expressions. In the literature, this is called administrative normal
form, or ANF for short [26, 37].

2.5. REMOVE COMPLEX OPERANDS 33

atm ::= (Int int) | (Var var)
exp ::= atm | (Prim read ())

| (Prim - (atm)) | (Prim + (atm atm))
| (Let var exp exp)

R†1 ::= (Program ’() exp)

Figure 2.12: RANF
Var is RVar in administrative normal form (ANF).

We recommend implementing this pass with two mutually recursive func-
tions, rco-atom and rco-exp. The idea is to apply rco-atom to subexpres-
sions that are required to be atomic and to apply rco-exp to subexpres-
sions that can be atomic or complex (see Figure 2.12). Both functions take
an RVar expression as input. The rco-exp function returns an expression.
The rco-atom function returns two things: an atomic expression and alist
mapping temporary variables to complex subexpressions. You can return
multiple things from a function using Racket’s values form and you can re-
ceive multiple things from a function call using the define-values form. If
you are not familiar with these features, review the Racket documentation.
Also, the for/lists form is useful for applying a function to each element
of a list, in the case where the function returns multiple values.

The following shows the output of rco-atom on the expression (- 10)
(using concrete syntax to be concise).

(- 10) ⇒ tmp.1
((tmp.1 . (- 10)))

Take special care of programs such as the following one that binds a
variable to an atomic expression. You should leave such variable bindings
unchanged, as shown in to the program on the right
(let ([a 42])
(let ([b a])
b))

⇒
(let ([a 42])
(let ([b a])
b))

A careless implementation of rco-exp and rco-atom might produce the
following output with unnecessary temporary variables.
(let ([tmp.1 42])
(let ([a tmp.1])
(let ([tmp.2 a])
(let ([b tmp.2])
b))))

https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29

34 2. INTEGERS AND VARIABLES

Exercise 3. Implement the remove-complex-opera* function in compiler.rkt.
Create three new RInt programs that exercise the interesting code in the
remove-complex-opera* pass (Following the same file name guidelines as
before.). In the run-tests.rkt script, add the following entry to the list of
passes and then run the script to test your compiler.
(list "remove-complex" remove-complex-opera* interp-Rvar type-check-Rvar)

While debugging your compiler, it is often useful to see the intermediate pro-
grams that are output from each pass. To print the intermeidate programs,
place the following before the call to interp-tests in run-tests.rkt.
(debug-level 1)

2.6 Explicate Control

The explicate-control pass compiles RVar programs into CVar programs
that make the order of execution explicit in their syntax. For now this
amounts to flattening let constructs into a sequence of assignment state-
ments. For example, consider the following RVar program.
(let ([y (let ([x 20])

(+ x (let ([x 22]) x)))])
y)

The output of the previous pass and of explicate-control is shown below.
Recall that the right-hand-side of a let executes before its body, so the or-
der of evaluation for this program is to assign 20 to x.1, 22 to x.2, and (+
x.1 x.2) to y, then return y. Indeed, the output of explicate-control
makes this ordering explicit.

(let ([y (let ([x.1 20])
(let ([x.2 22])
(+ x.1 x.2)))])

y)

⇒

start:
x.1 = 20;
x.2 = 22;
y = (+ x.1 x.2);
return y;

The organization of this pass depends on the notion of tail position that
we have alluded to earlier. Formally, tail position in the context of RVar is
defined recursively by the following two rules.

1. In (Program () e), expression e is in tail position.

2. If (Let x e1 e2) is in tail position, then so is e2.

2.6. EXPLICATE CONTROL 35

(define (explicate-tail e)
(match e
[(Var x) ___]
[(Int n) (Return (Int n))]
[(Let x rhs body) ___]
[(Prim op es) ___]
[else (error "explicate-tail unhandled case" e)]))

(define (explicate-assign e x cont)
(match e
[(Var x) ___]
[(Int n) (Seq (Assign (Var x) (Int n)) cont)]
[(Let y rhs body) ___]
[(Prim op es) ___]
[else (error "explicate-assign unhandled case" e)]))

(define (explicate-control p)
(match p
[(Program info body) ___]))

Figure 2.13: Skeleton for the explicate-control pass.

We recommend implementing explicate-control using two mutually
recursive functions, explicate-tail and explicate-assign, as suggested
in the skeleton code in Figure 2.13. The explicate-tail function should
be applied to expressions in tail position whereas the explicate-assign
should be applied to expressions that occur on the right-hand-side of a let.
The explicate-tail function takes an exp in RVar as input and produces a
tail in CVar (see Figure 2.10). The explicate-assign function takes an exp
in RVar, the variable that it is to be assigned to, and a tail in CVar for the
code that will come after the assignment. The explicate-assign function
returns a tail in CVar.

The explicate-assign function is in accumulator-passing style in that
the cont parameter is used for accumulating the output. The reader might
be tempted to instead organize explicate-assign in a more direct fashion,
without the cont parameter and perhaps using append to combine state-
ments. We warn against that alternative because the accumulator-passing
style is key to how we generate high-quality code for conditional expressions
in Chapter 4.

Exercise 4. Implement the explicate-control function in compiler.rkt.

36 2. INTEGERS AND VARIABLES

Create three newRInt programs that exercise the code in explicate-control.
In the run-tests.rkt script, add the following entry to the list of passes
and then run the script to test your compiler.
(list "explicate control" explicate-control interp-Cvar type-check-Cvar)

2.7 Select Instructions

In the select-instructions pass we begin the work of translating from
CVar to x86Var. The target language of this pass is a variant of x86 that
still uses variables, so we add an AST node of the form (Var var) to the
arg non-terminal of the x86Int abstract syntax (Figure 2.8). We recommend
implementing the select-instructions with three auxiliary functions, one
for each of the non-terminals of CVar: atm, stmt, and tail.

The cases for atm are straightforward, variables stay the same and inte-
ger constants are changed to immediates: (Int n) changes to (Imm n).

Next we consider the cases for stmt, starting with arithmetic operations.
For example, consider the addition operation. We can use the addq instruc-
tion, but it performs an in-place update. So we could move arg1 into the
left-hand side var and then add arg2 to var .

var = (+ arg1 arg2); ⇒ movq arg1, var
addq arg2, var

There are also cases that require special care to avoid generating needlessly
complicated code. For example, if one of the arguments of the addition
is the same variable as the left-hand side of the assignment, then there is
no need for the extra move instruction. The assignment statement can be
translated into a single addq instruction as follows.

var = (+ arg1 var); ⇒ addq arg1, var

The read operation does not have a direct counterpart in x86 assem-
bly, so we provide this functionality with the function read_int in the file
runtime.c, written in C [61]. In general, we refer to all of the function-
ality in this file as the runtime system, or simply the runtime for short.
When compiling your generated x86 assembly code, you need to compile
runtime.c to runtime.o (an “object file”, using gcc option -c) and link it
into the executable. For our purposes of code generation, all you need to
do is translate an assignment of read into a call to the read_int function
followed by a move from rax to the left-hand-side variable. (Recall that the
return value of a function goes into rax.)

2.8. ASSIGN HOMES 37

var = (read); ⇒ callq read_int
movq %rax, var

There are two cases for the tail non-terminal: Return and Seq. Regard-
ing Return, we recommend treating it as an assignment to the rax register
followed by a jump to the conclusion of the program (so the conclusion needs
to be labeled). For (Seq s t), you can translate the statement s and tail t
recursively and then append the resulting instructions.

Exercise 5. Implement the select-instructions pass in compiler.rkt.
Create three new example programs that are designed to exercise all of the
interesting cases in this pass. In the run-tests.rkt script, add the following
entry to the list of passes and then run the script to test your compiler.
(list "instruction selection" select-instructions interp-pseudo-x86-0)

2.8 Assign Homes

The assign-homes pass compiles x86Var programs to x86Var programs that
no longer use program variables. Thus, the assign-homes pass is responsi-
ble for placing all of the program variables in registers or on the stack. For
runtime efficiency, it is better to place variables in registers, but as there
are only 16 registers, some programs must necessarily resort to placing some
variables on the stack. In this chapter we focus on the mechanics of plac-
ing variables on the stack. We study an algorithm for placing variables in
registers in Chapter 3.

Consider again the following RVar program from Section 2.5.
(let ([a 42])
(let ([b a])
b))

The output of select-instructions is shown on the left and the output of
assign-homes on the right. In this example, we assign variable a to stack
location -8(%rbp) and variable b to location -16(%rbp).

locals-types:
a : Integer, b : Integer

start:
movq $42, a
movq a, b
movq b, %rax
jmp conclusion

⇒

stack-space: 16
start:

movq $42, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -16(%rbp), %rax
jmp conclusion

38 2. INTEGERS AND VARIABLES

The locals-types entry in the info of the X86Program node is an al-
ist mapping all the variables in the program to their types (for now just
Integer). The assign-homes pass should replace all uses of those variables
with stack locations. As an aside, the locals-types entry is computed by
type-check-Cvar in the support code, which installs it in the info field of
the CProgram node, which should be propagated to the X86Program node.

In the process of assigning variables to stack locations, it is convenient
for you to compute and store the size of the frame (in bytes) in the info
field of the X86Program node, with the key stack-space, which is needed
later to generate the conclusion of the main procedure. The x86-64 standard
requires the frame size to be a multiple of 16 bytes.

Exercise 6. Implement the assign-homes pass in compiler.rkt, defining
auxiliary functions for the non-terminals arg, instr , and block. We rec-
ommend that the auxiliary functions take an extra parameter that is an
alist mapping variable names to homes (stack locations for now). In the
run-tests.rkt script, add the following entry to the list of passes and
then run the script to test your compiler.
(list "assign homes" assign-homes interp-x86-0)

2.9 Patch Instructions

The patch-instructions pass compiles from x86Var to x86Int by making
sure that each instruction adheres to the restriction that at most one argu-
ment of an instruction may be a memory reference.

We return to the following example.
(let ([a 42])
(let ([b a])
b))

The assign-homes pass produces the following output for this program.
stack-space: 16
start:

movq $42, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -16(%rbp), %rax
jmp conclusion

The second movq instruction is problematic because both arguments are
stack locations. We suggest fixing this problem by moving from the source

2.10. PRINT X86 39

location to the register rax and then from rax to the destination location,
as follows.

movq -8(%rbp), %rax
movq %rax, -16(%rbp)

Exercise 7. Implement the patch-instructions pass in compiler.rkt.
Create three new example programs that are designed to exercise all of the
interesting cases in this pass. In the run-tests.rkt script, add the following
entry to the list of passes and then run the script to test your compiler.
(list "patch instructions" patch-instructions interp-x86-0)

2.10 Print x86
The last step of the compiler from RVar to x86 is to convert the x86Int AST
(defined in Figure 2.8) to the string representation (defined in Figure 2.4).
The Racket format and string-append functions are useful in this regard.
The main work that this step needs to perform is to create the main function
and the standard instructions for its prelude and conclusion, as shown in
Figure 2.6 of Section 2.2. You will need to know the amount of space needed
for the stack frame, which you can obtain from the stack-space entry in
the info field of the X86Program node.

When running on Mac OS X, you compiler should prefix an underscore
to labels like main. The Racket call (system-type ’os) is useful for de-
termining which operating system the compiler is running on. It returns
’macosx, ’unix, or ’windows.
Exercise 8. Implement the print-x86 pass in compiler.rkt. In the
run-tests.rkt script, add the following entry to the list of passes and
then run the script to test your compiler.
(list "print x86" print-x86 #f)

Uncomment the call to the compiler-tests function (Appendix 12.2), which
tests your complete compiler by executing the generated x86 code. Compile
the provided runtime.c file to runtime.o using gcc. Run the script to test
your compiler.

2.11 Challenge: Partial Evaluator for RVar

This section describes optional challenge exercises that involve adapting and
improving the partial evaluator for RInt that was introduced in Section 1.6.

40 2. INTEGERS AND VARIABLES

Exercise 9. Adapt the partial evaluator from Section 1.6 (Figure 1.4) so
that it applies to RVar programs instead of RInt programs. Recall that
RVar adds let binding and variables to the RInt language, so you will need
to add cases for them in the pe-exp function. Once complete, add the
partial evaluation pass to the front of your compiler and make sure that
your compiler still passes all of the tests.

The next exercise builds on Exercise 9.

Exercise 10. Improve on the partial evaluator by replacing the pe-neg and
pe-add auxiliary functions with functions that know more about arithmetic.
For example, your partial evaluator should translate

(+ 1 (+ (read) 1)) into (+ 2 (read))

To accomplish this, the pe-exp function should produce output in the form
of the residual non-terminal of the following grammar. The idea is that
when processing an addition expression, we can always produce either 1) an
integer constant, 2) and addition expression with an integer constant on the
left-hand side but not the right-hand side, or 3) or an addition expression
in which neither subexpression is a constant.

inert ::= var | (read) | (- var) | (- (read)) | (+ inert inert)
| (let ([var inert]) inert)

residual ::= int | (+ int inert) | inert

The pe-add and pe-neg functions may assume that their inputs are residual
expressions and they should return residual expressions. Once the improve-
ments are complete, make sure that your compiler still passes all of the tests.
After all, fast code is useless if it produces incorrect results!

3

Register Allocation

In Chapter 2 we learned how to store variables on the stack. In this Chapter
we learn how to improve the performance of the generated code by placing
some variables into registers. The CPU can access a register in a single cycle,
whereas accessing the stack can take 10s to 100s of cycles. The program in
Figure 3.1 serves as a running example. The source program is on the left
and the output of instruction selection is on the right. The program is
almost in the x86 assembly language but it still uses variables.

The goal of register allocation is to fit as many variables into registers
as possible. Some programs have more variables than registers so we cannot
always map each variable to a different register. Fortunately, it is common
for different variables to be needed during different periods of time during
program execution, and in such cases several variables can be mapped to the
same register. Consider variables x and z in Figure 3.1. After the variable
x is moved to z it is no longer needed. Variable z, on the other hand, is
used only after this point, so x and z could share the same register. The
topic of Section 3.2 is how to compute where a variable is needed. Once we
have that information, we compute which variables are needed at the same
time, i.e., which ones interfere with each other, and represent this relation
as an undirected graph whose vertices are variables and edges indicate when
two variables interfere (Section 3.3). We then model register allocation as a
graph coloring problem (Section 3.4).

If we run out of registers despite these efforts, we place the remaining
variables on the stack, similar to what we did in Chapter 2. It is common to
use the verb spill for assigning a variable to a stack location. The decision to
spill a variable is handled as part of the graph coloring process (Section 3.4).

We make the simplifying assumption that each variable is assigned to one

41

42 3. REGISTER ALLOCATION

Example RVar program:
(let ([v 1])
(let ([w 42])
(let ([x (+ v 7)])
(let ([y x])
(let ([z (+ x w)])
(+ z (- y)))))))

After instruction selection:
locals-types:

x : Integer, y : Integer,
z : Integer, t : Integer,
v : Integer, w : Integer

start:
movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, t
negq t
movq z, %rax
addq t, %rax
jmp conclusion

Figure 3.1: A running example for register allocation.

location (a register or stack address). A more sophisticated approach is to
assign a variable to one or more locations in different regions of the program.
For example, if a variable is used many times in short sequence and then
only used again after many other instructions, it could be more efficient to
assign the variable to a register during the initial sequence and then move
it to the stack for the rest of its lifetime. We refer the interested reader to
Cooper and Torczon [23] for more information about that approach.

3.1 Registers and Calling Conventions
As we perform register allocation, we need to be aware of the calling con-
ventions that govern how functions calls are performed in x86. Even though
RVar does not include programmer-defined functions, our generated code
includes a main function that is called by the operating system and our
generated code contains calls to the read_int function.

Function calls require coordination between two pieces of code that may
be written by different programmers or generated by different compilers.
Here we follow the System V calling conventions that are used by the GNU
C compiler on Linux and MacOS [16, 72]. The calling conventions include
rules about how functions share the use of registers. In particular, the caller

3.1. REGISTERS AND CALLING CONVENTIONS 43

is responsible for freeing up some registers prior to the function call for use
by the callee. These are called the caller-saved registers and they are
rax rcx rdx rsi rdi r8 r9 r10 r11

On the other hand, the callee is responsible for preserving the values of the
callee-saved registers, which are
rsp rbp rbx r12 r13 r14 r15

We can think about this caller/callee convention from two points of view,
the caller view and the callee view:

• The caller should assume that all the caller-saved registers get over-
written with arbitrary values by the callee. On the other hand, the
caller can safely assume that all the callee-saved registers contain the
same values after the call that they did before the call.

• The callee can freely use any of the caller-saved registers. However, if
the callee wants to use a callee-saved register, the callee must arrange
to put the original value back in the register prior to returning to the
caller. This can be accomplished by saving the value to the stack in
the prelude of the function and restoring the value in the conclusion
of the function.

In x86, registers are also used for passing arguments to a function and
for the return value. In particular, the first six arguments to a function are
passed in the following six registers, in this order.
rdi rsi rdx rcx r8 r9

If there are more than six arguments, then the convention is to use space on
the frame of the caller for the rest of the arguments. However, in Chapter 6
we arrange to never need more than six arguments. For now, the only
function we care about is read_int and it takes zero arguments. The register
rax is used for the return value of a function.

The next question is how these calling conventions impact register al-
location. Consider the RVar program in Figure 3.2. We first analyze this
example from the caller point of view and then from the callee point of view.

The program makes two calls to the read function. Also, the variable
x is in-use during the second call to read, so we need to make sure that
the value in x does not get accidentally wiped out by the call to read. One
obvious approach is to save all the values in caller-saved registers to the
stack prior to each function call, and restore them after each call. That way,
if the register allocator chooses to assign x to a caller-saved register, its value

44 3. REGISTER ALLOCATION

will be preserved across the call to read. However, saving and restoring to
the stack is relatively slow. If x is not used many times, it may be better
to assign x to a stack location in the first place. Or better yet, if we can
arrange for x to be placed in a callee-saved register, then it won’t need to
be saved and restored during function calls.

The approach that we recommend for variables that are in-use during
a function call is to either assign them to callee-saved registers or to spill
them to the stack. On the other hand, for variables that are not in-use
during a function call, we try the following alternatives in order 1) look
for an available caller-saved register (to leave room for other variables in
the callee-saved register), 2) look for a callee-saved register, and 3) spill the
variable to the stack.

It is straightforward to implement this approach in a graph coloring
register allocator. First, we know which variables are in-use during every
function call because we compute that information for every instruction
(Section 3.2). Second, when we build the interference graph (Section 3.3),
we can place an edge between each of these variables and the caller-saved
registers in the interference graph. This will prevent the graph coloring
algorithm from assigning those variables to caller-saved registers.

Returning to the example in Figure 3.2, let us analyze the generated
x86 code on the right-hand side, focusing on the start block. Notice that
variable x is assigned to rbx, a callee-saved register. Thus, it is already in
a safe place during the second call to read_int. Next, notice that variable
y is assigned to rcx, a caller-saved register, because there are no function
calls in the remainder of the block.

Next we analyze the example from the callee point of view, focusing on
the prelude and conclusion of the main function. As usual the prelude begins
with saving the rbp register to the stack and setting the rbp to the current
stack pointer. We now know why it is necessary to save the rbp: it is a
callee-saved register. The prelude then pushes rbx to the stack because 1)
rbx is a callee-saved register and 2) rbx is assigned to a variable (x). The
other callee-saved registers are not saved in the prelude because they are not
used. The prelude subtracts 8 bytes from the rsp to make it 16-byte aligned
and then jumps to the start block. Shifting attention to the conclusion,
we see that rbx is restored from the stack with a popq instruction.

3.1. REGISTERS AND CALLING CONVENTIONS 45

Example RVar program:
(let ([x (read)])
(let ([y (read)])
(+ (+ x y) 42)))

Generated x86 assembly:
start:

callq read_int
movq %rax, %rbx
callq read_int
movq %rax, %rcx
addq %rcx, %rbx
movq %rbx, %rax
addq $42, %rax
jmp _conclusion

.globl main
main:

pushq %rbp
movq %rsp, %rbp
pushq %rbx
subq $8, %rsp
jmp start

conclusion:
addq $8, %rsp
popq %rbx
popq %rbp
retq

Figure 3.2: An example with function calls.

46 3. REGISTER ALLOCATION

3.2 Liveness Analysis
The uncover-live pass performs liveness analysis, that is, it discovers
which variables are in-use in different regions of a program. A variable
or register is live at a program point if its current value is used at some
later point in the program. We refer to variables and registers collectively
as locations. Consider the following code fragment in which there are two
writes to b. Are a and b both live at the same time?

1 movq $5, a
2 movq $30, b
3 movq a, c
4 movq $10, b
5 addq b, c

The answer is no because a is live from line 1 to 3 and b is live from line 4 to
5. The integer written to b on line 2 is never used because it is overwritten
(line 4) before the next read (line 5).

The Racket Set Package

A set is an unordered collection of elements
without duplicates.

(set v . . .) constructs a set containing
the specified elements.

(set-union set1 set2) returns the union
of the two sets.

(set-subtract set1 set2) returns the dif-
ference of the two sets.

(set-member? set v) is element v in set?

(set-count set) how many unique ele-
ments are in set?

(set->list set) converts the set to a list.

The live locations can be computed by
traversing the instruction sequence back to
front (i.e., backwards in execution order).
Let I1, . . . , In be the instruction sequence.
We write Lafter(k) for the set of live loca-
tions after instruction Ik and Lbefore(k) for
the set of live locations before instruction
Ik. The live locations after an instruction
are always the same as the live locations
before the next instruction.

Lafter(k) = Lbefore(k + 1) (3.1)

To start things off, there are no live loca-
tions after the last instruction, so

Lafter(n) = ∅ (3.2)

We then apply the following rule repeatedly,
traversing the instruction sequence back to front.

Lbefore(k) = (Lafter(k)−W (k)) ∪R(k), (3.3)

where W (k) are the locations written to by instruction Ik and R(k) are the
locations read by instruction Ik.

https://docs.racket-lang.org/reference/sets.html

3.2. LIVENESS ANALYSIS 47

1 movq $5, a
2 movq $30, b
3 movq a, c
4 movq $10, b
5 addq b, c

Lbefore(1) = ∅, Lafter(1) = {a}
Lbefore(2) = {a}, Lafter(2) = {a}
Lbefore(3) = {a}, Lafter(2) = {c}

Lbefore(4) = {c}, Lafter(4) = {b, c}
Lbefore(5) = {b, c}, Lafter(5) = ∅

Figure 3.3: Example output of liveness analysis on a short example.

There is a special case for jmp instructions. The locations that are live
before a jmp should be the locations in Lbefore at the target of the jump.
So we recommend maintaining an alist named label->live that maps each
label to the Lbefore for the first instruction in its block. For now the only jmp
in a x86Var program is the one at the end, to the conclusion. (For example,
see Figure 3.1.) The conclusion reads from rax and rsp, so the alist should
map conclusion to the set {rax, rsp}.

Let us walk through the above example, applying these formulas starting
with the instruction on line 5. We collect the answers in Figure 3.3. The
Lafter for the addq b, c instruction is ∅ because it is the last instruction
(formula 3.2). The Lbefore for this instruction is {b, c} because it reads from
variables b and c (formula 3.3), that is

Lbefore(5) = (∅ − {c}) ∪ {b, c} = {b, c}

Moving on the the instruction movq $10, b at line 4, we copy the live-before
set from line 5 to be the live-after set for this instruction (formula 3.1).

Lafter(4) = {b, c}

This move instruction writes to b and does not read from any variables, so
we have the following live-before set (formula 3.3).

Lbefore(4) = ({b, c} − {b}) ∪ ∅ = {c}

The live-before for instruction movq a, c is {a} because it writes to {c}
and reads from {a} (formula 3.3). The live-before for movq $30, b is {a}
because it writes to a variable that is not live and does not read from a
variable. Finally, the live-before for movq $5, a is ∅ because it writes to
variable a.
Exercise 11. Perform liveness analysis on the running example in Fig-
ure 3.1, computing the live-before and live-after sets for each instruction.
Compare your answers to the solution shown in Figure 3.4.

48 3. REGISTER ALLOCATION

{rsp}
movq $1, v

{v, rsp}
movq $42, w

{v, w, rsp}
movq v, x

{w, x, rsp}
addq $7, x

{w, x, rsp}
movq x, y

{w, x, y, rsp}
movq x, z

{w, y, z, rsp}
addq w, z

{y, z, rsp}
movq y, t

{t, z, rsp}
negq t

{t, z, rsp}
movq z, %rax

{rax, t, rsp}
addq t, %rax

{rax, rsp}
jmp conclusion

Figure 3.4: The running example annotated with live-after sets.

3.2. LIVENESS ANALYSIS 49

Exercise 12. Implement the uncover-live pass. Store the sequence of live-
after sets in the info field of the Block structure. We recommend creating an
auxiliary function that takes a list of instructions and an initial live-after set
(typically empty) and returns the list of live-after sets. We also recommend
creating auxiliary functions to 1) compute the set of locations that appear
in an arg, 2) compute the locations read by an instruction (the R function),
and 3) the locations written by an instruction (the W function). The callq
instruction should include all of the caller-saved registers in its write-set W
because the calling convention says that those registers may be written to
during the function call. Likewise, the callq instruction should include the
appropriate argument-passing registers in its read-set R, depending on the
arity of the function being called. (This is why the abstract syntax for callq
includes the arity.)

50 3. REGISTER ALLOCATION

3.3 Build the Interference Graph

The Racket Graph Library

A graph is a collection of vertices and edges
where each edge connects two vertices. A
graph is directed if each edge points from
a source to a target. Otherwise the graph
is undirected.

(undirected-graph edges) constructs
a undirected graph from a list of
edges. Each edge is represented by
a list containing two vertices.

(add-vertex! graph vertex) inserts a ver-
tex into the graph.

(add-edge! graph source target) inserts
an edge between the two vertices
into the graph.

(in-neighbors graph vertex) returns a
sequence of all the neighbors of the
given vertex.

(in-vertices graph) returns a sequence
of all the vertices in the graph.

Based on the liveness analysis, we know
where each location is live. However, dur-
ing register allocation, we need to answer
questions of the specific form: are locations
u and v live at the same time? (And there-
fore cannot be assigned to the same regis-
ter.) To make this question more efficient
to answer, we create an explicit data struc-
ture, an interference graph. An interference
graph is an undirected graph that has an
edge between two locations if they are live
at the same time, that is, if they interfere
with each other.

An obvious way to compute the inter-
ference graph is to look at the set of live
location between each instruction and add
an edge to the graph for every pair of vari-
ables in the same set. This approach is less
than ideal for two reasons. First, it can be
expensive because it takes O(n2) time to
consider at every pair in a set of n live loca-
tions. Second, in the special case where two
locations hold the same value (because one
was assigned to the other), they can be live
at the same time without interfering with
each other.

A better way to compute the interference graph is to focus on writes [8].
The writes performed by an instruction must not overwrite something in
a live location. So for each instruction, we create an edge between the
locations being written to and the live locations. (Except that one should
not create self edges.) Note that for the callq instruction, we consider all
of the caller-saved registers as being written to, so an edge is added between
every live variable and every caller-saved register. For movq, we deal with the
above-mentioned special case by not adding an edge between a live variable
v and the destination if v matches the source. So we have the following two
rules.

1. If instruction Ik is a move such as movq s, d, then add the edge (d, v)

https://docs.racket-lang.org/graph/index.html

3.3. BUILD THE INTERFERENCE GRAPH 51

movq $1, v v interferes with rsp,
movq $42, w w interferes with v and rsp,
movq v, x x interferes with w and rsp,
addq $7, x x interferes with w and rsp,
movq x, y y interferes with w and rsp but not x,
movq x, z z interferes with w, y, and rsp,
addq w, z z interferes with y and rsp,
movq y, t t interferes with z and rsp,
negq t t interferes with z and rsp,
movq z, %rax rax interferes with t and rsp,
addq t, %rax rax interferes with rsp.
jmp conclusion no interference.

Figure 3.5: Interference results for the running example.

rax

rspt z x

y w v

Figure 3.6: The interference graph of the example program.

for every v ∈ Lafter(k) unless v = d or v = s.

2. For any other instruction Ik, for every d ∈ W (k) add an edge (d, v)
for every v ∈ Lafter(k) unless v = d.

Working from the top to bottom of Figure 3.4, we apply the above rules
to each instruction. We highlight a few of the instructions. The first in-
struction is movq $1, v and the live-after set is {v, rsp}. Rule 1 applies, so
v interferes with rsp. The fourth instruction is addq $7, x and the live-
after set is {w, x, rsp}. Rule 2 applies so x interferes with w and rsp. The
next instruction is movq x, y and the live-after set is {w, x, y, rsp}. Rule 1
applies, so y interferes with w and rsp but not x because x is the source of
the move and therefore x and y hold the same value. Figure 3.5 lists the
interference results for all of the instructions and the resulting interference
graph is shown in Figure 3.6.

52 3. REGISTER ALLOCATION

Exercise 13. Implement the compiler pass named build-interference
according to the algorithm suggested above. We recommend using the graph
package to create and inspect the interference graph. The output graph of
this pass should be stored in the info field of the program, under the key
conflicts.

3.4 Graph Coloring via Sudoku

We come to the main event, mapping variables to registers and stack loca-
tions. Variables that interfere with each other must be mapped to different
locations. In terms of the interference graph, this means that adjacent ver-
tices must be mapped to different locations. If we think of locations as colors,
the register allocation problem becomes the graph coloring problem [11, 83].

The reader may be more familiar with the graph coloring problem than
he or she realizes; the popular game of Sudoku is an instance of the graph
coloring problem. The following describes how to build a graph out of an
initial Sudoku board.

• There is one vertex in the graph for each Sudoku square.

• There is an edge between two vertices if the corresponding squares are
in the same row, in the same column, or if the squares are in the same
3× 3 region.

• Choose nine colors to correspond to the numbers 1 to 9.

• Based on the initial assignment of numbers to squares in the Sudoku
board, assign the corresponding colors to the corresponding vertices
in the graph.

If you can color the remaining vertices in the graph with the nine colors, then
you have also solved the corresponding game of Sudoku. Figure 3.7 shows
an initial Sudoku game board and the corresponding graph with colored
vertices. We map the Sudoku number 1 to blue, 2 to yellow, and 3 to red.
We only show edges for a sampling of the vertices (the colored ones) because
showing edges for all of the vertices would make the graph unreadable.

It turns out that some techniques for playing Sudoku correspond to
heuristics used in graph coloring algorithms. For example, one of the basic
techniques for Sudoku is called Pencil Marks. The idea is to use a pro-
cess of elimination to determine what numbers are no longer available for
a square and write down those numbers in the square (writing very small).

3.4. GRAPH COLORING VIA SUDOKU 53

1

1

1

2 3

2

2

3

3

3

2

Figure 3.7: A Sudoku game board and the corresponding colored graph.

For example, if the number 1 is assigned to a square, then write the pencil
mark 1 in all the squares in the same row, column, and region. The Pencil
Marks technique corresponds to the notion of saturation due to [15]. The
saturation of a vertex, in Sudoku terms, is the set of numbers that are no
longer available. In graph terminology, we have the following definition:

saturation(u) = {c | ∃v.v ∈ neighbors(u) and color(v) = c}

where neighbors(u) is the set of vertices that share an edge with u.
Using the Pencil Marks technique leads to a simple strategy for filling in

numbers: if there is a square with only one possible number left, then choose
that number! But what if there are no squares with only one possibility
left? One brute-force approach is to try them all: choose the first one and
if it ultimately leads to a solution, great. If not, backtrack and choose the
next possibility. One good thing about Pencil Marks is that it reduces the
degree of branching in the search tree. Nevertheless, backtracking can be
horribly time consuming. One way to reduce the amount of backtracking is
to use the most-constrained-first heuristic. That is, when choosing a square,
always choose one with the fewest possibilities left (the vertex with the
highest saturation). The idea is that choosing highly constrained squares
earlier rather than later is better because later on there may not be any
possibilities left in the highly saturated squares.

However, register allocation is easier than Sudoku because the register
allocator can map variables to stack locations when the registers run out.
Thus, it makes sense to replace backtracking with greedy search: make the

54 3. REGISTER ALLOCATION

Algorithm: DSATUR
Input: a graph G
Output: an assignment color[v] for each vertex v ∈ G

W ← vertices(G)
while W 6= ∅ do

pick a vertex u from W with the highest saturation,
breaking ties randomly

find the lowest color c that is not in {color[v] : v ∈ adjacent(u)}
color[u]← c
W ←W − {u}

Figure 3.8: The saturation-based greedy graph coloring algorithm.

best choice at the time and keep going. We still wish to minimize the number
of colors needed, so we use the most-constrained-first heuristic in the greedy
search. Figure 3.8 gives the pseudo-code for a simple greedy algorithm
for register allocation based on saturation and the most-constrained-first
heuristic. It is roughly equivalent to the DSATUR algorithm [15, 43, 3]. Just
as in Sudoku, the algorithm represents colors with integers. The integers 0
through k−1 correspond to the k registers that we use for register allocation.
The integers k and larger correspond to stack locations. The registers that
are not used for register allocation, such as rax, are assigned to negative
integers. In particular, we assign −1 to rax and −2 to rsp.

With the DSATUR algorithm in hand, let us return to the running
example and consider how to color the interference graph in Figure 3.6. We
start by assigning the register nodes to their own color. For example, rax
is assigned the color −1 and rsp is assigned −2. The variables are not yet
colored, so they are annotated with a dash. We then update the saturation
for vertices that are adjacent to a register, obtaining the following annotated
graph. For example, the saturation for t is {−1,−2} because it interferes
with both rax and rsp.

rax : −1, {−2}

rsp : −2, {−1}t : −, {−1,−2} z : −, {−2} x : −, {−2}

y : −, {−2} w : −, {−2} v : −, {−2}

3.4. GRAPH COLORING VIA SUDOKU 55

The algorithm says to select a maximally saturated vertex. So we pick t
and color it with the first available integer, which is 0. We mark 0 as no
longer available for z, rax, and rsp because they interfere with t.

rax : −1, {0,−2}

rsp : −2, {−1, 0}t : 0, {−1,−2} z : −, {0,−2} x : −, {−2}

y : −, {−2} w : −, {−2} v : −, {−2}

We repeat the process, selecting the next maximally saturated vertex, which
is z, and color it with the first available number, which is 1. We add 1 to
the saturation for the neighboring vertices t, y, w, and rsp.

rax : −1, {0,−2}

rsp : −2, {−1, 0, 1}t : 0, {−1, 1,−2} z : 1, {0,−2} x : −, {−2}

y : −, {1,−2} w : −, {1,−2} v : −, {−2}

The most saturated vertices are now w and y. We color w with the first
available color, which is 0.

rax : −1, {0,−2}

rsp : −2, {−1, 0, 1}t : 0, {−1, 1,−2} z : 1, {0,−2} x : −, {0,−2}

y : −, {0, 1,−2} w : 0, {1,−2} v : −, {0,−2}

Vertex y is now the most highly saturated, so we color y with 2. We cannot
choose 0 or 1 because those numbers are in y’s saturation set. Indeed, y
interferes with w and z, whose colors are 0 and 1 respectively.

rax : −1, {0,−2}

rsp : −2, {−1, 0, 1, 2}t : 0, {−1, 1,−2} z : 1, {0, 2,−2} x : −, {0,−2}

y : 2, {0, 1,−2} w : 0, {1, 2,−2} v : −, {0,−2}

56 3. REGISTER ALLOCATION

Now x and v are the most saturated, so we color v with 1.

rax : −1, {0,−2}

rsp : −2, {−1, 0, 1, 2}t : 0, {−1, 1,−2} z : 1, {0, 2,−2} x : −, {0,−2}

y : 2, {0, 1,−2} w : 0, {1, 2,−2} v : 1, {0,−2}

In the last step of the algorithm, we color x with 1.

rax : −1, {0,−2}

rsp : −2, {−1, 0, 1, 2}t : 0, {−1, 1,−2} z : 1, {0, 2,−2} x : 1, {0,−2}

y : 2, {0, 1,−2} w : 0, {1, 2,−2} v : 1, {0,−2}

Priority Queue

A priority queue is a collection of items in
which the removal of items is governed by
priority. In a “min” queue, lower priority
items are removed first. An implementa-
tion is in priority_queue.rkt of the sup-
port code.

(make-pqueue cmp) constructs an empty
priority queue that uses the cmp
predicate to determine whether its
first argument has lower or equal pri-
ority to its second argument.

(pqueue-count queue) returns the num-
ber of items in the queue.

(pqueue-push! queue item) inserts the
item into the queue and returns a
handle for the item in the queue.

(pqueue-pop! queue) returns the item
with the lowest priority.

(pqueue-decrease-key! queue handle)
notifies the queue that the pri-
ority has decreased for the item
associated with the given handle.

We recommend creating an auxiliary
function named color-graph that takes an
interference graph and a list of all the vari-
ables in the program. This function should
return a mapping of variables to their colors
(represented as natural numbers). By cre-
ating this helper function, you will be able
to reuse it in Chapter 6 when we add sup-
port for functions.

To prioritize the processing of highly
saturated nodes inside the color-graph
function, we recommend using the priority
queue data structure (see the side bar on
the right). In addition, you will need to
maintain a mapping from variables to their
“handles” in the priority queue so that you
can notify the priority queue when their sat-
uration changes.

With the coloring complete, we finalize
the assignment of variables to registers and
stack locations. We map the first k colors

3.5. PATCH INSTRUCTIONS 57

to the k registers and the rest of the col-
ors to stack locations. Suppose for the mo-
ment that we have just one register to use
for register allocation, rcx. Then we have
the following map from colors to locations.

{0 7→ %rcx, 1 7→ -8(%rbp), 2 7→ -16(%rbp)}

Composing this mapping with the coloring, we arrive at the following as-
signment of variables to locations.

{v 7→ -8(%rbp), w 7→ %rcx, x 7→ -8(%rbp), y 7→ -16(%rbp),

z 7→ -8(%rbp), t 7→ %rcx}

Adapt the code from the assign-homes pass (Section 2.8) to replace the
variables with their assigned location. Applying the above assignment to
our running example, on the left, yields the program on the right.

movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, t
negq t
movq z, %rax
addq t, %rax
jmp conclusion

⇒

movq $1, -8(%rbp)
movq $42, %rcx
movq -8(%rbp), -8(%rbp)
addq $7, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -8(%rbp), -8(%rbp)
addq %rcx, -8(%rbp)
movq -16(%rbp), %rcx
negq %rcx
movq -8(%rbp), %rax
addq %rcx, %rax
jmp conclusion

Exercise 14. Implement the compiler pass allocate-registers. Create
five programs that exercise all of the register allocation algorithm, including
spilling variables to the stack. Replace assign-homes in the list of passes
in the run-tests.rkt script with the three new passes: uncover-live,
build-interference, and allocate-registers. Temporarily remove the
print-x86 pass from the list of passes and the call to compiler-tests. Run
the script to test the register allocator.

3.5 Patch Instructions
The remaining step in the compilation to x86 is to ensure that the instruc-
tions have at most one argument that is a memory access. In the running

58 3. REGISTER ALLOCATION

example, the instruction movq -8(%rbp), -16(%rbp) is problematic. The
fix is to first move -8(%rbp) into rax and then move rax into -16(%rbp).
The two moves from -8(%rbp) to -8(%rbp) are also problematic, but they
can be fixed by simply deleting them. In general, we recommend deleting all
the trivial moves whose source and destination are the same location. The
following is the output of patch-instructions on the running example.

movq $1, -8(%rbp)
movq $42, %rcx
movq -8(%rbp), -8(%rbp)
addq $7, -8(%rbp)
movq -8(%rbp), -16(%rbp)
movq -8(%rbp), -8(%rbp)
addq %rcx, -8(%rbp)
movq -16(%rbp), %rcx
negq %rcx
movq -8(%rbp), %rax
addq %rcx, %rax
jmp conclusion

⇒

movq $1, -8(%rbp)
movq $42, %rcx
addq $7, -8(%rbp)
movq -8(%rbp), %rax
movq %rax, -16(%rbp)
addq %rcx, -8(%rbp)
movq -16(%rbp), %rcx
negq %rcx
movq -8(%rbp), %rax
addq %rcx, %rax
jmp conclusion

Exercise 15. Implement the patch-instructions compiler pass. Insert
it after allocate-registers in the list of passes in the run-tests.rkt
script. Run the script to test the patch-instructions pass.

3.6 Print x86
Recall that the print-x86 pass generates the prelude and conclusion in-
structions to satisfy the x86 calling conventions (Section 3.1). With the
addition of the register allocator, the callee-saved registers used by the reg-
ister allocator must be saved in the prelude and restored in the conclusion.
In the allocate-registers pass, add an entry to the info of X86Program
named used-callee that stores the set of callee-saved registers that were
assigned to variables. The print-x86 pass can then access this information
to decide which callee-saved registers need to be saved and restored. When
calculating the size of the frame to adjust the rsp in the prelude, make sure
to take into account the space used for saving the callee-saved registers.
Also, don’t forget that the frame needs to be a multiple of 16 bytes!

An overview of all of the passes involved in register allocation is shown
in Figure 3.9.

Exercise 16. Update the print-x86 pass as described in this section. In
the run-tests.rkt script, reinstate print-x86 in the list of passes and the

3.7. CHALLENGE: MOVE BIASING 59

RVar RVar RVar

CVar

x86Var x86Var x86Int

x86Intx86Var x86Var

uniquify remove-complex.

explicate-control

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 3.9: Diagram of the passes for RVar with register allocation.

call to compiler-tests. Run the script to test the complete compiler for
RVar that performs register allocation.

3.7 Challenge: Move Biasing

This section describes an enhancement to the register allocator for students
looking for an extra challenge or who have a deeper interest in register
allocation.

To motivate the need for move biasing we return to the running exam-
ple but this time use all of the general purpose registers. So we have the
following mapping of color numbers to registers.

{0 7→ %rcx, 1 7→ %rdx, 2 7→ %rsi}

Using the same assignment of variables to color numbers that was produced
by the register allocator described in the last section, we get the following
program.

60 3. REGISTER ALLOCATION

movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, t
negq t
movq z, %rax
addq t, %rax
jmp conclusion

⇒

movq $1, %rdx
movq $42, %rcx
movq %rdx, %rdx
addq $7, %rdx
movq %rdx, %rsi
movq %rdx, %rdx
addq %rcx, %rdx
movq %rsi, %rcx
negq %rcx
movq %rdx, %rax
addq %rcx, %rax
jmp conclusion

In the above output code there are two movq instructions that can be re-
moved because their source and target are the same. However, if we had put
t, v, x, and y into the same register, we could instead remove three movq
instructions. We can accomplish this by taking into account which variables
appear in movq instructions with which other variables.

We say that two variables p and q are move related if they participate
together in a movq instruction, that is, movq p, q or movq q, p. When the
register allocator chooses a color for a variable, it should prefer a color that
has already been used for a move-related variable (assuming that they do
not interfere). Of course, this preference should not override the preference
for registers over stack locations. This preference should be used as a tie
breaker when choosing between registers or when choosing between stack
locations.

We recommend representing the move relationships in a graph, similar
to how we represented interference. The following is the move graph for our
running example.

rax

rspt z x

y w v

Now we replay the graph coloring, pausing to see the coloring of y. Recall

3.7. CHALLENGE: MOVE BIASING 61

the following configuration. The most saturated vertices were w and y.

rax : −1, {0,−2}

rsp : −2, {−1, 0, 1, 2}t : 0, {1,−2} z : 1, {0,−2} x : −, {−2}

y : −, {1,−2} w : −, {1,−2} v : −, {−2}

Last time we chose to color w with 0. But this time we see that w is not
move related to any vertex, but y is move related to t. So we choose to
color y the same color as t, 0.

rax : −1, {0,−2}

rsp : −2, {−1, 0, 1, 2}t : 0, {1,−2} z : 1, {0,−2} x : −, {−2}

y : 0, {1,−2} w : −, {0, 1,−2} v : −, {−2}

Now w is the most saturated, so we color it 2.

rax : −1, {0,−2}

rsp : −2, {−1, 0, 1, 2}t : 0, {1,−2} z : 1, {0, 2,−2} x : −, {2,−2}

y : 0, {1, 2,−2} w : 2, {0, 1,−2} v : −, {2,−2}

At this point, vertices x and v are most saturated, but x is move related to
y and z, so we color x to 0 to match y. Finally, we color v to 0.

rax : −1, {0,−2}

rsp : −2, {−1, 0, 1, 2}t : 0, {1,−2} z : 1, {0, 2,−2} x : 0, {2,−2}

y : 0, {1, 2,−2} w : 2, {0, 1,−2} v : 0, {2,−2}

So we have the following assignment of variables to registers.

{v 7→ %rcx, w 7→ %rsi, x 7→ %rcx, y 7→ %rcx, z 7→ %rdx, t 7→ %rcx}

62 3. REGISTER ALLOCATION

We apply this register assignment to the running example, on the left,
to obtain the code in the middle. The patch-instructions then removes
the three trivial moves to obtain the code on the right.

movq $1, v
movq $42, w
movq v, x
addq $7, x
movq x, y
movq x, z
addq w, z
movq y, t
negq t
movq z, %rax
addq t, %rax
jmp conclusion

⇒

movq $1, %rcx
movq $42, %rsi
movq %rcx, %rcx
addq $7, %rcx
movq %rcx, %rcx
movq %rcx, %rdx
addq %rsi, %rdx
movq %rcx, %rcx
negq %rcx
movq %rdx, %rax
addq %rcx, %rax
jmp conclusion

⇒

movq $1, %rcx
movq $42, %rsi
addq $7, %rcx
movq %rcx, %rdx
addq %rsi, %rdx
negq %rcx
movq %rdx, %rax
addq %rcx, %rax
jmp conclusion

Exercise 17. Change your implementation of allocate-registers to take
move biasing into account. Create two new tests that include at least one
opportunity for move biasing and visually inspect the output x86 programs
to make sure that your move biasing is working properly. Make sure that
your compiler still passes all of the tests.

Figure 3.10 shows the x86 code generated for the running example (Fig-
ure 3.1) with register allocation and move biasing. To demonstrate both
the use of registers and the stack, we have limited the register allocator to
use just two registers: rbx and rcx. In the prelude of the main function,
we push rbx onto the stack because it is a callee-saved register and it was
assigned to variable by the register allocator. We subtract 8 from the rsp
at the end of the prelude to reserve space for the one spilled variable. After
that subtraction, the rsp is aligned to 16 bytes.

Moving on the the start block, we see how the registers were allocated.
Variables v, x, and y were assigned to rbx and variable z was assigned
to rcx. Variable w was spilled to the stack location -16(%rbp). Recall
that the prelude saved the callee-save register rbx onto the stack. The
spilled variables must be placed lower on the stack than the saved callee-
save registers, so in this case w is placed at -16(%rbp).

In the conclusion, we undo the work that was done in the prelude. We
move the stack pointer up by 8 bytes (the room for spilled variables), then
we pop the old values of rbx and rbp (callee-saved registers), and finish with
retq to return control to the operating system.

3.7. CHALLENGE: MOVE BIASING 63

start:
movq $1, %rbx
movq $42, -16(%rbp)
addq $7, %rbx
movq %rbx, %rcx
addq -16(%rbp), %rcx
negq %rbx
movq %rcx, %rax
addq %rbx, %rax
jmp conclusion

.globl main
main:

pushq %rbp
movq %rsp, %rbp
pushq %rbx
subq $8, %rsp
jmp start

conclusion:
addq $8, %rsp
popq %rbx
popq %rbp
retq

Figure 3.10: The x86 output from the running example (Figure 3.1).

64 3. REGISTER ALLOCATION

4

Booleans and Control Flow

The RInt and RVar languages only have a single kind of value, integers. In
this chapter we add a second kind of value, the Booleans, to create the RIf
language. The Boolean values true and false are written #t and #f respec-
tively in Racket. The RIf language includes several operations that involve
Booleans (and, not, eq?, <, etc.) and the conditional if expression. With
the addition of if, programs can have non-trivial control flow which impacts
explicate-control and liveness analysis. Also, because we now have two
kinds of values, we need to handle programs that apply an operation to the
wrong kind of value, such as (not 1).

There are two language design options for such situations. One option
is to signal an error and the other is to provide a wider interpretation of
the operation. The Racket language uses a mixture of these two options,
depending on the operation and the kind of value. For example, the result
of (not 1) in Racket is #f because Racket treats non-zero integers as if they
were #t. On the other hand, (car 1) results in a run-time error in Racket
because car expects a pair.

Typed Racket makes similar design choices as Racket, except much of the
error detection happens at compile time instead of run time. Typed Racket
accepts and runs (not 1), producing #f. But in the case of (car 1), Typed
Racket reports a compile-time error because Typed Racket expects the type
of the argument to be of the form (Listof T) or (Pairof T1 T2).

The RIf language performs type checking during compilation like Typed
Racket. In Chapter 8 we study the alternative choice, that is, a dynamically
typed language like Racket. The RIf language is a subset of Typed Racket;
for some operations we are more restrictive, for example, rejecting (not 1).

This chapter is organized as follows. We begin by defining the syntax

65

66 4. BOOLEANS AND CONTROL FLOW

and interpreter for the RIf language (Section 4.1). We then introduce the
idea of type checking and build a type checker for RIf (Section 4.2). To com-
pile RIf we need to enlarge the intermediate language CVar into CIf (Sec-
tion 4.3) and x86Int into x86If (Section 4.4). The remaining sections of this
chapter discuss how our compiler passes change to accommodate Booleans
and conditional control flow. There is one new pass, named shrink, that
translates some operators into others, thereby reducing the number of op-
erators that need to be handled in later passes. The largest changes occur
in explicate-control, to translate if expressions into control-flow graphs
(Section 4.8). Regarding register allocation, the liveness analysis now has
multiple basic blocks to process and there is the interesting question of how
to handle conditional jumps.

4.1 The RIf Language

The concrete syntax of the RIf language is defined in Figure 4.1 and the
abstract syntax is defined in Figure 4.2. The RIf language includes all of
RVar (shown in gray), the Boolean literals #t and #f, and the conditional
if expression. We expand the operators to include

1. subtraction on integers,

2. the logical operators and, or and not,

3. the eq? operation for comparing two integers or two Booleans, and

4. the <, <=, >, and >= operations for comparing integers.

We reorganize the abstract syntax for the primitive operations in Figure 4.2,
using only one grammar rule for all of them. This means that the grammar
no longer checks whether the arity of an operators matches the number of
arguments. That responsibility is moved to the type checker for RIf, which
we introduce in Section 4.2.

Figure 4.3 defines the interpreter for RIf, which inherits from the in-
terpreter for RVar (Figure 2.3). The literals #t and #f evaluate to the
corresponding Boolean values. The conditional expression (if cnd thn els)
evaluates cnd and then either evaluates thn or els depending on whether cnd
produced #t or #f. The logical operations not and and behave as you might
expect, but note that the and operation is short-circuiting. That is, given
the expression (and e1 e2), the expression e2 is not evaluated if e1 evaluates
to #f.

4.2. TYPE CHECKING RIF PROGRAMS 67

bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| bool | (and exp exp) | (or exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)

RIf ::= exp

Figure 4.1: The concrete syntax of RIf, extending RVar (Figure 2.1) with
Booleans and conditionals.

bool ::= #t | #f
cmp ::= eq? | < | <= | > | >=
op ::= cmp | read | + | - | and | or | not
exp ::= (Int int) | (Var var) | (Let var exp exp)

| (Prim op (exp . . .))
| (Bool bool) | (If exp exp exp)

RIf ::= (Program ’() exp)

Figure 4.2: The abstract syntax of RIf.

With the increase in the number of primitive operations, the interpreter
would become repetitive without some care. We refactor the case for Prim,
moving the code that differs with each operation into the interp-op method
shown in in Figure 4.4. We handle the and operation separately because of
its short-circuiting behavior.

4.2 Type Checking RIf Programs

It is helpful to think about type checking in two complementary ways. A
type checker predicts the type of value that will be produced by each ex-
pression in the program. For RIf, we have just two types, Integer and
Boolean. So a type checker should predict that

(+ 10 (- (+ 12 20)))

produces an Integer while
(and (not #f) #t)

produces a Boolean.

68 4. BOOLEANS AND CONTROL FLOW

(define interp-Rif-class
(class interp-Rvar-class
(super-new)

(define/public (interp-op op) ...)

(define/override ((interp-exp env) e)
(define recur (interp-exp env))
(match e
[(Bool b) b]
[(If cnd thn els)
(match (recur cnd)
[#t (recur thn)]
[#f (recur els)])]

[(Prim 'and (list e1 e2))
(match (recur e1)
[#t (match (recur e2) [#t #t] [#f #f])]
[#f #f])]

[(Prim op args)
(apply (interp-op op) (for/list ([e args]) (recur e)))]
[else ((super interp-exp env) e)]))

))

(define (interp-Rif p)
(send (new interp-Rif-class) interp-program p))

Figure 4.3: Interpreter for the RIf language. (See Figure 4.4 for interp-op.)

4.2. TYPE CHECKING RIF PROGRAMS 69

(define/public (interp-op op)
(match op
['+ fx+]
['- fx-]
['read read-fixnum]
['not (lambda (v) (match v [#t #f] [#f #t]))]
['or (lambda (v1 v2)

(cond [(and (boolean? v1) (boolean? v2))
(or v1 v2)]))]

['eq? (lambda (v1 v2)
(cond [(or (and (fixnum? v1) (fixnum? v2))

(and (boolean? v1) (boolean? v2))
(and (vector? v1) (vector? v2)))

(eq? v1 v2)]))]
['< (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2))
(< v1 v2)]))]

['<= (lambda (v1 v2)
(cond [(and (fixnum? v1) (fixnum? v2))

(<= v1 v2)]))]
['> (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2))
(> v1 v2)]))]

['>= (lambda (v1 v2)
(cond [(and (fixnum? v1) (fixnum? v2))

(>= v1 v2)]))]
[else (error 'interp-op "unknown operator")]))

Figure 4.4: Interpreter for the primitive operators in the RIf language.

70 4. BOOLEANS AND CONTROL FLOW

Another way to think about type checking is that it enforces a set of
rules about which operators can be applied to which kinds of values. For
example, our type checker for RIf signals an error for the below expression

(not (+ 10 (- (+ 12 20))))

The subexpression (+ 10 (- (+ 12 20))) has type Integer but the type
checker enforces the rule that the argument of not must be a Boolean.

We implement type checking using classes and methods because they
provide the open recursion needed to reuse code as we extend the type
checker in later chapters, analogous to the use of classes and methods for
the interpreters (Section 2.1.1).

We separate the type checker for the RVar fragment into its own class,
shown in Figure 4.5. The type checker for RIf is shown in Figure 4.6 and
it inherits from the type checker for RVar. These type checkers are in the
files type-check-Rvar.rkt and type-check-Rif.rkt of the support code.
Each type checker is a structurally recursive function over the AST. Given
an input expression e, the type checker either signals an error or returns
an expression and its type (Integer or Boolean). It returns an expression
because there are situations in which we want to change or update the
expression.

Next we discuss the match cases in type-check-exp of Figure 4.5. The
type of an integer constant is Integer. To handle variables, the type checker
uses the environment env to map variables to types. Consider the case for
let. We type check the initializing expression to obtain its type T and then
associate type T with the variable x in the environment used to type check the
body of the let. Thus, when the type checker encounters a use of variable
x, it can find its type in the environment. Regarding primitive operators, we
recursively analyze the arguments and then invoke type-check-op to check
whether the argument types are allowed.

Several auxiliary methods are used in the type checker. The method
operator-types defines a dictionary that maps the operator names to their
parameter and return types. The type-equal? method determines whether
two types are equal, which for now simply dispatches to equal? (deep
equality). The check-type-equal? method triggers an error if the two
types are not equal. The type-check-op method looks up the operator
in the operator-types dictionary and then checks whether the argument
types are equal to the parameter types. The result is the return type of the
operator.

Next we discuss the type checker for RIf in Figure 4.6. The operator eq?
requires the two arguments to have the same type. The type of a Boolean

4.2. TYPE CHECKING RIF PROGRAMS 71

(define type-check-Rvar-class
(class object%

(super-new)

(define/public (operator-types)
'((+ . ((Integer Integer) . Integer))

(- . ((Integer) . Integer))
(read . (() . Integer))))

(define/public (type-equal? t1 t2) (equal? t1 t2))

(define/public (check-type-equal? t1 t2 e)
(unless (type-equal? t1 t2)

(error 'type-check "~a != ~a\nin ~v" t1 t2 e)))

(define/public (type-check-op op arg-types e)
(match (dict-ref (operator-types) op)

[`(,param-types . ,return-type)
(for ([at arg-types] [pt param-types])

(check-type-equal? at pt e))
return-type]

[else (error 'type-check-op "unrecognized ~a" op)]))

(define/public (type-check-exp env)
(lambda (e)

(match e
[(Int n) (values (Int n) 'Integer)]
[(Var x) (values (Var x) (dict-ref env x))]
[(Let x e body)
(define-values (e^ Te) ((type-check-exp env) e))
(define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
(values (Let x e^ b) Tb)]

[(Prim op es)
(define-values (new-es ts)

(for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
(values (Prim op new-es) (type-check-op op ts e))]

[else (error 'type-check-exp "couldn't match" e)])))

(define/public (type-check-program e)
(match e

[(Program info body)
(define-values (body^ Tb) ((type-check-exp '()) body))
(check-type-equal? Tb 'Integer body)
(Program info body^)]

[else (error 'type-check-Rvar "couldn't match ~a" e)]))
))

(define (type-check-Rvar p)
(send (new type-check-Rvar-class) type-check-program p))

Figure 4.5: Type checker for the RVar language.

72 4. BOOLEANS AND CONTROL FLOW

(define type-check-Rif-class
(class type-check-Rvar-class

(super-new)
(inherit check-type-equal?)

(define/override (operator-types)
(append '((- . ((Integer Integer) . Integer))

(and . ((Boolean Boolean) . Boolean))
(or . ((Boolean Boolean) . Boolean))
(< . ((Integer Integer) . Boolean))
(<= . ((Integer Integer) . Boolean))
(> . ((Integer Integer) . Boolean))
(>= . ((Integer Integer) . Boolean))
(not . ((Boolean) . Boolean))
)

(super operator-types)))

(define/override (type-check-exp env)
(lambda (e)

(match e
[(Prim 'eq? (list e1 e2))
(define-values (e1^ T1) ((type-check-exp env) e1))
(define-values (e2^ T2) ((type-check-exp env) e2))
(check-type-equal? T1 T2 e)
(values (Prim 'eq? (list e1^ e2^)) 'Boolean)]

[(Bool b) (values (Bool b) 'Boolean)]
[(If cnd thn els)
(define-values (cnd^ Tc) ((type-check-exp env) cnd))
(define-values (thn^ Tt) ((type-check-exp env) thn))
(define-values (els^ Te) ((type-check-exp env) els))
(check-type-equal? Tc 'Boolean e)
(check-type-equal? Tt Te e)
(values (If cnd^ thn^ els^) Te)]

[else ((super type-check-exp env) e)])))
))

(define (type-check-Rif p)
(send (new type-check-Rif-class) type-check-program p))

Figure 4.6: Type checker for the RIf language.

4.3. THE CIF INTERMEDIATE LANGUAGE 73

atm ::= (Int int) | (Var var) | (Bool bool)
cmp ::= eq? | <
exp ::= atm | (Prim read ())

| (Prim - (atm)) | (Prim + (atm atm))
| (Prim ’not (atm)) | (Prim ’cmp (atm atm))

stmt ::= (Assign (Var var) exp)
tail ::= (Return exp) | (Seq stmt tail) | (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
CIf ::= (CProgram info ((label . tail) . . .))

Figure 4.7: The abstract syntax of CIf, an extension of CVar (Figure 2.10).

constant is Boolean. The condition of an if must be of Boolean type and
the two branches must have the same type. The operator-types function
adds dictionary entries for the other new operators.

Exercise 18. Create 10 new test programs in RIf. Half of the programs
should have a type error. For those programs, create an empty file with the
same base name but with file extension .tyerr. For example, if the test
cond_test_14.rkt is expected to error, then create an empty file named
cond_test_14.tyerr. This indicates to interp-tests and compiler-tests
that a type error is expected. The other half of the test programs should
not have type errors.

In the run-tests.rkt script, change the second argument of interp-tests
and compiler-tests to type-check-Rif, which causes the type checker to
run prior to the compiler passes. Temporarily change the passes to an
empty list and run the script, thereby checking that the new test programs
either type check or not as intended.

4.3 The CIf Intermediate Language

Figure 4.7 defines the abstract syntax of the CIf intermediate language.
(The concrete syntax is in the Appendix, Figure 12.3.) Compared to CVar,
the CIf language adds logical and comparison operators to the exp non-
terminal and the literals #t and #f to the arg non-terminal.

Regarding control flow, CIf adds goto and if statements to the tail
non-terminal. The condition of an if statement is a comparison operation
and the branches are goto statements, making it straightforward to compile
if statements to x86.

74 4. BOOLEANS AND CONTROL FLOW

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= $int | %reg | int(%reg) | %bytereg
cc ::= e | l | le | g | ge
instr ::= addq arg,arg | subq arg,arg | negq arg | movq arg,arg |

callq label | pushq arg | popq arg | retq | jmp label
label: instr | xorq arg, arg | cmpq arg, arg |
setcc arg | movzbq arg, arg | jcc label

x86If ::= .globl main
main: instr . . .

Figure 4.8: The concrete syntax of x86If (extends x86Int of Figure 2.4).

4.4 The x86If Language

To implement the new logical operations, the comparison operations, and the
if expression, we need to delve further into the x86 language. Figures 4.8
and 4.9 define the concrete and abstract syntax for the x86If subset of
x86, which includes instructions for logical operations, comparisons, and
conditional jumps.

One challenge is that x86 does not provide an instruction that directly
implements logical negation (not in RIf and CIf). However, the xorq in-
struction can be used to encode not. The xorq instruction takes two ar-
guments, performs a pairwise exclusive-or (XOR) operation on each bit of
its arguments, and writes the results into its second argument. Recall the
truth table for exclusive-or:

0 1
0 0 1
1 1 0

For example, applying XOR to each bit of the binary numbers 0011 and 0101
yields 0110. Notice that in the row of the table for the bit 1, the result is
the opposite of the second bit. Thus, the not operation can be implemented
by xorq with 1 as the first argument:

var = (not arg); ⇒ movq arg,var
xorq $1,var

Next we consider the x86 instructions that are relevant for compiling the
comparison operations. The cmpq instruction compares its two arguments

4.4. THE X86IF LANGUAGE 75

bytereg ::= ah | al | bh | bl | ch | cl | dh | dl
arg ::= (Imm int) | (Reg reg) | (Deref reg int) | (ByteReg bytereg)
cc ::= e | l | le | g | ge
instr ::= (Instr addq (arg arg)) | (Instr subq (arg arg))

| (Instr ’movq (arg arg)) | (Instr negq (arg))
| (Callq label int) | (Retq) | (Pushq arg) | (Popq arg) | (Jmp label)
| (Instr xorq (arg arg)) | (Instr cmpq (arg arg))
| (Instr set (cc arg)) | (Instr movzbq (arg arg))
| (JmpIf cc label)

block ::= (Block info (instr . . .))
x86If ::= (X86Program info ((label . block) . . .))

Figure 4.9: The abstract syntax of x86If (extends x86Int of Figure 2.8).

to determine whether one argument is less than, equal, or greater than the
other argument. The cmpq instruction is unusual regarding the order of its
arguments and where the result is placed. The argument order is backwards:
if you want to test whether x < y, then write cmpq y, x. The result of cmpq
is placed in the special EFLAGS register. This register cannot be accessed
directly but it can be queried by a number of instructions, including the set
instruction. The instruction setcc d puts a 1 or 0 into the destination d
depending on whether the comparison comes out according to the condition
code cc (e for equal, l for less, le for less-or-equal, g for greater, ge for
greater-or-equal). The set instruction has an annoying quirk in that its
destination argument must be single byte register, such as al (L for lower
bits) or ah (H for higher bits), which are part of the rax register. Thankfully,
the movzbq instruction can be used to move from a single byte register to a
normal 64-bit register. The abstract syntax for the set instruction differs
from the concrete syntax in that it separates the instruction name from the
condition code.

The x86 instruction for conditional jump is relevant to the compilation
of if expressions. The instruction jcc label updates the program counter
to point to the instruction after label depending on whether the result in
the EFLAGS register matches the condition code cc, otherwise the jump
instruction falls through to the next instruction. Like the abstract syntax
for set, the abstract syntax for conditional jump separates the instruction
name from the condition code. For example, (JmpIf le foo) corresponds
to jle foo. Because the conditional jump instruction relies on the EFLAGS
register, it is common for it to be immediately preceded by a cmpq instruction

76 4. BOOLEANS AND CONTROL FLOW

to set the EFLAGS register.

4.5 Shrink the RIf Language

The RIf language includes several operators that are easily expressible with
other operators. For example, subtraction is expressible using addition and
negation.

(- e1 e2) ⇒ (+ e1 (- e2))

Several of the comparison operations are expressible using less-than and
logical negation.

(<= e1 e2) ⇒ (let ([tmp.1 e1]) (not (< e2 tmp.1)))

The let is needed in the above translation to ensure that expression e1 is
evaluated before e2.

By performing these translations in the front-end of the compiler, the
later passes of the compiler do not need to deal with these operators, making
the passes shorter.

Exercise 19. Implement the pass shrink to remove subtraction, and, or,
<=, >, and >= from the language by translating them to other constructs
in RIf. Create six test programs that involve these operators. In the
run-tests.rkt script, add the following entry for shrink to the list of
passes (it should be the only pass at this point).
(list "shrink" shrink interp-Rif type-check-Rif)

This instructs interp-tests to run the intepreter interp-Rif and the type
checker type-check-Rif on the output of shrink. Run the script to test
your compiler on all the test programs.

4.6 Uniquify Variables

Add cases to uniquify-exp to handle Boolean constants and if expressions.

Exercise 20. Update the uniquify-exp for RIf and add the following entry
to the list of passes in the run-tests.rkt script.
(list "uniquify" uniquify interp-Rif type-check-Rif)

Run the script to test your compiler.

4.7. REMOVE COMPLEX OPERANDS 77

atm ::= (Int int) | (Var var) | (Bool bool)
exp ::= atm | (Prim read ())

| (Prim - (atm)) | (Prim + (atm atm))
| (Let var exp exp)
| (Prim not (atm))
| (Prim cmp (atm atm)) | (If exp exp exp)

R†2 ::= (Program () exp)

Figure 4.10: RANF
if is RIf in administrative normal form (ANF).

4.7 Remove Complex Operands

The output language for this pass is RANF
if (Figure 4.10), the administrative

normal form of RIf. The Bool form is an atomic expressions but If is not.
All three sub-expressions of an If are allowed to be complex expressions but
the operands of not and the comparisons must be atoms.

Add cases for Bool and If to the rco-exp and rco-atom functions ac-
cording to whether the output needs to be exp or atm as specified in the
grammar for RANF

if . Regarding If, it is particularly important to not re-
place its condition with a temporary variable because that would interfere
with the generation of high-quality output in the explicate-control pass.

Exercise 21. Add cases for Boolean constants and if to the rco-atom and
rco-exp functions in compiler.rkt. Create three new RInt programs that
exercise the interesting code in this pass. In the run-tests.rkt script, add
the following entry to the list of passes and then run the script to test your
compiler.

(list "remove-complex" remove-complex-opera* interp-Rif type-check-Rif)

4.8 Explicate Control

Recall that the purpose of explicate-control is to make the order of
evaluation explicit in the syntax of the program. With the addition of if
this get more interesting.

As a motivating example, consider the following program that has an if
expression nested in the predicate of another if.

78 4. BOOLEANS AND CONTROL FLOW

(let ([x (read)])
(let ([y (read)])
(if (if (< x 1) (eq? x 0) (eq? x 2))

(+ y 2)
(+ y 10))))

The naive way to compile if and the comparison would be to handle each
of them in isolation, regardless of their context. Each comparison would be
translated into a cmpq instruction followed by a couple instructions to move
the result from the EFLAGS register into a general purpose register or stack
location. Each if would be translated into a cmpq instruction followed by a
conditional jump. The generated code for the inner if in the above example
would be as follows.

...
cmpq $1, x ;; (< x 1)
setl %al
movzbq %al, tmp
cmpq $1, tmp ;; (if ...)
je then_branch_1
jmp else_branch_1
...

However, if we take context into account we can do better and reduce the
use of cmpq instructions for accessing the EFLAG register.

Our goal will be compile if expressions so that the relevant comparison
instruction appears directly before the conditional jump. For example, we
want to generate the following code for the inner if.

...
cmpq $1, x
je then_branch_1
jmp else_branch_1
...

One way to achieve this is to reorganize the code at the level of RIf, pushing
the outer if inside the inner one, yielding the following code.

4.8. EXPLICATE CONTROL 79

(let ([x (read)])
(let ([y (read)])
(if (< x 1)
(if (eq? x 0)
(+ y 2)
(+ y 10))

(if (eq? x 2)
(+ y 2)
(+ y 10)))))

Unfortunately, this approach duplicates the two branches from the outer if
and a compiler must never duplicate code!

We need a way to perform the above transformation but without dupli-
cating code. That is, we need a way for different parts of a program to refer
to the same piece of code. At the level of x86 assembly this is straightfor-
ward because we can label the code for each branch and insert jumps in all
the places that need to execute the branch. In our intermediate language,
we need to move away from abstract syntax trees and instead use graphs. In
particular, we use a standard program representation called a control flow
graph (CFG), due to Frances Elizabeth Allen [4]. Each vertex is a labeled
sequence of code, called a basic block, and each edge represents a jump to
another block. The CProgram construct of CVar and CIf contains a control
flow graph represented as an alist mapping labels to basic blocks. Each basic
block is represented by the tail non-terminal.

Figure 4.11 shows the output of the remove-complex-opera* pass and
then the explicate-control pass on the example program. We walk
through the output program and then discuss the algorithm. Following the
order of evaluation in the output of remove-complex-opera*, we first have
two calls to (read) and then the comparison (< x 1) in the predicate of the
inner if. In the output of explicate-control, in the block labeled start,
is two assignment statements followed by a if statement that branches to
block40 or block41. The blocks associated with those labels contain the
translations of the code (eq? x 0) and (eq? x 2), respectively. In partic-
ular, we start block40 with the comparison (eq? x 0) and then branch to
block38 or block39, the two branches of the outer if, i.e., (+ y 2) and
(+ y 10). The story for block41 is similar.

Recall that in Section 2.6 we implement explicate-control for RVar us-
ing two mutually recursive functions, explicate-tail and explicate-assign.
The former function translates expressions in tail position whereas the later
function translates expressions on the right-hand-side of a let. With the
addition of if expression in RIf we have a new kind of position to deal with:

80 4. BOOLEANS AND CONTROL FLOW

(let ([x (read)])
(let ([y (read)])

(if (if (< x 1)
(eq? x 0)
(eq? x 2))

(+ y 2)
(+ y 10))))

⇓
(let ([x (read)])

(let ([y (read)])
(if (if (< x 1)

(eq? x 0)
(eq? x 2))

(+ y 2)
(+ y 10))))

⇒

start:
x = (read);
y = (read);
if (< x 1) goto block40;
else goto block41;

block40:
if (eq? x 0) goto block38;
else goto block39;

block41:
if (eq? x 2) goto block38;
else goto block39;

block38:
return (+ y 2);

block39:
return (+ y 10);

Figure 4.11: Translation from RIf to CIf via the explicate-control.

the predicate position of the if. We need another function, explicate-pred,
that takes an RIf expression and two blocks for the then-branch and else-
branch. The output of explicate-pred is a block. In the following para-
graphs we discuss specific cases in the explicate-pred function as well as
additions to the explicate-tail and explicate-assign functions.

The skeleton for the explicate-pred function is given in Figure 4.12. It
has a case for every expression that can have type Boolean. We detail a few
cases here and leave the rest for the reader. The input to this function is an
expression and two blocks, thn and els, for the two branches of the enclosing
if. Consider the case for Boolean constants in Figure 4.12. We perform a
kind of partial evaluation and output either the thn or els branch depending
on whether the constant is true or false. This case demonstrates that we
sometimes discard the thn or els blocks that are input to explicate-pred.

The case for if in explicate-pred is particularly illuminating because it
deals with the challenges we discussed above regarding nested if expressions
(Figure 4.11). The thn^ and els^ branches of the if inherit their context
from the current one, that is, predicate context. So you should recursively
apply explicate-pred to the thn^ and els^ branches. For both of those
recursive calls, pass thn and els as the extra parameters. Thus, thn and
els may get used twice, once inside each recursive call. As discussed above,
to avoid duplicating code, we need to add them to the control-flow graph so

4.8. EXPLICATE CONTROL 81

(define (explicate-pred cnd thn els)
(match cnd
[(Var x) ___]
[(Let x rhs body) ___]
[(Prim 'not (list e)) ___]
[(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
(IfStmt (Prim op arg*) (force (block->goto thn))

(force (block->goto els)))]
[(Bool b) (if b thn els)]
[(If cnd^ thn^ els^) ___]
[else (error "explicate-pred unhandled case" cnd)]))

Figure 4.12: Skeleton for the explicate-pred auxiliary function.

that we can instead refer to them by name and execute them with a goto.
However, as we saw in the cases above for Boolean constants, the blocks
thn and els may not get used at all and we don’t want to prematurely add
them to the control-flow graph if they end up being discarded.

The solution to this conundrum is to use lazy evaluation[41] to de-
lay adding the blocks to the control-flow graph until the points where we
know they will be used. Racket provides support for lazy evaluation with
the racket/promise package. The expression (delay e1 . . . en) creates a
promise in which the evaluation of the expressions is postponed. When
(force p) is applied to a promise p for the first time, the expressions e1 . . . en
are evaluated and the result of en is cached in the promise and returned.
If force is applied again to the same promise, then the cached result is
returned. If force is applied to an argument that is not a promise, force
simply returns the argument.

We use lazy evaluation for the input and output blocks of the func-
tions explicate-pred and explicate-assign and for the output block of
explicate-tail. So instead of taking and returning blocks, they take and
return promises. Furthermore, when we come to a situation in which we a
block might be used more than once, as in the case for if in explicate-pred,
we transform the promise into a new promise that will add the block to
the control-flow graph and return a goto. The following auxiliary function
named block->goto accomplishes this task. It begins with delay to create
a promise. When forced, this promise will force the original promise. If
that returns a goto (because the block was already added to the control-
flow graph), then we return the goto. Otherwise we add the block to the
control-flow graph with another auxiliary function named add-node. That

https://docs.racket-lang.org/reference/Delayed_Evaluation.html

82 4. BOOLEANS AND CONTROL FLOW

function returns the label for the new block, which we use to create a goto.
(define (block->goto block)
(delay
(define b (force block))
(match b
[(Goto label) (Goto label)]
[else (Goto (add-node b))])))

Returning to the discussion of explicate-pred (Figure 4.12), consider
the case for comparison operators. This is one of the base cases of the
recursive function so we translate the comparison to an if statement. We
apply block->goto to thn and els to obtain two promises that will add
then to the control-flow graph, which we can immediately force to obtain
the two goto’s that form the branches of the if statement.

The explicate-tail and explicate-assign functions need additional
cases for Boolean constants and if. In the cases for if, the two branches
inherit the current context, so in explicate-tail they are in tail position
and in explicate-assign they are in assignment position. The cont pa-
rameter of explicate-assign is used in both recursive calls, so make sure
to use block->goto on it.

The way in which the shrink pass transforms logical operations such as
and and or can impact the quality of code generated by explicate-control.
For example, consider the following program.
(if (and (eq? (read) 0) (eq? (read) 1))

0
42)

The and operation should transform into something that the explicate-pred
function can still analyze and descend through to reach the underlying eq?
conditions. Ideally, your explicate-control pass should generate code
similar to the following for the above program.

start:
tmp1 = (read);
if (eq? tmp1 0) goto block40;
else goto block39;

block40:
tmp2 = (read);
if (eq? tmp2 1) goto block38;
else goto block39;

block38:
return 0;

4.9. SELECT INSTRUCTIONS 83

block39:
return 42;

Exercise 22. Implement the pass explicate-control by adding the cases
for Boolean constants and if to the explicate-tail and explicate-assign.
Implement the auxiliary function explicate-pred for predicate contexts.
Create test cases that exercise all of the new cases in the code for this pass.
Add the following entry to the list of passes in run-tests.rkt and then
run this script to test your compiler.
(list "explicate-control" explicate-control interp-Cif type-check-Cif)

4.9 Select Instructions
The select-instructions pass translate CIf to x86Var

If . Recall that we
implement this pass using three auxiliary functions, one for each of the non-
terminals atm, stmt, and tail.

For atm, we have new cases for the Booleans. We take the usual approach
of encoding them as integers, with true as 1 and false as 0.

#t⇒ 1 #f⇒ 0

For stmt, we discuss a couple cases. The not operation can be imple-
mented in terms of xorq as we discussed at the beginning of this section.
Given an assignment var = (not atm);, if the left-hand side var is the same
as atm, then just the xorq suffices.

var = (not var); ⇒ xorq $1, var

Otherwise, a movq is needed to adapt to the update-in-place semantics of
x86. Let arg be the result of translating atm to x86. Then we have

var = (not atm); ⇒ movq arg, var
xorq $1, var

Next consider the cases for eq? and less-than comparison. Translating
these operations to x86 is slightly involved due to the unusual nature of the
cmpq instruction discussed above. We recommend translating an assignment
from eq? into the following sequence of three instructions.

var = (eq? atm1 atm2); ⇒
cmpq arg2, arg1
sete %al
movzbq %al, var

84 4. BOOLEANS AND CONTROL FLOW

Regarding the tail non-terminal, we have two new cases: goto and if
statements. Both are straightforward to translate to x86. A goto becomes
a jump instruction.

goto `; ⇒ jmp `

An if statement becomes a compare instruction followed by a conditional
jump (for the “then” branch) and the fall-through is to a regular jump (for
the “else” branch).

if (eq? atm1 atm2) goto `1;
else goto `2; ⇒

cmpq arg2, arg1
je `1
jmp `2

Exercise 23. Expand your select-instructions pass to handle the new
features of the RIf language. Add the following entry to the list of passes
in run-tests.rkt

(list "select-instructions" select-instructions interp-pseudo-x86-1)

Run the script to test your compiler on all the test programs.

4.10 Register Allocation
The changes required for RIf affect liveness analysis, building the interfer-
ence graph, and assigning homes, but the graph coloring algorithm itself
does not change.

4.10.1 Liveness Analysis

Recall that for RVar we implemented liveness analysis for a single basic block
(Section 3.2). With the addition of if expressions toRIf, explicate-control
produces many basic blocks arranged in a control-flow graph. We recom-
mend that you create a new auxiliary function named uncover-live-CFG
that applies liveness analysis to a control-flow graph.

The first question we is: what order should we process the basic blocks
in the control-flow graph? Recall that to perform liveness analysis on a basic
block we need to know its live-after set. If a basic block has no successors
(i.e. no out-edges in the control flow graph), then it has an empty live-after
set and we can immediately apply liveness analysis to it. If a basic block
has some successors, then we need to complete liveness analysis on those
blocks first. In graph theory, a sequence of nodes is in topological order if
each vertex comes before its successors. We need the opposite, so we can

4.10. REGISTER ALLOCATION 85

transpose the graph before computing a topological order. Use the tsort
and transpose functions of the Racket graph package to accomplish this.
As an aside, a topological ordering is only guaranteed to exist if the graph
does not contain any cycles. That is indeed the case for the control-flow
graphs that we generate from RIf programs. However, in Chapter 9 we add
loops to RWhile and learn how to handle cycles in the control-flow graph.

You’ll need to construct a directed graph to represent the control-flow
graph. Do not use the directed-graph of the graph package because
that only allows at most one edge between each pair of vertices, but a
control-flow graph may have multiple edges between a pair of vertices. The
multigraph.rkt file in the support code implements a graph representation
that allows multiple edges between a pair of vertices.

The next question is how to analyze jump instructions. Recall that in
Section 3.2 we maintain an alist named label->live that maps each label
to the set of live locations at the beginning of its block. We use label->live
to determine the live-before set for each (Jmp label) instruction. Now that
we have many basic blocks, label->live needs to be updated as we process
the blocks. In particular, after performing liveness analysis on a block, we
take the live-before set of its first instruction and associate that with the
block’s label in the label->live.

In x86Var
If we also have the conditional jump (JmpIf cc label) to deal

with. Liveness analysis for this instruction is particularly interesting be-
cause during compilation we do not know which way a conditional jump
will go. So we do not know whether to use the live-before set for the fol-
lowing instruction or the live-before set for the label. However, there is no
harm to the correctness of the compiler if we classify more locations as live
than the ones that are truly live during a particular execution of the instruc-
tion. Thus, we can take the union of the live-before sets from the following
instruction and from the mapping for label in label->live.

The auxiliary functions for computing the variables in an instruction’s
argument and for computing the variables read-from (R) or written-to (W)
by an instruction need to be updated to handle the new kinds of arguments
and instructions in x86Var

If .

Exercise 24. Update the uncover-live pass and implement the uncover-live-CFG
auxiliary function to apply liveness analysis to the control-flow graph. Add
the following entry to the list of passes in the run-tests.rkt script.

(list "uncover-live" uncover-live interp-pseudo-x86-1)

86 4. BOOLEANS AND CONTROL FLOW

4.10.2 Build the Interference Graph

Many of the new instructions in x86Var
If can be handled in the same way as

the instructions in x86Var. Thus, if your code was already quite general, it
will not need to be changed to handle the new instructions. If you code is
not general enough, we recommend that you change your code to be more
general. For example, you can factor out the computing of the the read and
write sets for each kind of instruction into two auxiliary functions.

Note that the movzbq instruction requires some special care, similar to
the movq instruction. See rule number 1 in Section 3.3.

Exercise 25. Update the build-interference pass for x86Var
If and add the

following entries to the list of passes in the run-tests.rkt script.
(list "build-interference" build-interference interp-pseudo-x86-1)
(list "allocate-registers" allocate-registers interp-x86-1)

Run the script to test your compiler on all the RIf test programs.

4.11 Patch Instructions

The second argument of the cmpq instruction must not be an immediate
value (such as an integer). So if you are comparing two immediates, we
recommend inserting a movq instruction to put the second argument in rax.
Also, recall that instructions may have at most one memory reference. The
second argument of the movzbq must be a register. There are no special
restrictions on the jump instructions.

Exercise 26. Update patch-instructions pass for x86Var
If . Add the fol-

lowing entry to the list of passes in run-tests.rkt and then run this script
to test your compiler.
(list "patch-instructions" patch-instructions interp-x86-1)

Figure 4.13 lists all the passes needed for the compilation of RIf.

4.12 An Example Translation

Figure 4.14 shows a simple example program in RIf translated to x86, show-
ing the results of explicate-control, select-instructions, and the final
x86 assembly code.

4.13. CHALLENGE: REMOVE JUMPS 87

RIf RIf RIf RIf RIf

CIf

x86Var
If

x86Var
If x86Var

If

x86Var
If x86If

x86If

type-check shrink uniquify remove-complex.

explicate-control

select-instructions

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 4.13: Diagram of the passes for RIf, a language with conditionals.

4.13 Challenge: Remove Jumps
There is an opportunity for optimizing jumps that is apparent in the example
of Figure 4.14. The start block ends with a jump to block7953 and there
are no other jumps to block7953 in the rest of the program. In this situation
we can avoid the runtime overhead of this jump by merging block7953 into
the preceding block, in this case the start block. Figure 4.15 shows the out-
put of select-instructions on the left and the result of this optimization
on the right.

Exercise 27. Implement a pass named remove-jumps that merges ba-
sic blocks into their preceding basic block, when there is only one pre-
ceding block. The pass should translate from x86Var

If to x86Var
If . In the

run-tests.rkt script, add the following entry to the list of passes between
allocate-registers and patch-instructions.
(list "remove-jumps" remove-jumps interp-pseudo-x86-1)

Run this script to test your compiler. Check that remove-jumps accom-
plishes the goal of merging basic blocks on several test programs.

88 4. BOOLEANS AND CONTROL FLOW

(if (eq? (read) 1) 42 0)

⇓
start:

tmp7951 = (read);
if (eq? tmp7951 1)

goto block7952;
else

goto block7953;
block7952:

return 42;
block7953:

return 0;

⇓
start:

callq read_int
movq %rax, tmp7951
cmpq $1, tmp7951
je block7952
jmp block7953

block7953:
movq $0, %rax
jmp conclusion

block7952:
movq $42, %rax
jmp conclusion

⇒

start:
callq read_int
movq %rax, %rcx
cmpq $1, %rcx
je block7952
jmp block7953

block7953:
movq $0, %rax
jmp conclusion

block7952:
movq $42, %rax
jmp conclusion

.globl main
main:

pushq %rbp
movq %rsp, %rbp
pushq %r13
pushq %r12
pushq %rbx
pushq %r14
subq $0, %rsp
jmp start

conclusion:
addq $0, %rsp
popq %r14
popq %rbx
popq %r12
popq %r13
popq %rbp
retq

Figure 4.14: Example compilation of an if expression to x86.

4.13. CHALLENGE: REMOVE JUMPS 89

start:
callq read_int
movq %rax, tmp7951
cmpq $1, tmp7951
je block7952
jmp block7953

block7953:
movq $0, %rax
jmp conclusion

block7952:
movq $42, %rax
jmp conclusion

⇒

start:
callq read_int
movq %rax, tmp7951
cmpq $1, tmp7951
je block7952
movq $0, %rax
jmp conclusion

block7952:
movq $42, %rax
jmp conclusion

Figure 4.15: Merging basic blocks by removing unnecessary jumps.

90 4. BOOLEANS AND CONTROL FLOW

5

Tuples and Garbage
Collection

In this chapter we study the implementation of mutable tuples (called “vec-
tors” in Racket). This language feature is the first to use the computer’s
heap because the lifetime of a Racket tuple is indefinite, that is, a tuple lives
forever from the programmer’s viewpoint. Of course, from an implementer’s
viewpoint, it is important to reclaim the space associated with a tuple when
it is no longer needed, which is why we also study garbage collection garbage
collection techniques in this chapter.

Section 5.1 introduces the RVec language including its interpreter and
type checker. The RVec language extends the RIf language of Chapter 4
with vectors and Racket’s void value. The reason for including the later is
that the vector-set! operation returns a value of type Void1.

Section 5.2 describes a garbage collection algorithm based on copying
live objects back and forth between two halves of the heap. The garbage
collector requires coordination with the compiler so that it can see all of the
root pointers, that is, pointers in registers or on the procedure call stack.

Sections 5.4 through 5.9 discuss all the necessary changes and additions
to the compiler passes, including a new compiler pass named expose-allocation.

1Racket’s Void type corresponds to what is called the Unit type in the programming
languages literature. Racket’s Void type is inhabited by a single value void which corre-
sponds to unit or () in the literature [81].

91

92 5. TUPLES AND GARBAGE COLLECTION

type ::= Integer | Boolean | (Vector type . . .) | Void
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp . . .) | (vector-length exp)
| (vector-ref exp int) | (vector-set! exp int exp)
| (void) | (has-type exp type)

RVec ::= exp

Figure 5.1: The concrete syntax of RVec, extending RIf (Figure 4.1).

(let ([t (vector 40 #t (vector 2))])
(if (vector-ref t 1)

(+ (vector-ref t 0)
(vector-ref (vector-ref t 2) 0))

44))

Figure 5.2: Example program that creates tuples and reads from them.

5.1 The RVec Language

Figure 5.1 defines the concrete syntax for RVec and Figure 5.3 defines the
abstract syntax. The RVec language includes three new forms: vector
for creating a tuple, vector-ref for reading an element of a tuple, and
vector-set! for writing to an element of a tuple. The program in Fig-
ure 5.2 shows the usage of tuples in Racket. We create a 3-tuple t and a
1-tuple that is stored at index 2 of the 3-tuple, demonstrating that tuples
are first-class values. The element at index 1 of t is #t, so the “then” branch
of the if is taken. The element at index 0 of t is 40, to which we add 2,
the element at index 0 of the 1-tuple. So the result of the program is 42.

Tuples are our first encounter with heap-allocated data, which raises
several interesting issues. First, variable binding performs a shallow-copy
when dealing with tuples, which means that different variables can refer to
the same tuple, that is, different variables can be aliases for the same entity.
Consider the following example in which both t1 and t2 refer to the same
tuple. Thus, the mutation through t2 is visible when referencing the tuple
from t1, so the result of this program is 42.

5.1. THE RVEC LANGUAGE 93

op ::= . . . | vector | vector-length
exp ::= (Int int) | (Var var) | (Let var exp exp)

| (Prim op (exp . . .)) | (Bool bool) | (If exp exp exp)
| (Prim vector-ref (exp (Int int)))
| (Prim vector-set! (exp (Int int) exp))
| (Void) | (HasType exp type)

RVec ::= (Program ’() exp)

Figure 5.3: The abstract syntax of RVec.

(let ([t1 (vector 3 7)])
(let ([t2 t1])
(let ([_ (vector-set! t2 0 42)])
(vector-ref t1 0))))

The next issue concerns the lifetime of tuples. Of course, they are created
by the vector form, but when does their lifetime end? Notice that RVec does
not include an operation for deleting tuples. Furthermore, the lifetime of a
tuple is not tied to any notion of static scoping. For example, the following
program returns 42 even though the variable w goes out of scope prior to
the vector-ref that reads from the vector it was bound to.

(let ([v (vector (vector 44))])
(let ([x (let ([w (vector 42)])

(let ([_ (vector-set! v 0 w)])
0))])

(+ x (vector-ref (vector-ref v 0) 0))))

From the perspective of programmer-observable behavior, tuples live for-
ever. Of course, if they really lived forever, then many programs would run
out of memory.2 A Racket implementation must therefore perform auto-
matic garbage collection.

Figure 5.4 shows the definitional interpreter for the RVec language. We
define the vector, vector-length, vector-ref, and vector-set! oper-
ations for RVec in terms of the corresponding operations in Racket. One
subtle point is that the vector-set! operation returns the #<void> value.

2The RVec language does not have looping or recursive functions, so it is nigh impossible
to write a program in RVec that will run out of memory. However, we add recursive
functions in the next Chapter!

94 5. TUPLES AND GARBAGE COLLECTION

The #<void> value can be passed around just like other values inside an
RVec program and a #<void> value can be compared for equality with an-
other #<void> value. However, there are no other operations specific to the
the #<void> value in RVec. In contrast, Racket defines the void? predicate
that returns #t when applied to #<void> and #f otherwise.

Figure 5.5 shows the type checker for RVec, which deserves some expla-
nation. When allocating a vector, we need to know which elements of the
vector are pointers (i.e. are also vectors). We can obtain this information
during type checking. The type checker in Figure 5.5 not only computes the
type of an expression, it also wraps every vector creation with the form
(HasType e T), where T is the vector’s type. To create the s-expression for
the Vector type in Figure 5.5, we use the unquote-splicing operator ,@ to
insert the list t* without its usual start and end parentheses.

5.2 Garbage Collection

Here we study a relatively simple algorithm for garbage collection that is
the basis of state-of-the-art garbage collectors [68, 98, 56, 27, 31, 96]. In
particular, we describe a two-space copying collector [101] that uses Cheney’s
algorithm to perform the copy [21]. Figure 5.6 gives a coarse-grained
depiction of what happens in a two-space collector, showing two time steps,
prior to garbage collection (on the top) and after garbage collection (on
the bottom). In a two-space collector, the heap is divided into two parts
named the FromSpace and the ToSpace. Initially, all allocations go to the
FromSpace until there is not enough room for the next allocation request.
At that point, the garbage collector goes to work to make more room.

The garbage collector must be careful not to reclaim tuples that will be
used by the program in the future. Of course, it is impossible in general to
predict what a program will do, but we can over approximate the will-be-
used tuples by preserving all tuples that could be accessed by any program
given the current computer state. A program could access any tuple whose
address is in a register or on the procedure call stack. These addresses are
called the root set. In addition, a program could access any tuple that is
transitively reachable from the root set. Thus, it is safe for the garbage
collector to reclaim the tuples that are not reachable in this way.

So the goal of the garbage collector is twofold:

1. preserve all tuple that are reachable from the root set via a path of
pointers, that is, the live tuples, and

https://docs.racket-lang.org/reference/quasiquote.html

5.2. GARBAGE COLLECTION 95

(define interp-Rvec-class
(class interp-Rif-class
(super-new)

(define/override (interp-op op)
(match op
['eq? (lambda (v1 v2)

(cond [(or (and (fixnum? v1) (fixnum? v2))
(and (boolean? v1) (boolean? v2))
(and (vector? v1) (vector? v2))
(and (void? v1) (void? v2)))

(eq? v1 v2)]))]
['vector vector]
['vector-length vector-length]
['vector-ref vector-ref]
['vector-set! vector-set!]
[else (super interp-op op)]
))

(define/override ((interp-exp env) e)
(define recur (interp-exp env))
(match e
[(HasType e t) (recur e)]
[(Void) (void)]
[else ((super interp-exp env) e)]
))

))

(define (interp-Rvec p)
(send (new interp-Rvec-class) interp-program p))

Figure 5.4: Interpreter for the RVec language.

96 5. TUPLES AND GARBAGE COLLECTION

(define type-check-Rvec-class
(class type-check-Rif-class

(super-new)
(inherit check-type-equal?)

(define/override (type-check-exp env)
(lambda (e)

(define recur (type-check-exp env))
(match e

[(Void) (values (Void) 'Void)]
[(Prim 'vector es)
(define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
(define t `(Vector ,@t*))
(values (HasType (Prim 'vector e*) t) t)]

[(Prim 'vector-ref (list e1 (Int i)))
(define-values (e1^ t) (recur e1))
(match t

[`(Vector ,ts ...)
(unless (and (0 . <= . i) (i . < . (length ts)))

(error 'type-check "index ~a out of bounds\nin ~v" i e))
(values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]

[else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
[(Prim 'vector-set! (list e1 (Int i) arg))
(define-values (e-vec t-vec) (recur e1))
(define-values (e-arg^ t-arg) (recur arg))
(match t-vec

[`(Vector ,ts ...)
(unless (and (0 . <= . i) (i . < . (length ts)))

(error 'type-check "index ~a out of bounds\nin ~v" i e))
(check-type-equal? (list-ref ts i) t-arg e)
(values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]

[else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
[(Prim 'vector-length (list e))
(define-values (e^ t) (recur e))
(match t

[`(Vector ,ts ...)
(values (Prim 'vector-length (list e^)) 'Integer)]

[else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
[(Prim 'eq? (list arg1 arg2))
(define-values (e1 t1) (recur arg1))
(define-values (e2 t2) (recur arg2))
(match* (t1 t2)

[(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
[(other wise) (check-type-equal? t1 t2 e)])

(values (Prim 'eq? (list e1 e2)) 'Boolean)]
[(HasType (Prim 'vector es) t)
((type-check-exp env) (Prim 'vector es))]

[(HasType e1 t)
(define-values (e1^ t^) (recur e1))
(check-type-equal? t t^ e)
(values (HasType e1^ t) t)]

[else ((super type-check-exp env) e)]
)))

))

(define (type-check-Rvec p)
(send (new type-check-Rvec-class) type-check-program p))

Figure 5.5: Type checker for the RVec language.

5.2. GARBAGE COLLECTION 97

2. reclaim the memory of everything else, that is, the garbage.

A copying collector accomplishes this by copying all of the live objects from
the FromSpace into the ToSpace and then performs a sleight of hand, treat-
ing the ToSpace as the new FromSpace and the old FromSpace as the new
ToSpace. In the example of Figure 5.6, there are three pointers in the root
set, one in a register and two on the stack. All of the live objects have
been copied to the ToSpace (the right-hand side of Figure 5.6) in a way that
preserves the pointer relationships. For example, the pointer in the register
still points to a 2-tuple whose first element is a 3-tuple and whose second
element is a 2-tuple. There are four tuples that are not reachable from the
root set and therefore do not get copied into the ToSpace.

The exact situation in Figure 5.6 cannot be created by a well-typed
program in RVec because it contains a cycle. However, creating cycles will
be possible once we get to RAny. We design the garbage collector to deal
with cycles to begin with so we will not need to revisit this issue.

There are many alternatives to copying collectors (and their bigger sib-
lings, the generational collectors) when its comes to garbage collection, such
as mark-and-sweep [73] and reference counting [22]. The strengths of copying
collectors are that allocation is fast (just a comparison and pointer incre-
ment), there is no fragmentation, cyclic garbage is collected, and the time
complexity of collection only depends on the amount of live data, and not
on the amount of garbage [101]. The main disadvantages of a two-space
copying collector is that it uses a lot of space and takes a long time to
perform the copy, though these problems are ameliorated in generational
collectors. Racket and Scheme programs tend to allocate many small ob-
jects and generate a lot of garbage, so copying and generational collectors
are a good fit. Garbage collection is an active research topic, especially
concurrent garbage collection [96]. Researchers are continuously developing
new techniques and revisiting old trade-offs [12, 57, 85, 25, 86, 80, 54, 42].
Researchers meet every year at the International Symposium on Memory
Management to present these findings.

5.2.1 Graph Copying via Cheney’s Algorithm

Let us take a closer look at the copying of the live objects. The allocated
objects and pointers can be viewed as a graph and we need to copy the part
of the graph that is reachable from the root set. To make sure we copy all of
the reachable vertices in the graph, we need an exhaustive graph traversal
algorithm, such as depth-first search or breadth-first search [78, 24]. Recall

98 5. TUPLES AND GARBAGE COLLECTION

7 5

#t 42

4

8

3

5

6

2

Stack

Registers

1 #f …

9

#t
0

…

Heap
FromSpace ToSpace

7 5

#t 42

4

8

3

5

6

2

Stack

Registers

1 #f …

9

#t
0

…

Heap
FromSpace ToSpace

7 5

#t 42

4

8

3

Figure 5.6: A copying collector in action.

5.2. GARBAGE COLLECTION 99

that such algorithms take into account the possibility of cycles by marking
which vertices have already been visited, so as to ensure termination of the
algorithm. These search algorithms also use a data structure such as a stack
or queue as a to-do list to keep track of the vertices that need to be visited.
We use breadth-first search and a trick due to Cheney [21] for simultaneously
representing the queue and copying tuples into the ToSpace.

Figure 5.7 shows several snapshots of the ToSpace as the copy progresses.
The queue is represented by a chunk of contiguous memory at the beginning
of the ToSpace, using two pointers to track the front and the back of the
queue. The algorithm starts by copying all tuples that are immediately
reachable from the root set into the ToSpace to form the initial queue.
When we copy a tuple, we mark the old tuple to indicate that it has been
visited. We discuss how this marking is accomplish in Section 5.2.2. Note
that any pointers inside the copied tuples in the queue still point back to the
FromSpace. Once the initial queue has been created, the algorithm enters a
loop in which it repeatedly processes the tuple at the front of the queue and
pops it off the queue. To process a tuple, the algorithm copies all the tuple
that are directly reachable from it to the ToSpace, placing them at the back
of the queue. The algorithm then updates the pointers in the popped tuple
so they point to the newly copied tuples.

Getting back to Figure 5.7, in the first step we copy the tuple whose
second element is 42 to the back of the queue. The other pointer goes to
a tuple that has already been copied, so we do not need to copy it again,
but we do need to update the pointer to the new location. This can be
accomplished by storing a forwarding pointer to the new location in the
old tuple, back when we initially copied the tuple into the ToSpace. This
completes one step of the algorithm. The algorithm continues in this way
until the front of the queue is empty, that is, until the front catches up with
the back.

5.2.2 Data Representation

The garbage collector places some requirements on the data representations
used by our compiler. First, the garbage collector needs to distinguish be-
tween pointers and other kinds of data. There are several ways to accomplish
this.

1. Attached a tag to each object that identifies what type of object it
is [73].

2. Store different types of objects in different regions [93].

100 5. TUPLES AND GARBAGE COLLECTION

7 5 4

scan
pointer

free
pointer

7 5 4

scan
pointer

free
pointer

#t 42

7 5 4

scan
pointer

free
pointer

#t 42 3

7 5 4

scan
pointer

free
pointer

#t 42 3 8

7 5 4

scan
pointer

free
pointer

#t 42 3 8

Figure 5.7: Depiction of the Cheney algorithm copying the live tuples.

5.2. GARBAGE COLLECTION 101

Stack

Registers

1 #f …

9
#t
0
…

Root Stack
7 5

4

Heap

Figure 5.8: Maintaining a root stack to facilitate garbage collection.

3. Use type information from the program to either generate type-specific
code for collecting or to generate tables that can guide the collector [6,
46, 29].

Dynamically typed languages, such as Lisp, need to tag objects anyways, so
option 1 is a natural choice for those languages. However, RVec is a statically
typed language, so it would be unfortunate to require tags on every object,
especially small and pervasive objects like integers and Booleans. Option 3
is the best-performing choice for statically typed languages, but comes with
a relatively high implementation complexity. To keep this chapter within a
2-week time budget, we recommend a combination of options 1 and 2, using
separate strategies for the stack and the heap.

Regarding the stack, we recommend using a separate stack for pointers,
which we call a root stack (a.k.a. “shadow stack”) [88, 49, 10]. That is, when
a local variable needs to be spilled and is of type (Vector type1 . . . typen),
then we put it on the root stack instead of the normal procedure call stack.
Furthermore, we always spill vector-typed variables if they are live during
a call to the collector, thereby ensuring that no pointers are in registers
during a collection. Figure 5.8 reproduces the example from Figure 5.6 and
contrasts it with the data layout using a root stack. The root stack contains
the two pointers from the regular stack and also the pointer in the second
register.

The problem of distinguishing between pointers and other kinds of data
also arises inside of each tuple on the heap. We solve this problem by
attaching a tag, an extra 64-bits, to each tuple. Figure 5.9 zooms in on the
tags for two of the tuples in the example from Figure 5.6. Note that we have

102 5. TUPLES AND GARBAGE COLLECTION

unused pointer mask vector length

forwarding

101000011…

7 5

111000000… 1

Figure 5.9: Representation of tuples in the heap.

drawn the bits in a big-endian way, from right-to-left, with bit location 0 (the
least significant bit) on the far right, which corresponds to the direction of
the x86 shifting instructions salq (shift left) and sarq (shift right). Part of
each tag is dedicated to specifying which elements of the tuple are pointers,
the part labeled “pointer mask”. Within the pointer mask, a 1 bit indicates
there is a pointer and a 0 bit indicates some other kind of data. The pointer
mask starts at bit location 7. We have limited tuples to a maximum size
of 50 elements, so we just need 50 bits for the pointer mask. The tag also
contains two other pieces of information. The length of the tuple (number of
elements) is stored in bits location 1 through 6. Finally, the bit at location
0 indicates whether the tuple has yet to be copied to the ToSpace. If the
bit has value 1, then this tuple has not yet been copied. If the bit has value
0 then the entire tag is a forwarding pointer. (The lower 3 bits of a pointer
are always zero anyways because our tuples are 8-byte aligned.)

5.2.3 Implementation of the Garbage Collector

An implementation of the copying collector is provided in the runtime.c file.
Figure 5.10 defines the interface to the garbage collector that is used by the
compiler. The initialize function creates the FromSpace, ToSpace, and
root stack and should be called in the prelude of the main function. The ar-
guments of initialize are the root stack size and the heap size. Both need
to be multiples of 64 and 16384 is a good choice for both. The initialize
function puts the address of the beginning of the FromSpace into the global
variable free_ptr. The global variable fromspace_end points to the ad-
dress that is 1-past the last element of the FromSpace. (We use half-open
intervals to represent chunks of memory [28].) The rootstack_begin vari-

5.3. SHRINK 103

void initialize(uint64_t rootstack_size, uint64_t heap_size);
void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
int64_t* free_ptr;
int64_t* fromspace_begin;
int64_t* fromspace_end;
int64_t** rootstack_begin;

Figure 5.10: The compiler’s interface to the garbage collector.

able points to the first element of the root stack.
As long as there is room left in the FromSpace, your generated code can

allocate tuples simply by moving the free_ptr forward. The amount of
room left in FromSpace is the difference between the fromspace_end and
the free_ptr. The collect function should be called when there is not
enough room left in the FromSpace for the next allocation. The collect
function takes a pointer to the current top of the root stack (one past the last
item that was pushed) and the number of bytes that need to be allocated.
The collect function performs the copying collection and leaves the heap
in a state such that the next allocation will succeed.

The introduction of garbage collection has a non-trivial impact on our
compiler passes. We introduce a new compiler pass named expose-allocation.
We make significant changes to select-instructions, build-interference,
allocate-registers, and print-x86 and make minor changes in several
more passes. The following program will serve as our running example. It
creates two tuples, one nested inside the other. Both tuples have length one.
The program accesses the element in the inner tuple tuple via two vector
references.

(vector-ref (vector-ref (vector (vector 42)) 0) 0)

5.3 Shrink

Recall that the shrink pass translates the primitives operators into a smaller
set of primitives. Because this pass comes after type checking, but before
the passes that require the type information in the HasType AST nodes, the
shrink pass must be modified to wrap HasType around each AST node that
it generates.

104 5. TUPLES AND GARBAGE COLLECTION

5.4 Expose Allocation
The pass expose-allocation lowers the vector creation form into a condi-
tional call to the collector followed by the allocation. We choose to place the
expose-allocation pass before remove-complex-opera* because the code
generated by expose-allocation contains complex operands. We also place
expose-allocation before explicate-control because expose-allocation
introduces new variables using let, but let is gone after explicate-control.

The output of expose-allocation is a language RAlloc that extends
RVec with the three new forms that we use in the translation of the vector
form.

exp ::= · · · | (collect int) | (allocate int type) | (global-valuename)

The (collectn) form runs the garbage collector, requesting n bytes. It will
become a call to the collect function in runtime.c in select-instructions.
The (allocatenT) form creates an tuple of n elements. The T parameter
is the type of the tuple: (Vector type1 . . . typen) where typei is the type
of the ith element in the tuple. The (global-valuename) form reads the
value of a global variable, such as free_ptr.

In the following, we show the transformation for the vector form into
1) a sequence of let-bindings for the initializing expressions, 2) a conditional
call to collect, 3) a call to allocate, and 4) the initialization of the vector.
In the following, len refers to the length of the vector and bytes is how many
total bytes need to be allocated for the vector, which is 8 for the tag plus
len times 8.
(has-type (vector e0 . . . en−1) type)

=⇒
(let ([x0 e0]) ... (let ([xn−1 en−1])
(let ([_ (if (< (+ (global-value free_ptr) bytes)

(global-value fromspace_end))
(void)
(collect bytes))])

(let ([v (allocate len type)])
(let ([_ (vector-set! v 0 x0)]) ...
(let ([_ (vector-set! v n− 1 xn−1)])

v) ...)))) ...)

In the above, we suppressed all of the has-type forms in the output for the
sake of readability. The placement of the initializing expressions e0, . . . , en−1
prior to the allocate and the sequence of vector-set! is important, as
those expressions may trigger garbage collection and we cannot have an
allocated but uninitialized tuple on the heap during a collection.

5.5. REMOVE COMPLEX OPERANDS 105

Figure 5.11 shows the output of the expose-allocation pass on our
running example.

5.5 Remove Complex Operands

The new forms collect, allocate, and global-value should all be treated
as complex operands. Figure 5.12 shows the grammar for the output lan-
guage RANF

Vec of this pass, which is RVec in administrative normal form.

5.6 Explicate Control and the CVec language

The output of explicate-control is a program in the intermediate lan-
guage CVec, whose abstract syntax is defined in Figure 5.13. (The concrete
syntax is defined in Figure 12.4 of the Appendix.) The new forms of CVec
include the allocate, vector-ref, and vector-set!, and global-value
expressions and the collect statement. The explicate-control pass can
treat these new forms much like the other expression forms that we’ve al-
ready encoutered.

5.7 Select Instructions and the x86Global Language

In this pass we generate x86 code for most of the new operations that
were needed to compile tuples, including Allocate, Collect, vector-ref,
vector-set!, and void. We compile GlobalValue to Global because the
later has a different concrete syntax (see Figures 5.14 and 5.15).

The vector-ref and vector-set! forms translate into movq instruc-
tions. (The plus one in the offset is to get past the tag at the beginning of
the tuple representation.)
lhs = (vector-ref vec n);
=⇒
movq vec′, %r11
movq 8(n+ 1)(%r11), lhs′

lhs = (vector-set! vec n arg);
=⇒
movq vec′, %r11
movq arg′, 8(n+ 1)(%r11)
movq $0, lhs′

106 5. TUPLES AND GARBAGE COLLECTION

(vector-ref
(vector-ref
(let ([vecinit7976

(let ([vecinit7972 42])
(let ([collectret7974

(if (< (+ (global-value free_ptr) 16)
(global-value fromspace_end))

(void)
(collect 16)
)])

(let ([alloc7971 (allocate 1 (Vector Integer))])
(let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
alloc7971)

)
)

)
])

(let ([collectret7978
(if (< (+ (global-value free_ptr) 16)

(global-value fromspace_end))
(void)
(collect 16)
)])

(let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
(let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
alloc7975)

)
)

)
0)
0)

Figure 5.11: Output of the expose-allocation pass, minus all of the
has-type forms.

5.7. SELECT INSTRUCTIONS AND THE X86GLOBAL LANGUAGE 107

atm ::= (Int int) | (Var var) | (Bool bool) | (Void)
exp ::= atm | (Prim read ())

| (Prim - (atm)) | (Prim + (atm atm))
| (Let var exp exp)
| (Prim ’not (atm))
| (Prim cmp (atm atm)) | (If exp exp exp)
| (Collect int) | (Allocate int type) | (GlobalValue var)

R†3 ::= (Program ’() exp)

Figure 5.12: RANF
Vec is RVec in administrative normal form (ANF).

atm ::= (Int int) | (Var var) | (Bool bool)
cmp ::= eq? | <
exp ::= atm | (Prim read ())

| (Prim - (atm)) | (Prim + (atm atm))
| (Prim not (atm)) | (Prim cmp (atm atm))
| (Allocate int type)
| (Prim ’vector-ref (atm (Int int)))
| (Prim ’vector-set! (atm (Int int) atm))
| (GlobalValue var) | (Void)

stmt ::= (Assign (Var var) exp) | (Collect int)
tail ::= (Return exp) | (Seq stmt tail) | (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
CVec ::= (CProgram info ((label . tail) . . .))

Figure 5.13: The abstract syntax of CVec, extending CIf (Figure 4.7).

108 5. TUPLES AND GARBAGE COLLECTION

The lhs′, vec′, and arg′ are obtained by translating vec and arg to x86. The
move of vec′ to register r11 ensures that offset expression −8(n+ 1)(%r11)
contains a register operand. This requires removing r11 from consideration
by the register allocating.

Why not use rax instead of r11? Suppose we instead used rax. Then
the generated code for vector-set! would be

movq vec′, %rax
movq arg′, 8(n+ 1)(%rax)
movq $0, lhs′

Next, suppose that arg′ ends up as a stack location, so patch-instructions
would insert a move through rax as follows.

movq vec′, %rax
movq arg′, %rax
movq %rax, 8(n+ 1)(%rax)
movq $0, lhs′

But the above sequence of instructions does not work because we’re trying
to use rax for two different values (vec′ and arg′) at the same time!

We compile the allocate form to operations on the free_ptr, as shown
below. The address in the free_ptr is the next free address in the FromSpace,
so we copy it into r11 and then move it forward by enough space for the
tuple being allocated, which is 8(len + 1) bytes because each element is 8
bytes (64 bits) and we use 8 bytes for the tag. We then initialize the tag and
finally copy the address in r11 to the left-hand-side. Refer to Figure 5.9 to
see how the tag is organized. We recommend using the Racket operations
bitwise-ior and arithmetic-shift to compute the tag during compila-
tion. The type annotation in the vector form is used to determine the
pointer mask region of the tag.

lhs = (allocate len (Vector type . . .));
=⇒
movq free_ptr(%rip), %r11
addq 8(len + 1), free_ptr(%rip)
movq $tag, 0(%r11)
movq %r11, lhs′

The collect form is compiled to a call to the collect function in the
runtime. The arguments to collect are 1) the top of the root stack and 2)
the number of bytes that need to be allocated. We use another dedicated
register, r15, to store the pointer to the top of the root stack. So r15 is not
available for use by the register allocator.

5.7. SELECT INSTRUCTIONS AND THE X86GLOBAL LANGUAGE 109

arg ::= $int | %reg | int(%reg) | %bytereg | var(%rip)
x86Global ::= .globl main

main: instr . . .

Figure 5.14: The concrete syntax of x86Global (extends x86If of Figure 4.8).

arg ::= (Int int) | (Reg reg) | (Deref reg int) | (ByteReg reg)
| (Global var)

x86Global ::= (X86Program info ((label . block) . . .))

Figure 5.15: The abstract syntax of x86Global (extends x86If of Figure 4.9).

(collect bytes)
=⇒
movq %r15, %rdi
movq $bytes, %rsi
callq collect

The concrete and abstract syntax of the x86Global language is defined in
Figures 5.14 and 5.15. It differs from x86If just in the addition of the form for
global variables. Figure 5.16 shows the output of the select-instructions
pass on the running example.

110 5. TUPLES AND GARBAGE COLLECTION

block35:
movq free_ptr(%rip), alloc9024
addq $16, free_ptr(%rip)
movq alloc9024, %r11
movq $131, 0(%r11)
movq alloc9024, %r11
movq vecinit9025, 8(%r11)
movq $0, initret9026
movq alloc9024, %r11
movq 8(%r11), tmp9034
movq tmp9034, %r11
movq 8(%r11), %rax
jmp conclusion

block36:
movq $0, collectret9027
jmp block35

block38:
movq free_ptr(%rip), alloc9020
addq $16, free_ptr(%rip)
movq alloc9020, %r11
movq $3, 0(%r11)
movq alloc9020, %r11
movq vecinit9021, 8(%r11)
movq $0, initret9022
movq alloc9020, vecinit9025
movq free_ptr(%rip), tmp9031
movq tmp9031, tmp9032
addq $16, tmp9032
movq fromspace_end(%rip), tmp9033
cmpq tmp9033, tmp9032
jl block36
jmp block37

block37:
movq %r15, %rdi
movq $16, %rsi
callq 'collect
jmp block35

block39:
movq $0, collectret9023
jmp block38

start:
movq $42, vecinit9021
movq free_ptr(%rip), tmp9028
movq tmp9028, tmp9029
addq $16, tmp9029
movq fromspace_end(%rip), tmp9030
cmpq tmp9030, tmp9029
jl block39
jmp block40

block40:
movq %r15, %rdi
movq $16, %rsi
callq 'collect
jmp block38

Figure 5.16: Output of the select-instructions pass.

5.8. REGISTER ALLOCATION 111

5.8 Register Allocation

As discussed earlier in this chapter, the garbage collector needs to access all
the pointers in the root set, that is, all variables that are vectors. It will be
the responsibility of the register allocator to make sure that:

1. the root stack is used for spilling vector-typed variables, and

2. if a vector-typed variable is live during a call to the collector, it must
be spilled to ensure it is visible to the collector.

The later responsibility can be handled during construction of the in-
terference graph, by adding interference edges between the call-live vector-
typed variables and all the callee-saved registers. (They already interfere
with the caller-saved registers.) The type information for variables is in
the Program form, so we recommend adding another parameter to the
build-interference function to communicate this alist.

The spilling of vector-typed variables to the root stack can be handled
after graph coloring, when choosing how to assign the colors (integers) to
registers and stack locations. The Program output of this pass changes to
also record the number of spills to the root stack.

5.9 Print x86

Figure 5.17 shows the output of the print-x86 pass on the running example.
In the prelude and conclusion of the main function, we treat the root stack
very much like the regular stack in that we move the root stack pointer
(r15) to make room for the spills to the root stack, except that the root
stack grows up instead of down. For the running example, there was just
one spill so we increment r15 by 8 bytes. In the conclusion we decrement
r15 by 8 bytes.

One issue that deserves special care is that there may be a call to collect
prior to the initializing assignments for all the variables in the root stack.
We do not want the garbage collector to accidentally think that some unini-
tialized variable is a pointer that needs to be followed. Thus, we zero-out
all locations on the root stack in the prelude of main. In Figure 5.17, the
instruction movq $0, (%r15) accomplishes this task. The garbage collector
tests each root to see if it is null prior to dereferencing it.

Figure 5.18 gives an overview of all the passes needed for the compilation
of RVec.

112 5. TUPLES AND GARBAGE COLLECTION

block35:
movq free_ptr(%rip), %rcx
addq $16, free_ptr(%rip)
movq %rcx, %r11
movq $131, 0(%r11)
movq %rcx, %r11
movq -8(%r15), %rax
movq %rax, 8(%r11)
movq $0, %rdx
movq %rcx, %r11
movq 8(%r11), %rcx
movq %rcx, %r11
movq 8(%r11), %rax
jmp conclusion

block36:
movq $0, %rcx
jmp block35

block38:
movq free_ptr(%rip), %rcx
addq $16, free_ptr(%rip)
movq %rcx, %r11
movq $3, 0(%r11)
movq %rcx, %r11
movq %rbx, 8(%r11)
movq $0, %rdx
movq %rcx, -8(%r15)
movq free_ptr(%rip), %rcx
addq $16, %rcx
movq fromspace_end(%rip), %rdx
cmpq %rdx, %rcx
jl block36
movq %r15, %rdi
movq $16, %rsi
callq collect
jmp block35

block39:
movq $0, %rcx
jmp block38

start:
movq $42, %rbx
movq free_ptr(%rip), %rdx
addq $16, %rdx
movq fromspace_end(%rip), %rcx
cmpq %rcx, %rdx
jl block39
movq %r15, %rdi
movq $16, %rsi
callq collect
jmp block38

.globl main
main:

pushq %rbp
movq %rsp, %rbp
pushq %r13
pushq %r12
pushq %rbx
pushq %r14
subq $0, %rsp
movq $16384, %rdi
movq $16384, %rsi
callq initialize
movq rootstack_begin(%rip), %r15
movq $0, (%r15)
addq $8, %r15
jmp start

conclusion:
subq $8, %r15
addq $0, %rsp
popq %r14
popq %rbx
popq %r12
popq %r13
popq %rbp
retq

Figure 5.17: Output of the print-x86 pass.

5.10. CHALLENGE: SIMPLE STRUCTURES 113

5.10 Challenge: Simple Structures
Figure 5.19 defines the concrete syntax for Rs3, which extends R3 with sup-
port for simple structures. Recall that a struct in Typed Racket is a user-
defined data type that contains named fields and that is heap allocated,
similar to a vector. The following is an example of a structure definition, in
this case the definition of a point type.
(struct point ([x : Integer] [y : Integer]) #:mutable)

An instance of a structure is created using function call syntax, with the
name of the structure in the function position:
(point 7 12)

Function-call syntax is also used to read the value in a field of a structure.
The function name is formed by the structure name, a dash, and the field
name. The following example uses point-x and point-y to access the x
and y fields of two point instances.

(let ([pt1 (point 7 12)])
(let ([pt2 (point 4 3)])
(+ (- (point-x pt1) (point-x pt2))

(- (point-y pt1) (point-y pt2)))))

Similarly, to write to a field of a structure, use its set function, whose name
starts with set-, followed by the structure name, then a dash, then the field
name, and concluded with an exclamation mark. The following example
uses set-point-x! to change the x field from 7 to 42.

(let ([pt (point 7 12)])
(let ([_ (set-point-x! pt 42)])
(point-x pt)))

Exercise 28. Extend your compiler with support for simple structures,
compiling Rs3 to x86 assembly code. Create five new test cases that use
structures and test your compiler.

5.11 Challenge: Generational Collection
The copying collector described in Section 5.2 can incur significant runtime
overhead because the call to collect takes time proportional to all of the
live data. One way to reduce this overhead is to reduce how much data is

114 5. TUPLES AND GARBAGE COLLECTION

RVec RVec RVec RVec RAlloc

CVec

x86Var
Global

x86Var
Global x86Var

Global

x86Var
Global x86Global

x86Global

shrink uniquify expose-alloc. remove-complex.

explicate-control

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 5.18: Diagram of the passes for RVec, a language with tuples.

type ::= Integer | Boolean | (Vector type . . .) | Void | var
cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp . . .) | (vector-ref exp int)
| (vector-set! exp int exp)
| (void) | (var exp . . .)

def ::= (struct var ([var : type] . . .) #:mutable)
Rs3 ::= def . . . exp

Figure 5.19: The concrete syntax of Rs3, extending RVec (Figure 5.1).

5.11. CHALLENGE: GENERATIONAL COLLECTION 115

inspected in each call to collect. In particular, researchers have observed
that recently allocated data is more likely to become garbage then data that
has survived one or more previous calls to collect. This insight motivated
the creation of generational garbage collectors that 1) segregates data ac-
cording to its age into two or more generations, 2) allocates less space for
younger generations, so collecting them is faster, and more space for the
older generations, and 3) performs collection on the younger generations
more frequently then for older generations [101].

For this challenge assignment, the goal is to adapt the copying collector
implemented in runtime.c to use two generations, one for young data and
one for old data. Each generation consists of a FromSpace and a ToSpace.
The following is a sketch of how to adapt the collect function to use the
two generations.

1. Copy the young generation’s FromSpace to its ToSpace then switch
the role of the ToSpace and FromSpace

2. If there is enough space for the requested number of bytes in the young
FromSpace, then return from collect.

3. If there is not enough space in the young FromSpace for the requested
bytes, then move the data from the young generation to the old one
with the following steps:

(a) If there is enough room in the old FromSpace, copy the young
FromSpace to the old FromSpace and then return.

(b) If there is not enough room in the old FromSpace, then collect the
old generation by copying the old FromSpace to the old ToSpace
and swap the roles of the old FromSpace and ToSpace.

(c) If there is enough room now, copy the young FromSpace to the old
FromSpace and return. Otherwise, allocate a larger FromSpace
and ToSpace for the old generation. Copy the young FromSpace
and the old FromSpace into the larger FromSpace for the old
generation and then return.

We recommend that you generalize the cheney function so that it can be
used for all the copies mentioned above: between the young FromSpace and
ToSpace, between the old FromSpace and ToSpace, and between the young
FromSpace and old FromSpace. This can be accomplished by adding param-
eters to cheney that replace its use of the global variables fromspace_begin,
fromspace_end, tospace_begin, and tospace_end.

116 5. TUPLES AND GARBAGE COLLECTION

Note that the collection of the young generation does not traverse the
old generation. This introduces a potential problem: there may be young
data that is only reachable through pointers in the old generation. If these
pointers are not taken into account, the collector could throw away young
data that is live! One solution, called pointer recording, is to maintain a
set of all the pointers from the old generation into the new generation and
consider this set as part of the root set. To maintain this set, the compiler
must insert extra instructions around every vector-set!. If the vector
being modified is in the old generation, and if the value being written is a
pointer into the new generation, than that pointer must be added to the set.
Also, if the value being overwritten was a pointer into the new generation,
then that pointer should be removed from the set.

Exercise 29. Adapt the collect function in runtime.c to implement gen-
erational garbage collection, as outlined in this section. Update the code
generation for vector-set! to implement pointer recording. Make sure
that your new compiler and runtime passes your test suite.

6

Functions

This chapter studies the compilation of functions similar to those found in
the C language. This corresponds to a subset of Typed Racket in which
only top-level function definitions are allowed. This kind of function is an
important stepping stone to implementing lexically-scoped functions, that
is, lambda abstractions, which is the topic of Chapter 7.

6.1 The RFun Language
The concrete and abstract syntax for function definitions and function ap-
plication is shown in Figures 6.1 and 6.2, where we define the RFun language.
Programs in RFun begin with zero or more function definitions. The function
names from these definitions are in-scope for the entire program, including
all other function definitions (so the ordering of function definitions does not
matter). The concrete syntax for function application is (exp exp . . .) where
the first expression must evaluate to a function and the rest are the argu-
ments. The abstract syntax for function application is (Apply exp exp . . .).

Functions are first-class in the sense that a function pointer is data and
can be stored in memory or passed as a parameter to another function.
Thus, we introduce a function type, written

(type1 · · · typen -> typer)

for a function whose n parameters have the types type1 through typen and
whose return type is typer. The main limitation of these functions (with
respect to Racket functions) is that they are not lexically scoped. That is,
the only external entities that can be referenced from inside a function body
are other globally-defined functions. The syntax of RFun prevents functions
from being nested inside each other.

117

118 6. FUNCTIONS

type ::= Integer | Boolean | (Vector type . . .) | Void | (type . . . -> type)
cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp . . .) | (vector-ref exp int)
| (vector-set! exp int exp) | (void) | (has-type exp type)
| (exp exp . . .)

def ::= (define (var [var:type] . . .) : type exp)
RFun ::= def . . . exp

Figure 6.1: The concrete syntax of RFun, extending RVec (Figure 5.1).

exp ::= (Int int)(Var var) | (Let var exp exp)
| (Prim op (exp . . .))
| (Bool bool) | (If exp exp exp)
| (Void) | (HasType exp type) | (Apply exp exp . . .)

def ::= (Def var ([var:type] . . .) type ’() exp)
RFun ::= (ProgramDefsExp ’() (def . . .)) exp)

Figure 6.2: The abstract syntax of RFun, extending RVec (Figure 5.3).

6.2. FUNCTIONS IN X86 119

(define (map-vec [f : (Integer -> Integer)]
[v : (Vector Integer Integer)])

: (Vector Integer Integer)
(vector (f (vector-ref v 0)) (f (vector-ref v 1))))

(define (add1 [x : Integer]) : Integer
(+ x 1))

(vector-ref (map-vec add1 (vector 0 41)) 1)

Figure 6.3: Example of using functions in RFun.

The program in Figure 6.3 is a representative example of defining and
using functions in RFun. We define a function map-vec that applies some
other function f to both elements of a vector and returns a new vector
containing the results. We also define a function add1. The program applies
map-vec to add1 and (vector 0 41). The result is (vector 1 42), from
which we return the 42.

The definitional interpreter for RFun is in Figure 6.4. The case for the
ProgramDefsExp form is responsible for setting up the mutual recursion
between the top-level function definitions. We use the classic back-patching
approach that uses mutable variables and makes two passes over the function
definitions [60]. In the first pass we set up the top-level environment using
a mutable cons cell for each function definition. Note that the lambda value
for each function is incomplete; it does not yet include the environment.
Once the top-level environment is constructed, we then iterate over it and
update the lambda values to use the top-level environment.

The type checker for RFun is is in Figure 6.5.

6.2 Functions in x86

The x86 architecture provides a few features to support the implementation
of functions. We have already seen that x86 provides labels so that one can
refer to the location of an instruction, as is needed for jump instructions.
Labels can also be used to mark the beginning of the instructions for a
function. Going further, we can obtain the address of a label by using the
leaq instruction and PC-relative addressing. For example, the following
puts the address of the add1 label into the rbx register.

leaq add1(%rip), %rbx

120 6. FUNCTIONS

(define interp-Rfun-class
(class interp-Rvec-class
(super-new)

(define/override ((interp-exp env) e)
(define recur (interp-exp env))
(match e
[(Var x) (unbox (dict-ref env x))]
[(Let x e body)
(define new-env (dict-set env x (box (recur e))))
((interp-exp new-env) body)]
[(Apply fun args)
(define fun-val (recur fun))
(define arg-vals (for/list ([e args]) (recur e)))
(match fun-val
[`(function (,xs ...) ,body ,fun-env)
(define params-args (for/list ([x xs] [arg arg-vals])

(cons x (box arg))))
(define new-env (append params-args fun-env))
((interp-exp new-env) body)]
[else (error 'interp-exp "expected function, not ~a" fun-val)])]

[else ((super interp-exp env) e)]
))

(define/public (interp-def d)
(match d
[(Def f (list `[,xs : ,ps] ...) rt _ body)
(cons f (box `(function ,xs ,body ())))]))

(define/override (interp-program p)
(match p
[(ProgramDefsExp info ds body)
(let ([top-level (for/list ([d ds]) (interp-def d))])
(for/list ([f (in-dict-values top-level)])
(set-box! f (match (unbox f)

[`(function ,xs ,body ())
`(function ,xs ,body ,top-level)])))

((interp-exp top-level) body))]))
))

(define (interp-Rfun p)
(send (new interp-Rfun-class) interp-program p))

Figure 6.4: Interpreter for the RFun language.

6.2. FUNCTIONS IN X86 121

(define type-check-Rfun-class
(class type-check-Rvec-class

(super-new)
(inherit check-type-equal?)

(define/public (type-check-apply env e es)
(define-values (e^ ty) ((type-check-exp env) e))
(define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])

((type-check-exp env) e)))
(match ty

[`(,ty^* ... -> ,rt)
(for ([arg-ty ty*] [param-ty ty^*])

(check-type-equal? arg-ty param-ty (Apply e es)))
(values e^ e* rt)]))

(define/override (type-check-exp env)
(lambda (e)

(match e
[(FunRef f)
(values (FunRef f) (dict-ref env f))]

[(Apply e es)
(define-values (e^ es^ rt) (type-check-apply env e es))
(values (Apply e^ es^) rt)]

[(Call e es)
(define-values (e^ es^ rt) (type-check-apply env e es))
(values (Call e^ es^) rt)]

[else ((super type-check-exp env) e)])))

(define/public (type-check-def env)
(lambda (e)

(match e
[(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
(define new-env (append (map cons xs ps) env))
(define-values (body^ ty^) ((type-check-exp new-env) body))
(check-type-equal? ty^ rt body)
(Def f p:t* rt info body^)])))

(define/public (fun-def-type d)
(match d

[(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))

(define/override (type-check-program e)
(match e

[(ProgramDefsExp info ds body)
(define new-env (for/list ([d ds])

(cons (Def-name d) (fun-def-type d))))
(define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
(define-values (body^ ty) ((type-check-exp new-env) body))
(check-type-equal? ty 'Integer body)
(ProgramDefsExp info ds^ body^)]))))

(define (type-check-Rfun p)
(send (new type-check-Rfun-class) type-check-program p))

Figure 6.5: Type checker for the RFun language.

122 6. FUNCTIONS

The instruction pointer register rip (aka. the program counter) always
points to the next instruction to be executed. When combined with an
label, as in add1(%rip), the linker computes the distance d between the
address of add1 and where the rip would be at that moment and then
changes add1(%rip) to d(%rip), which at runtime will compute the address
of add1.

In Section 2.2 we used of the callq instruction to jump to a function
whose location is given by a label. To support function calls in this chapter
we instead will be jumping to a function whose location is given by an
address in a register, that is, we need to make an indirect function call. The
x86 syntax for this is a callq instruction but with an asterisk before the
register name.

callq *%rbx

6.2.1 Calling Conventions

The callq instruction provides partial support for implementing functions:
it pushes the return address on the stack and it jumps to the target. How-
ever, callq does not handle

1. parameter passing,

2. pushing frames on the procedure call stack and popping them off, or

3. determining how registers are shared by different functions.

Regarding (1) parameter passing, recall that the following six registers
are used to pass arguments to a function, in this order.
rdi rsi rdx rcx r8 r9

If there are more than six arguments, then the convention is to use space
on the frame of the caller for the rest of the arguments. However, to ease
the implementation of efficient tail calls (Section 6.2.2), we arrange to never
need more than six arguments. Also recall that the register rax is for the
return value of the function.

Regarding (2) frames and the procedure call stack, recall from Section 2.2
that the stack grows down, with each function call using a chunk of space
called a frame. The caller sets the stack pointer, register rsp, to the last
data item in its frame. The callee must not change anything in the caller’s
frame, that is, anything that is at or above the stack pointer. The callee is
free to use locations that are below the stack pointer.

6.2. FUNCTIONS IN X86 123

Recall that we are storing variables of vector type on the root stack. So
the prelude needs to move the root stack pointer r15 up and the conclusion
needs to move the root stack pointer back down. Also, the prelude must
initialize to 0 this frame’s slots in the root stack to signal to the garbage
collector that those slots do not yet contain a pointer to a vector. Otherwise
the garbage collector will interpret the garbage bits in those slots as memory
addresses and try to traverse them, causing serious mayhem!

Regarding (3) the sharing of registers between different functions, recall
from Section 3.1 that the registers are divided into two groups, the caller-
saved registers and the callee-saved registers. The caller should assume that
all the caller-saved registers get overwritten with arbitrary values by the
callee. That is why we recommend in Section 3.1 that variables that are live
during a function call should not be assigned to caller-saved registers.

On the flip side, if the callee wants to use a callee-saved register, the callee
must save the contents of those registers on their stack frame and then put
them back prior to returning to the caller. That is why we recommended in
Section 3.1 that if the register allocator assigns a variable to a callee-saved
register, then the prelude of the main function must save that register to
the stack and the conclusion of main must restore it. This recommendation
now generalizes to all functions.

Also recall that the base pointer, register rbp, is used as a point-of-
reference within a frame, so that each local variable can be accessed at a
fixed offset from the base pointer (Section 2.2). Figure 6.6 shows the general
layout of the caller and callee frames.

6.2.2 Efficient Tail Calls

In general, the amount of stack space used by a program is determined by
the longest chain of nested function calls. That is, if function f1 calls f2, f2
calls f3, . . ., and fn−1 calls fn, then the amount of stack space is bounded by
O(n). The depth n can grow quite large in the case of recursive or mutually
recursive functions. However, in some cases we can arrange to use only
constant space, i.e. O(1), instead of O(n).

If a function call is the last action in a function body, then that call is
said to be a tail call. For example, in the following program, the recursive
call to tail-sum is a tail call.

(define (tail-sum [n : Integer] [r : Integer]) : Integer
(if (eq? n 0)

r

124 6. FUNCTIONS

Caller View Callee View Contents Frame
8(%rbp) return address

Caller
0(%rbp) old rbp
-8(%rbp) callee-saved 1

.
−8j(%rbp) callee-saved j

−8(j + 1)(%rbp) local variable 1
.

−8(j + k)(%rbp) local variable k
8(%rbp) return address

Callee
0(%rbp) old rbp
-8(%rbp) callee-saved 1

.
−8n(%rbp) callee-saved n

−8(n+ 1)(%rbp) local variable 1
.

−8(n+m)(%rsp) local variable m

Figure 6.6: Memory layout of caller and callee frames.

(tail-sum (- n 1) (+ n r))))

(+ (tail-sum 5 0) 27)

At a tail call, the frame of the caller is no longer needed, so we can pop the
caller’s frame before making the tail call. With this approach, a recursive
function that only makes tail calls will only use O(1) stack space. Functional
languages like Racket typically rely heavily on recursive functions, so they
typically guarantee that all tail calls will be optimized in this way.

However, some care is needed with regards to argument passing in tail
calls. As mentioned above, for arguments beyond the sixth, the convention
is to use space in the caller’s frame for passing arguments. But for a tail call
we pop the caller’s frame and can no longer use it. Another alternative is to
use space in the callee’s frame for passing arguments. However, this option
is also problematic because the caller and callee’s frame overlap in memory.
As we begin to copy the arguments from their sources in the caller’s frame,
the target locations in the callee’s frame might overlap with the sources for
later arguments! We solve this problem by not using the stack for passing
more than six arguments but instead using the heap, as we describe in the
Section 6.5.

6.3. SHRINK RFUN 125

As mentioned above, for a tail call we pop the caller’s frame prior to
making the tail call. The instructions for popping a frame are the instruc-
tions that we usually place in the conclusion of a function. Thus, we also
need to place such code immediately before each tail call. These instructions
include restoring the callee-saved registers, so it is good that the argument
passing registers are all caller-saved registers.

One last note regarding which instruction to use to make the tail call.
When the callee is finished, it should not return to the current function,
but it should return to the function that called the current one. Thus, the
return address that is already on the stack is the right one, and we should
not use callq to make the tail call, as that would unnecessarily overwrite
the return address. Instead we can simply use the jmp instruction. Like
the indirect function call, we write an indirect jump with a register prefixed
with an asterisk. We recommend using rax to hold the jump target because
the preceding conclusion overwrites just about everything else.

jmp *%rax

6.3 Shrink RFun

The shrink pass performs a minor modification to ease the later passes. This
pass introduces an explicit main function and changes the top ProgramDefsExp
form to ProgramDefs as follows.

(ProgramDefsExp info (def . . .) exp)
⇒ (ProgramDefs info (def . . . mainDef))

where mainDef is
(Def 'main '() 'Integer '() exp′)

6.4 Reveal Functions and the RFunRef language
The syntax of RFun is inconvenient for purposes of compilation in one re-
spect: it conflates the use of function names and local variables. This is a
problem because we need to compile the use of a function name differently
than the use of a local variable; we need to use leaq to convert the function
name (a label in x86) to an address in a register. Thus, it is a good idea
to create a new pass that changes function references from just a symbol f
to (FunRef f). This pass is named reveal-functions and the output lan-
guage, RFunRef, is defined in Figure 6.7. The concrete syntax for a function
reference is (fun-ref f).

126 6. FUNCTIONS

exp ::= . . . | (FunRef var)
def ::= (Def var ([var:type] . . .) type ’() exp)
RFunRef ::= (ProgramDefs ’() (def . . .))

Figure 6.7: The abstract syntax RFunRef, an extension of RFun (Figure 6.2).

Placing this pass after uniquify will make sure that there are no lo-
cal variables and functions that share the same name. On the other hand,
reveal-functions needs to come before the explicate-control pass be-
cause that pass helps us compile FunRef forms into assignment statements.

6.5 Limit Functions
Recall that we wish to limit the number of function parameters to six so
that we do not need to use the stack for argument passing, which makes it
easier to implement efficient tail calls. However, because the input language
RFun supports arbitrary numbers of function arguments, we have some work
to do!

This pass transforms functions and function calls that involve more than
six arguments to pass the first five arguments as usual, but it packs the rest
of the arguments into a vector and passes it as the sixth argument.

Each function definition with too many parameters is transformed as
follows.
(Def f ([x1:T1] . . . [xn:Tn]) Tr info body)
⇒
(Def f ([x1:T1] . . . [x5:T5] [vec : (Vector T6 . . . Tn)]) Tr info body′)

where the body is transformed into body′ by replacing the occurrences of the
later parameters with vector references.
(Var xi) ⇒ (Prim 'vector-ref (list vec (Int (i− 6))))

For function calls with too many arguments, the limit-functions pass
transforms them in the following way.

(e0 e1 . . . en) ⇒ (e0 e1 . . . e5 (vector e6 . . . en))

6.6 Remove Complex Operands
The primary decisions to make for this pass is whether to classify FunRef
and Apply as either atomic or complex expressions. Recall that a simple

6.7. EXPLICATE CONTROL AND THE CFUN LANGUAGE 127

atm ::= (Int int) | (Var var) | (Bool bool) | (Void)
exp ::= atm | (Prim read ())

| (Prim - (atm)) | (Prim + (atm atm))
| (Let var exp exp)
| (Prim ’not (atm))
| (Prim cmp (atm atm)) | (If exp exp exp)
| (Collect int) | (Allocate int type) | (GlobalValue var)
| (FunRef var) | (Apply atm atm . . .)

def ::= (Def var ([var:type] . . .) type ’() exp)
R†4 ::= (ProgramDefs ’() def)

Figure 6.8: RANF
Fun is RFun in administrative normal form (ANF).

expression will eventually end up as just an immediate argument of an x86
instruction. Function application will be translated to a sequence of instruc-
tions, so Apply must be classified as complex expression. On the other hand,
the arguments of Apply should be atomic expressions. Regarding FunRef,
as discussed above, the function label needs to be converted to an address
using the leaq instruction. Thus, even though FunRef seems rather simple,
it needs to be classified as a complex expression so that we generate an as-
signment statement with a left-hand side that can serve as the target of the
leaq. Figure 6.8 defines the output language RANF

Fun of this pass.

6.7 Explicate Control and the CFun language

Figure 6.9 defines the abstract syntax for CFun, the output of explicate-control.
(The concrete syntax is given in Figure 12.5 of the Appendix.) The aux-
iliary functions for assignment and tail contexts should be updated with
cases for Apply and FunRef and the function for predicate context should
be updated for Apply but not FunRef. (A FunRef can’t be a Boolean.) In
assignment and predicate contexts, Apply becomes Call, whereas in tail
position Apply becomes TailCall. We recommend defining a new auxiliary
function for processing function definitions. This code is similar to the case
for Program in RVec. The top-level explicate-control function that han-
dles the ProgramDefs form of RFun can then apply this new function to all
the function definitions.

128 6. FUNCTIONS

atm ::= (Int int) | (Var var) | (Bool bool)
cmp ::= eq? | <
exp ::= atm | (Prim read ())

| (Prim - (atm)) | (Prim + (atm atm))
| (Prim not (atm)) | (Prim cmp (atm atm))
| (Allocate int type)
| (Prim ’vector-ref (atm (Int int)))
| (Prim ’vector-set! (list atm (Int int) atm))
| (GlobalValue var) | (Void)
| (FunRef label) | (Call atm (atm . . .))

stmt ::= (Assign (Var var) exp) | (Collect int)
tail ::= (Return exp) | (Seq stmt tail) | (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
| (TailCall atm atm . . .)

def ::= (Def label ([var:type] . . .) type info ((label . tail) . . .))
CFun ::= (ProgramDefs info (def . . .))

Figure 6.9: The abstract syntax of CFun, extending CVec (Figure 5.13).

arg ::= $int | %reg | int(%reg) | %bytereg | var(%rip) | (fun-ref label)
cc ::= e | l | le | g | ge
instr ::= . . . | callq *arg | tailjmp arg | leaq arg, %reg
block ::= instr . . .
def ::= (define (label) ((label . block) . . .))
x86callq∗ ::= def . . .

Figure 6.10: The concrete syntax of x86callq∗ (extends x86Global of Fig-
ure 5.14).

6.8 Select Instructions and the x86callq∗ Language

The output of select instructions is a program in the x86callq∗ language,
whose syntax is defined in Figure 6.11.

An assignment of a function reference to a variable becomes a load-
effective-address instruction as follows:

lhs = (fun-ref f); ⇒ leaq (fun-ref f), lhs′

Regarding function definitions, we need to remove the parameters and
instead perform parameter passing using the conventions discussed in Sec-
tion 6.2. That is, the arguments are passed in registers. We recommend

6.8. SELECT INSTRUCTIONS AND THE X86CALLQ∗ LANGUAGE 129

arg ::= (Int int) | (Reg reg) | (Deref reg int) | (ByteReg reg)
| (Global var) | (FunRef label)

instr ::= . . . | (IndirectCallq arg int) | (TailJmp arg int)
| (Instr ’leaq (arg (Reg reg)))

block ::= (Block info (instr . . .))
def ::= (Def label ’() type info ((label . block) . . .))
x86callq∗ ::= (ProgramDefs info (def . . .))

Figure 6.11: The abstract syntax of x86callq∗ (extends x86Global of Fig-
ure 5.15).

turning the parameters into local variables and generating instructions at
the beginning of the function to move from the argument passing registers
to these local variables.
(Def f '([x1 : T1] [x2 : T2] . . .) Tr info G)
⇒
(Def f '() 'Integer info′ G′)

The G′ control-flow graph is the same as G except that the start block
is modified to add the instructions for moving from the argument registers
to the parameter variables. So the start block of G shown on the left is
changed to the code on the right.

start:
instr1
...
instrn

⇒

start:
movq %rdi, x1
movq %rsi, x2
...
instr1
...
instrn

By changing the parameters to local variables, we are giving the register
allocator control over which registers or stack locations to use for them.
If you implemented the move-biasing challenge (Section 3.7), the register
allocator will try to assign the parameter variables to the corresponding
argument register, in which case the patch-instructions pass will remove
the movq instruction. This happens in the example translation in Figure 6.13
of Section 6.12, in the add function. Also, note that the register allocator will
perform liveness analysis on this sequence of move instructions and build the
interference graph. So, for example, x1 will be marked as interfering with

130 6. FUNCTIONS

rsi and that will prevent the assignment of x1 to rsi, which is good, because
that would overwrite the argument that needs to move into x2.

Next, consider the compilation of function calls. In the mirror image
of handling the parameters of function definitions, the arguments need to
be moved to the argument passing registers. The function call itself is per-
formed with an indirect function call. The return value from the function is
stored in rax, so it needs to be moved into the lhs.

lhs = (call fun arg1 arg2 . . .));
⇒
movq arg1, %rdi
movq arg2, %rsi
...
callq *fun
movq %rax, lhs

The IndirectCallq AST node includes an integer for the arity of the func-
tion, i.e., the number of parameters. That information is useful in the
uncover-live pass for determining which argument-passing registers are
potentially read during the call.

For tail calls, the parameter passing is the same as non-tail calls: generate
instructions to move the arguments into to the argument passing registers.
After that we need to pop the frame from the procedure call stack. However,
we do not yet know how big the frame is; that gets determined during register
allocation. So instead of generating those instructions here, we invent a
new instruction that means “pop the frame and then do an indirect jump”,
which we name TailJmp. The abstract syntax for this instruction includes
an argument that specifies where to jump and an integer that represents the
arity of the function being called.

Recall that in Section 2.6 we recommended using the label start for the
initial block of a program, and in Section 2.7 we recommended labeling the
conclusion of the program with conclusion, so that (Return arg) can be
compiled to an assignment to rax followed by a jump to conclusion. With
the addition of function definitions, we will have a starting block and con-
clusion for each function, but their labels need to be unique. We recommend
prepending the function’s name to start and conclusion, respectively, to
obtain unique labels. (Alternatively, one could gensym labels for the start
and conclusion and store them in the info field of the function definition.)

6.9. REGISTER ALLOCATION 131

6.9 Register Allocation

6.9.1 Liveness Analysis

The IndirectCallq instruction should be treated like Callq regarding its
written locationsW , in that they should include all the caller-saved registers.
Recall that the reason for that is to force call-live variables to be assigned
to callee-saved registers or to be spilled to the stack.

Regarding the set of read locations R the arity field of TailJmp and
IndirectCallq determines how many of the argument-passing registers
should be considered as read by those instructions.

6.9.2 Build Interference Graph

With the addition of function definitions, we compute an interference graph
for each function (not just one for the whole program).

Recall that in Section 5.8 we discussed the need to spill vector-typed
variables that are live during a call to the collect. With the addition of
functions to our language, we need to revisit this issue. Many functions
perform allocation and therefore have calls to the collector inside of them.
Thus, we should not only spill a vector-typed variable when it is live dur-
ing a call to collect, but we should spill the variable if it is live during
any function call. Thus, in the build-interference pass, we recommend
adding interference edges between call-live vector-typed variables and the
callee-saved registers (in addition to the usual addition of edges between
call-live variables and the caller-saved registers).

6.9.3 Allocate Registers

The primary change to the allocate-registers pass is adding an auxiliary
function for handling definitions (the def non-terminal in Figure 6.11) with
one case for function definitions. The logic is the same as described in
Chapter 3, except now register allocation is performed many times, once for
each function definition, instead of just once for the whole program.

6.10 Patch Instructions

In patch-instructions, you should deal with the x86 idiosyncrasy that the
destination argument of leaq must be a register. Additionally, you should
ensure that the argument of TailJmp is rax, our reserved register—this is to

132 6. FUNCTIONS

make code generation more convenient, because we trample many registers
before the tail call (as explained in the next section).

6.11 Print x86
For the print-x86 pass, the cases for FunRef and IndirectCallq are straight-
forward: output their concrete syntax.
(FunRef label) ⇒ label(%rip)
(IndirectCallq arg int) ⇒ callq *arg’

The TailJmp node requires a bit work. A straightforward translation
of TailJmp would be jmp *arg, but before the jump we need to pop the
current frame. This sequence of instructions is the same as the code for the
conclusion of a function, except the retq is replaced with jmp *arg.

Regarding function definitions, you will need to generate a prelude and
conclusion for each one. This code is similar to the prelude and conclusion
that you generated for the main function in Chapter 5. To review, the
prelude of every function should carry out the following steps.

1. Start with .global and .align directives followed by the label for the
function. (See Figure 6.13 for an example.)

2. Push rbp to the stack and set rbp to current stack pointer.

3. Push to the stack all of the callee-saved registers that were used for
register allocation.

4. Move the stack pointer rsp down by the size of the stack frame for
this function, which depends on the number of regular spills. (Aligned
to 16 bytes.)

5. Move the root stack pointer r15 up by the size of the root-stack frame
for this function, which depends on the number of spilled vectors.

6. Initialize to zero all of the entries in the root-stack frame.

7. Jump to the start block.

The prelude of the main function has one additional task: call the initialize
function to set up the garbage collector and move the value of the global
rootstack_begin in r15. This should happen before step 5 above, which
depends on r15.

The conclusion of every function should do the following.

6.12. AN EXAMPLE TRANSLATION 133

1. Move the stack pointer back up by the size of the stack frame for this
function.

2. Restore the callee-saved registers by popping them from the stack.

3. Move the root stack pointer back down by the size of the root-stack
frame for this function.

4. Restore rbp by popping it from the stack.

5. Return to the caller with the retq instruction.

Exercise 30. Expand your compiler to handle RFun as outlined in this
chapter. Create 5 new programs that use functions, including examples
that pass functions and return functions from other functions, recursive
functions, functions that create vectors, and functions that make tail calls.
Test your compiler on these new programs and all of your previously created
test programs.

Figure 6.12 gives an overview of the passes for compiling RFun to x86.

6.12 An Example Translation
Figure 6.13 shows an example translation of a simple function in RFun to
x86. The figure also includes the results of the explicate-control and
select-instructions passes.

134 6. FUNCTIONS

RFun RFun RFun

RFunRefRFunRefRAlloc
FunRefRAlloc

FunRef

CFun

x86Var
callq∗ x86Var

callq∗ x86callq∗

x86callq∗x86Var
callq∗ x86Var

callq∗

shrink uniquify

reveal-functions

limit-functions

expose-alloc.remove-complex.

explicate-control

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 6.12: Diagram of the passes for RFun, a language with functions.

6.12. AN EXAMPLE TRANSLATION 135

(define (add [x : Integer] [y : Integer])
: Integer
(+ x y))

(add 40 2)

⇓
(define (add86 [x87 : Integer]

[y88 : Integer]) : Integer
add86start:

return (+ x87 y88);
)

(define (main) : Integer ()
mainstart:

tmp89 = (fun-ref add86);
(tail-call tmp89 40 2)

)

⇒

(define (add86) : Integer
add86start:

movq %rdi, x87
movq %rsi, y88
movq x87, %rax
addq y88, %rax
jmp add11389conclusion

)
(define (main) : Integer

mainstart:
leaq (fun-ref add86), tmp89
movq $40, %rdi
movq $2, %rsi
tail-jmp tmp89

)

⇓

.globl add86

.align 16
add86:

pushq %rbp
movq %rsp, %rbp
jmp add86start

add86start:
movq %rdi, %rax
addq %rsi, %rax
jmp add86conclusion

add86conclusion:
popq %rbp
retq

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp
movq $16384, %rdi
movq $16384, %rsi
callq initialize
movq rootstack_begin(%rip), %r15
jmp mainstart

mainstart:
leaq add86(%rip), %rcx
movq $40, %rdi
movq $2, %rsi
movq %rcx, %rax
popq %rbp
jmp *%rax

mainconclusion:
popq %rbp
retq

Figure 6.13: Example compilation of a simple function to x86.

136 6. FUNCTIONS

7

Lexically Scoped Functions

This chapter studies lexically scoped functions as they appear in functional
languages such as Racket. By lexical scoping we mean that a function’s
body may refer to variables whose binding site is outside of the function,
in an enclosing scope. Consider the example in Figure 7.1 written in Rλ,
which extends RFun with anonymous functions using the lambda form. The
body of the lambda, refers to three variables: x, y, and z. The binding sites
for x and y are outside of the lambda. Variable y is bound by the enclosing
let and x is a parameter of function f. The lambda is returned from the
function f. The main expression of the program includes two calls to f with
different arguments for x, first 5 then 3. The functions returned from f are
bound to variables g and h. Even though these two functions were created
by the same lambda, they are really different functions because they use
different values for x. Applying g to 11 produces 20 whereas applying h to
15 produces 22. The result of this program is 42.

The approach that we take for implementing lexically scoped functions

(define (f [x : Integer]) : (Integer -> Integer)
(let ([y 4])

(lambda: ([z : Integer]) : Integer
(+ x (+ y z)))))

(let ([g (f 5)])
(let ([h (f 3)])
(+ (g 11) (h 15))))

Figure 7.1: Example of a lexically scoped function.

137

138 7. LEXICALLY SCOPED FUNCTIONS

is to compile them into top-level function definitions, translating from Rλ
into RFun. However, the compiler will need to provide special treatment for
variable occurrences such as x and y in the body of the lambda of Figure 7.1.
After all, an RFun function may not refer to variables defined outside of it.
To identify such variable occurrences, we review the standard notion of free
variable.

Definition 31. A variable is free in expression e if the variable occurs inside
e but does not have an enclosing binding in e.

For example, in the expression (+ x (+ y z)) the variables x, y, and
z are all free. On the other hand, only x and y are free in the following
expression because z is bound by the lambda.

(lambda: ([z : Integer]) : Integer
(+ x (+ y z)))

So the free variables of a lambda are the ones that will need special
treatment. We need to arrange for some way to transport, at runtime, the
values of those variables from the point where the lambda was created to
the point where the lambda is applied. An efficient solution to the problem,
due to Cardelli [18], is to bundle into a vector the values of the free variables
together with the function pointer for the lambda’s code, an arrangement
called a flat closure (which we shorten to just “closure”). Fortunately, we
have all the ingredients to make closures, Chapter 5 gave us vectors and
Chapter 6 gave us function pointers. The function pointer resides at index
0 and the values for the free variables will fill in the rest of the vector.

Let us revisit the example in Figure 7.1 to see how closures work. It’s a
three-step dance. The program first calls function f, which creates a closure
for the lambda. The closure is a vector whose first element is a pointer
to the top-level function that we will generate for the lambda, the second
element is the value of x, which is 5, and the third element is 4, the value
of y. The closure does not contain an element for z because z is not a free
variable of the lambda. Creating the closure is step 1 of the dance. The
closure is returned from f and bound to g, as shown in Figure 7.2. The
second call to f creates another closure, this time with 3 in the second slot
(for x). This closure is also returned from f but bound to h, which is also
shown in Figure 7.2.

Continuing with the example, consider the application of g to 11 in
Figure 7.1. To apply a closure, we obtain the function pointer in the first
element of the closure and call it, passing in the closure itself and then the
regular arguments, in this case 11. This technique for applying a closure

7.1. THE Rλ LANGUAGE 139

5 4

x y
g

code

3 4

x y
h

Figure 7.2: Example closure representation for the lambda’s in Figure 7.1.

is step 2 of the dance. But doesn’t this lambda only take 1 argument, for
parameter z? The third and final step of the dance is generating a top-level
function for a lambda. We add an additional parameter for the closure and
we insert a let at the beginning of the function for each free variable, to bind
those variables to the appropriate elements from the closure parameter. This
three-step dance is known as closure conversion. We discuss the details of
closure conversion in Section 7.3 and the code generated from the example in
Section 7.4. But first we define the syntax and semantics of Rλ in Section 7.1.

7.1 The Rλ Language

The concrete and abstract syntax for Rλ, a language with anonymous func-
tions and lexical scoping, is defined in Figures 7.3 and 7.4. It adds the
lambda form to the grammar for RFun, which already has syntax for func-
tion application.

Figure 7.5 shows the definitional interpreter for Rλ. The case for lambda
saves the current environment inside the returned lambda. Then the case
for Apply uses the environment from the lambda, the lam-env, when inter-
preting the body of the lambda. The lam-env environment is extended with
the mapping of parameters to argument values.

Figure 7.6 shows how to type check the new lambda form. The body
of the lambda is checked in an environment that includes the current en-
vironment (because it is lexically scoped) and also includes the lambda’s
parameters. We require the body’s type to match the declared return type.

140 7. LEXICALLY SCOPED FUNCTIONS

type ::= Integer | Boolean | (Vector type . . .) | Void | (type . . . -> type)
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (eq? exp exp) | (if exp exp exp)
| (vector exp . . .) | (vector-ref exp int)
| (vector-set! exp int exp) | (void) | (exp exp . . .)
| (procedure-arity exp)
| (lambda: ([var:type] . . .) : type exp)

def ::= (define (var [var:type] . . .) : type exp)
Rλ ::= def . . . exp

Figure 7.3: The concrete syntax of Rλ, extending RFun (Figure 6.1) with
lambda.

op ::= . . . | procedure-arity
exp ::= (Int int)(Var var) | (Let var exp exp)

| (Prim op (exp . . .))
| (Bool bool) | (If exp exp exp)
| (Void) | (HasType exp type) | (Apply exp exp . . .)
| (Lambda ([var:type] . . .) type exp)

def ::= (Def var ([var:type] . . .) type ’() exp)
Rλ ::= (ProgramDefsExp ’() (def . . .) exp)

Figure 7.4: The abstract syntax of Rλ, extending RFun (Figure 6.2).

7.1. THE Rλ LANGUAGE 141

(define interp-Rlambda-class
(class interp-Rfun-class
(super-new)

(define/override (interp-op op)
(match op
['procedure-arity
(lambda (v)
(match v
[`(function (,xs ...) ,body ,lam-env) (length xs)]
[else (error 'interp-op "expected a function, not ~a" v)]))]

[else (super interp-op op)]))

(define/override ((interp-exp env) e)
(define recur (interp-exp env))
(match e
[(Lambda (list `[,xs : ,Ts] ...) rT body)
`(function ,xs ,body ,env)]
[else ((super interp-exp env) e)]))

))

(define (interp-Rlambda p)
(send (new interp-Rlambda-class) interp-program p))

Figure 7.5: Interpreter for Rλ.

(define (type-check-Rlambda env)
(lambda (e)
(match e
[(Lambda (and params `([,xs : ,Ts] ...)) rT body)
(define-values (new-body bodyT)

((type-check-exp (append (map cons xs Ts) env)) body))
(define ty `(,@Ts -> ,rT))
(cond
[(equal? rT bodyT)
(values (HasType (Lambda params rT new-body) ty) ty)]

[else
(error "mismatch in return type" bodyT rT)])]

...
)))

Figure 7.6: Type checking the lambda’s in Rλ.

142 7. LEXICALLY SCOPED FUNCTIONS

exp ::= . . . | (FunRefArity var int)
def ::= (Def var ([var:type] . . .) type ’() exp)
F2 ::= (ProgramDefs ’() (def . . .))

Figure 7.7: The abstract syntax F2, an extension of Rλ (Figure 7.4).

7.2 Reveal Functions and the F2 language

To support the procedure-arity operator we need to communicate the
arity of a function to the point of closure creation. We can accomplish this
by replacing the (FunRef var) struct with one that has a second field for
the arity: (FunRefArity var int). The output of this pass is the language
F2, whose syntax is defined in Figure 7.7.

7.3 Closure Conversion

The compiling of lexically-scoped functions into top-level function defini-
tions is accomplished in the pass convert-to-closures that comes after
reveal-functions and before limit-functions.

As usual, we implement the pass as a recursive function over the AST.
All of the action is in the cases for Lambda and Apply. We transform a
Lambda expression into an expression that creates a closure, that is, a vector
whose first element is a function pointer and the rest of the elements are
the free variables of the Lambda. We use the struct Closure here instead of
using vector so that we can distinguish closures from vectors in Section 7.8
and to record the arity. In the generated code below, the name is a unique
symbol generated to identify the function and the arity is the number of
parameters (the length of ps).
(Lambda ps rt body)
⇒
(Closure arity (cons (FunRef name) fvs))

In addition to transforming each Lambda into a Closure, we create a top-
level function definition for each Lambda, as shown below.
(Def name ([clos : (Vector _ fvts ...)] ps′ ...) rt′

(Let fvs1 (Prim 'vector-ref (list (Var clos) (Int 1)))
...
(Let fvsn (Prim 'vector-ref (list (Var clos) (Int n)))

body′)...))

7.3. CLOSURE CONVERSION 143

The clos parameter refers to the closure. Translate the type annotations
in ps and the return type rt, as discussed in the next paragraph, to obtain
ps′ and rt ′. The types fvts are the types of the free variables in the lambda
and the underscore _ is a dummy type that we use because it is rather
difficult to give a type to the function in the closure’s type.1 The dummy
type is considered to be equal to any other type during type checking. The
sequence of Let forms bind the free variables to their values obtained from
the closure.

Closure conversion turns functions into vectors, so the type annotations
in the program must also be translated. We recommend defining a auxiliary
recursive function for this purpose. Function types should be translated as
follows.

(T1, . . . , Tn -> Tr)
⇒
(Vector ((Vector _) T ′1, . . . , T

′
n -> T ′r))

The above type says that the first thing in the vector is a function pointer.
The first parameter of the function pointer is a vector (a closure) and the
rest of the parameters are the ones from the original function, with types
T ′1, . . . , T

′
n. The Vector type for the closure omits the types of the free

variables because 1) those types are not available in this context and 2) we
do not need them in the code that is generated for function application.

We transform function application into code that retrieves the function
pointer from the closure and then calls the function, passing in the closure
as the first argument. We bind e′ to a temporary variable to avoid code
duplication.

(Apply e es)
⇒
(Let tmp e′

(Apply (Prim 'vector-ref (list (Var tmp) (Int 0))) (cons tmp es′)))

There is also the question of what to do with references top-level function
definitions. To maintain a uniform translation of function application, we
turn function references into closures.

(FunRefArity f n) ⇒ (Closure n (FunRef f) '())

The top-level function definitions need to be updated as well to take an
extra closure parameter.

1To give an accurate type to a closure, we would need to add existential types to the
type checker [77].

144 7. LEXICALLY SCOPED FUNCTIONS

(define (f6 [x7 : Integer]) : (Integer -> Integer)
(let ([y8 4])

(lambda: ([z9 : Integer]) : Integer
(+ x7 (+ y8 z9)))))

(define (main) : Integer
(let ([g0 ((fun-ref-arity f6 1) 5)])

(let ([h1 ((fun-ref-arity f6 1) 3)])
(+ (g0 11) (h1 15)))))

⇒
(define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))

(let ([y8 4])
(closure 1 (list (fun-ref lambda2) x7 y8))))

(define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
(let ([x7 (vector-ref fvs3 1)])

(let ([y8 (vector-ref fvs3 2)])
(+ x7 (+ y8 z9)))))

(define (main) : Integer
(let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])

((vector-ref clos5 0) clos5 5))])
(let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])

((vector-ref clos6 0) clos6 3))])
(+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))

Figure 7.8: Example of closure conversion.

7.4 An Example Translation
Figure 7.8 shows the result of reveal-functions and convert-to-closures
for the example program demonstrating lexical scoping that we discussed at
the beginning of this chapter.

Exercise 32. Expand your compiler to handle Rλ as outlined in this chap-
ter. Create 5 new programs that use lambda functions and make use of
lexical scoping. Test your compiler on these new programs and all of your
previously created test programs.

7.5 Expose Allocation
Compile the (Closure arity (exp . . .)) form into code that allocates and
initializes a vector, similar to the translation of the vector operator in

7.6. EXPLICATE CONTROL AND CCLOS 145

exp ::= . . . | (AllocateClosure int type int)
stmt ::= (Assign (Var var) exp) | (Collect int)
tail ::= (Return exp) | (Seq stmt tail) | (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
| (TailCall atm atm . . .)

def ::= (Def label ([var:type] . . .) type info ((label . tail) . . .))
CClos ::= (ProgramDefs info (def . . .))

Figure 7.9: The abstract syntax of CClos, extending CFun (Figure 6.9).

Section 5.4. The only difference is replacing the use of (Allocate len type)
with (AllocateClosure len type arity).

7.6 Explicate Control and CClos

The output language of explicate-control is CClos whose abstract syntax
is defined in Figure 7.9. The only difference with respect to CFun is the addi-
tion of the AllocateClosure form to the grammar for exp. The handling of
AllocateClosure in the explicate-control pass is similar to the handling
of other expressions such as primitive operators.

7.7 Select Instructions
Compile (AllocateClosure len type arity) in almost the same way as the
(Allocate len type) form (Section 5.7). The only difference is that you
should place the arity in the tag that is stored at position 0 of the vector.
Recall that in Section 5.7 we used the first 56 bits of the 64-bit tag, but
that the rest were unused. So the arity goes into the tag in bit positions 57
through 63.

Compile the procedure-arity operator into a sequence of instructions
that access the tag from position 0 of the vector and shift it by 57 bits to
the right.

Figure 7.10 provides an overview of all the passes needed for the compi-
lation of Rλ.

146 7. LEXICALLY SCOPED FUNCTIONS

RFun RFun RFun

RFunRefRFunRefF1F1F1

CFun

x86Var
callq∗

x86Var
callq∗ x86Var

callq∗

x86Var
callq∗ x86callq∗

x86callq∗

shrink uniquify

reveal-functions

convert-to-clos.

limit-fun.expose-alloc.remove-complex.

explicate-control

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 7.10: Diagram of the passes for Rλ, a language with lexically-scoped
functions.

7.8. CHALLENGE: OPTIMIZE CLOSURES 147

7.8 Challenge: Optimize Closures
In this chapter we compiled lexically-scoped functions into a relatively effi-
cient representation: flat closures. However, even this representation comes
with some overhead. For example, consider the following program with a
function tail-sum that does not have any free variables and where all the
uses of tail-sum are in applications where we know that only tail-sum is
being applied (and not any other functions).

(define (tail-sum [n : Integer] [r : Integer]) : Integer
(if (eq? n 0)

r
(tail-sum (- n 1) (+ n r))))

(+ (tail-sum 5 0) 27)

As described in this chapter, we uniformly apply closure conversion to all
functions, obtaining the following output for this program.

(define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
(if (eq? n2 0)

r3
(let ([clos4 (closure (list (fun-ref tail_sum1)))])

((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))

(define (main) : Integer
(+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])

((vector-ref clos6 0) clos6 5 0)) 27))

In the previous Chapter, there would be no allocation in the program
and the calls to tail-sum would be direct calls. In contrast, the above
program allocates memory for each closure and the calls to tail-sum are
indirect. These two differences incur considerable overhead in a program
such as this one, where the allocations and indirect calls occur inside a tight
loop.

One might think that this problem is trivial to solve: can’t we just
recognize calls of the form ((fun-ref f) e1 . . . en) and compile them to
direct calls ((fun-ref f) e′1 . . . e

′
n) instead of treating it like a call to a

closure? We would also drop the fvs5 parameter of tail_sum1. However,
this problem is not so trivial because a global function may “escape” and
become involved in applications that also involve closures. Consider the
following example in which the application (f 41) needs to be compiled

148 7. LEXICALLY SCOPED FUNCTIONS

into a closure application, because the lambda may get bound to f, but the
add1 function might also get bound to f.
(define (add1 [x : Integer]) : Integer
(+ x 1))

(let ([y (read)])
(let ([f (if (eq? (read) 0)

add1
(lambda: ([x : Integer]) : Integer (- x y)))])

(f 41)))

If a global function name is used in any way other than as the operator in
a direct call, then we say that the function escapes. If a global function
does not escape, then we do not need to perform closure conversion on the
function.

Exercise 33. Implement an auxiliary function for detecting which global
functions escape. Using that function, implement an improved version of
closure conversion that does not apply closure conversion to global functions
that do not escape but instead compiles them as regular functions. Create
several new test cases that check whether you properly detect whether global
functions escape or not.

So far we have reduced the overhead of calling global functions, but it
would also be nice to reduce the overhead of calling a lambda when we can
determine at compile time which lambda will be called. We refer to such
calls as known calls. Consider the following example in which a lambda is
bound to f and then applied.
(let ([y (read)])
(let ([f (lambda: ([x : Integer]) : Integer

(+ x y))])
(f 21)))

Closure conversion compiles (f 21) into an indirect call:
(define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer

(let ([y2 (vector-ref fvs6 1)])
(+ x3 y2)))

(define (main) : Integer
(let ([y2 (read)])

(let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
((vector-ref f4 0) f4 21))))

7.8. CHALLENGE: OPTIMIZE CLOSURES 149

but we can instead compile the application (f 21) into a direct call to
lambda5:
(define (main) : Integer

(let ([y2 (read)])
(let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])

((fun-ref lambda5) f4 21))))

The problem of determining which lambda will be called from a partic-
ular application is quite challenging in general and the topic of considerable
research [87, 45]. For the following exercise we recommend that you compile
an application to a direct call when the operator is a variable and the vari-
able is let-bound to a closure. This can be accomplished by maintaining an
environment mapping let-bound variables to function names. Extend the
environment whenever you encounter a closure on the right-hand side of a
let, mapping the let-bound variable to the name of the global function for
the closure. This pass should come after closure conversion.

Exercise 34. Implement a compiler pass, named optimize-known-calls,
that compiles known calls into direct calls. Verify that your compiler is
successful in this regard on several example programs.

These exercises only scratches the surface of optimizing of closures. A
good next step for the interested reader is to look at the work of Keep et al.
[59].

150 7. LEXICALLY SCOPED FUNCTIONS

8

Dynamic Typing

In this chapter we discuss the compilation of RDyn, a dynamically typed
language that is a subset of Racket. This is in contrast to the previous
chapters, which have studied the compilation of Typed Racket. In dynami-
cally typed languages such as RDyn, a given expression may produce a value
of a different type each time it is executed. Consider the following example
with a conditional if expression that may return a Boolean or an integer
depending on the input to the program.

(not (if (eq? (read) 1) #f 0))

Languages that allow expressions to produce different kinds of values are
called polymorphic, a word composed of the Greek roots “poly”, meaning
“many”, and “morph”, meaning “shape”. There are several kinds of poly-
morphism in programming languages, such as subtype polymorphism and
parametric polymorphism [20]. The kind of polymorphism we study in this
chapter does not have a special name but it is the kind that arises in dy-
namically typed languages.

Another characteristic of dynamically typed languages is that primitive
operations, such as not, are often defined to operate on many different
types of values. In fact, in Racket, the not operator produces a result for
any kind of value: given #f it returns #t and given anything else it returns
#f. Furthermore, even when primitive operations restrict their inputs to
values of a certain type, this restriction is enforced at runtime instead of
during compilation. For example, the following vector reference results in
a run-time contract violation because the index must be in integer, not a
Boolean such as #t.

(vector-ref (vector 42) #t)

151

152 8. DYNAMIC TYPING

cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp . . .) | (vector-ref exp exp)
| (vector-set! exp exp exp) | (void)
| (exp exp . . .) | (lambda (var . . .) exp)
| (boolean? exp) | (integer? exp)
| (vector? exp) | (procedure? exp) | (void? exp)

def ::= (define (var var . . .) exp)
RDyn ::= def . . . exp

Figure 8.1: Syntax of RDyn, an untyped language (a subset of Racket).

exp ::= (Int int) | (Var var) | (Let var exp exp)
| (Prim op (exp . . .))
| (Bool bool) | (If exp exp exp)
| (Void) | (Apply exp exp . . .)
| (Lambda (var . . .) ’Any exp)

def ::= (Def var (var . . .) ’Any ’() exp)
RDyn ::= (ProgramDefsExp ’() (def . . .) exp)

Figure 8.2: The abstract syntax of RDyn.

153

The concrete and abstract syntax of RDyn, our subset of Racket, is defined
in Figures 8.1 and 8.2. There is no type checker for RDyn because it is not a
statically typed language (it’s dynamically typed!).

The definitional interpreter for RDyn is presented in Figure 8.3 and its
auxiliary functions are defined in Figure 8.4. Consider the match case for
(Int n). Instead of simply returning the integer n (as in the interpreter
for RVar in Figure 2.3), the interpreter for RDyn creates a tagged value that
combines an underlying value with a tag that identifies what kind of value
it is. We define the following struct to represented tagged values.
(struct Tagged (value tag) #:transparent)

The tags are Integer, Boolean, Void, Vector, and Procedure. Tags are
closely related to types but don’t always capture all the information that
a type does. For example, a vector of type (Vector Any Any) is tagged
with Vector and a procedure of type (Any Any -> Any) is tagged with
Procedure.

Next consider the match case for vector-ref. The check-tag auxiliary
function (Figure 8.4) is used to ensure that the first argument is a vector and
the second is an integer. If they are not, a trapped-error is raised. Recall
from Section 1.5 that when a definition interpreter raises a trapped-error
error, the compiled code must also signal an error by exiting with return
code 255. A trapped-error is also raised if the index is not less than
length of the vector.

154 8. DYNAMIC TYPING

(define ((interp-Rdyn-exp env) ast)
(define recur (interp-Rdyn-exp env))
(match ast

[(Var x) (lookup x env)]
[(Int n) (Tagged n 'Integer)]
[(Bool b) (Tagged b 'Boolean)]
[(Lambda xs rt body)
(Tagged `(function ,xs ,body ,env) 'Procedure)]

[(Prim 'vector es)
(Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]

[(Prim 'vector-ref (list e1 e2))
(define vec (recur e1)) (define i (recur e2))
(check-tag vec 'Vector ast) (check-tag i 'Integer ast)
(unless (< (Tagged-value i) (vector-length (Tagged-value vec)))

(error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
(vector-ref (Tagged-value vec) (Tagged-value i))]

[(Prim 'vector-set! (list e1 e2 e3))
(define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
(check-tag vec 'Vector ast) (check-tag i 'Integer ast)
(unless (< (Tagged-value i) (vector-length (Tagged-value vec)))

(error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
(vector-set! (Tagged-value vec) (Tagged-value i) arg)
(Tagged (void) 'Void)]

[(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
[(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
[(Prim 'or (list e1 e2))
(define v1 (recur e1))
(match (Tagged-value v1) [#f (recur e2)] [else v1])]

[(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
[(Prim op (list e1))
#:when (set-member? type-predicates op)
(tag-value ((interp-op op) (Tagged-value (recur e1))))]

[(Prim op es)
(define args (map recur es))
(define tags (for/list ([arg args]) (Tagged-tag arg)))
(unless (for/or ([expected-tags (op-tags op)])

(equal? expected-tags tags))
(error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))

(tag-value
(apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]

[(If q t f)
(match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]

[(Apply f es)
(define new-f (recur f)) (define args (map recur es))
(check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
(match f-val

[`(function ,xs ,body ,lam-env)
(unless (eq? (length xs) (length args))
(error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))

(define new-env (append (map cons xs args) lam-env))
((interp-Rdyn-exp new-env) body)]

[else (error "interp-Rdyn-exp, expected function, not" f-val)])]))

Figure 8.3: Interpreter for the RDyn language.

155

(define (interp-op op)
(match op

['+ fx+]
['- fx-]
['read read-fixnum]
['not (lambda (v) (match v [#t #f] [#f #t]))]
['< (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
['<= (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
['> (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
['>= (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
['boolean? boolean?]
['integer? fixnum?]
['void? void?]
['vector? vector?]
['vector-length vector-length]
['procedure? (match-lambda

[`(functions ,xs ,body ,env) #t] [else #f])]
[else (error 'interp-op "unknown operator" op)]))

(define (op-tags op)
(match op

['+ '((Integer Integer))]
['- '((Integer Integer) (Integer))]
['read '(())]
['not '((Boolean))]
['< '((Integer Integer))]
['<= '((Integer Integer))]
['> '((Integer Integer))]
['>= '((Integer Integer))]
['vector-length '((Vector))]))

(define type-predicates
(set 'boolean? 'integer? 'vector? 'procedure? 'void?))

(define (tag-value v)
(cond [(boolean? v) (Tagged v 'Boolean)]

[(fixnum? v) (Tagged v 'Integer)]
[(procedure? v) (Tagged v 'Procedure)]
[(vector? v) (Tagged v 'Vector)]
[(void? v) (Tagged v 'Void)]
[else (error 'tag-value "unidentified value ~a" v)]))

(define (check-tag val expected ast)
(define tag (Tagged-tag val))
(unless (eq? tag expected)

(error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))

Figure 8.4: Auxiliary functions for the RDyn interpreter.

156 8. DYNAMIC TYPING

8.1 Representation of Tagged Values

The interpreter for RDyn introduced a new kind of value, a tagged value.
To compile RDyn to x86 we must decide how to represent tagged values at
the bit level. Because almost every operation in RDyn involves manipulating
tagged values, the representation must be efficient. Recall that all of our
values are 64 bits. We shall steal the 3 right-most bits to encode the tag.
We use 001 to identify integers, 100 for Booleans, 010 for vectors, 011 for
procedures, and 101 for the void value. We define the following auxiliary
function for mapping types to tag codes.

tagof (Integer) = 001
tagof (Boolean) = 100

tagof ((Vector . . .)) = 010
tagof ((. . . -> . . .)) = 011

tagof (Void) = 101

This stealing of 3 bits comes at some price: our integers are reduced to
ranging from −260 to 260. The stealing does not adversely affect vectors
and procedures because those values are addresses, and our addresses are 8-
byte aligned so the rightmost 3 bits are unused, they are always 000. Thus,
we do not lose information by overwriting the rightmost 3 bits with the tag
and we can simply zero-out the tag to recover the original address.

To make tagged values into first-class entities, we can give them a type,
called Any, and define operations such as Inject and Project for creating
and using them, yielding the RAny intermediate language. We describe how
to compile RDyn to RAny in Section 8.3 but first we describe the RAny language
in greater detail.

8.2 The RAny Language

The abstract syntax of RAny is defined in Figure 8.5. (The concrete syntax
of RAny is in the Appendix, Figure 12.1.) The (Inject e T) form converts
the value produced by expression e of type T into a tagged value. The
(Project e T) form converts the tagged value produced by expression e into
a value of type T or else halts the program if the type tag is not equivalent
to T . Note that in both Inject and Project, the type T is restricted to
a flat type ftype, which simplifies the implementation and corresponds with
what is needed for compiling RDyn.

8.2. THE RANY LANGUAGE 157

type ::= . . . | Any
op ::= . . . | any-vector-length | any-vector-ref | any-vector-set!

| boolean? | integer? | vector? | procedure? | void?
exp ::= . . . | (Prim op (exp . . .))

| (Inject exp ftype) | (Project exp ftype)
def ::= (Def var ([var:type] . . .) type ’() exp)
RAny ::= (ProgramDefsExp ’() (def . . .) exp)

Figure 8.5: The abstract syntax of RAny, extending Rλ (Figure 7.4).

The any-vector operators adapt the vector operations so that they can
be applied to a value of type Any. They also generalize the vector operations
in that the index is not restricted to be a literal integer in the grammar but
is allowed to be any expression.

The type predicates such as boolean? expect their argument to produce
a tagged value; they return #t if the tag corresponds to the predicate and
they return #f otherwise.

The type checker for RAny is shown in Figures 8.6 and 8.7 and uses the
auxiliary functions in Figure 8.8. The interpreter for RAny is in Figure 8.9
and the auxiliary functions apply-inject and apply-project are in Fig-
ure 8.10.

158 8. DYNAMIC TYPING

(define type-check-Rany-class
(class type-check-Rlambda-class
(super-new)
(inherit check-type-equal?)

(define/override (type-check-exp env)
(lambda (e)
(define recur (type-check-exp env))
(match e
[(Inject e1 ty)
(unless (flat-ty? ty)
(error 'type-check "may only inject from flat type, not ~a" ty))

(define-values (new-e1 e-ty) (recur e1))
(check-type-equal? e-ty ty e)
(values (Inject new-e1 ty) 'Any)]
[(Project e1 ty)
(unless (flat-ty? ty)
(error 'type-check "may only project to flat type, not ~a" ty))

(define-values (new-e1 e-ty) (recur e1))
(check-type-equal? e-ty 'Any e)
(values (Project new-e1 ty) ty)]
[(Prim 'any-vector-length (list e1))
(define-values (e1^ t1) (recur e1))
(check-type-equal? t1 'Any e)
(values (Prim 'any-vector-length (list e1^)) 'Integer)]
[(Prim 'any-vector-ref (list e1 e2))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(check-type-equal? t1 'Any e)
(check-type-equal? t2 'Integer e)
(values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
[(Prim 'any-vector-set! (list e1 e2 e3))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(define-values (e3^ t3) (recur e3))
(check-type-equal? t1 'Any e)
(check-type-equal? t2 'Integer e)
(check-type-equal? t3 'Any e)
(values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]

Figure 8.6: Type checker for the RAny language, part 1.

8.2. THE RANY LANGUAGE 159

[(ValueOf e ty)
(define-values (new-e e-ty) (recur e))
(values (ValueOf new-e ty) ty)]
[(Prim pred (list e1))
#:when (set-member? (type-predicates) pred)
(define-values (new-e1 e-ty) (recur e1))
(check-type-equal? e-ty 'Any e)
(values (Prim pred (list new-e1)) 'Boolean)]
[(If cnd thn els)
(define-values (cnd^ Tc) (recur cnd))
(define-values (thn^ Tt) (recur thn))
(define-values (els^ Te) (recur els))
(check-type-equal? Tc 'Boolean cnd)
(check-type-equal? Tt Te e)
(values (If cnd^ thn^ els^) (combine-types Tt Te))]
[(Exit) (values (Exit) '_)]
[(Prim 'eq? (list arg1 arg2))
(define-values (e1 t1) (recur arg1))
(define-values (e2 t2) (recur arg2))
(match* (t1 t2)
[(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
[(other wise) (check-type-equal? t1 t2 e)])

(values (Prim 'eq? (list e1 e2)) 'Boolean)]
[else ((super type-check-exp env) e)])))

))

Figure 8.7: Type checker for the RAny language, part 2.

160 8. DYNAMIC TYPING

(define/override (operator-types)
(append
'((integer? . ((Any) . Boolean))
(vector? . ((Any) . Boolean))
(procedure? . ((Any) . Boolean))
(void? . ((Any) . Boolean))
(tag-of-any . ((Any) . Integer))
(make-any . ((_ Integer) . Any))
)

(super operator-types)))

(define/public (type-predicates)
(set 'boolean? 'integer? 'vector? 'procedure? 'void?))

(define/public (combine-types t1 t2)
(match (list t1 t2)
[(list '_ t2) t2]
[(list t1 '_) t1]
[(list `(Vector ,ts1 ...)

`(Vector ,ts2 ...))
`(Vector ,@(for/list ([t1 ts1] [t2 ts2])

(combine-types t1 t2)))]
[(list `(,ts1 ... -> ,rt1)

`(,ts2 ... -> ,rt2))
`(,@(for/list ([t1 ts1] [t2 ts2])

(combine-types t1 t2))
-> ,(combine-types rt1 rt2))]

[else t1]))

(define/public (flat-ty? ty)
(match ty
[(or `Integer `Boolean '_ `Void) #t]
[`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
[`(,ts ... -> ,rt)
(and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
[else #f]))

Figure 8.8: Auxiliary methods for type checking RAny.

8.2. THE RANY LANGUAGE 161

(define interp-Rany-class
(class interp-Rlambda-class
(super-new)

(define/override (interp-op op)
(match op
['boolean? (match-lambda

[`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
[else #f])]

['integer? (match-lambda
[`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
[else #f])]

['vector? (match-lambda
[`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
[else #f])]

['procedure? (match-lambda
[`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
[else #f])]

['eq? (match-lambda*
[`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
(and (eq? v1^ v2^) (equal? tg1 tg2))]
[ls (apply (super interp-op op) ls)])]

['any-vector-ref (lambda (v i)
(match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]

['any-vector-set! (lambda (v i a)
(match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]

['any-vector-length (lambda (v)
(match v [`(tagged ,v^ ,tg) (vector-length v^)]))]

[else (super interp-op op)]))

(define/override ((interp-exp env) e)
(define recur (interp-exp env))
(match e
[(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
[(Project e ty2) (apply-project (recur e) ty2)]
[else ((super interp-exp env) e)]))

))

(define (interp-Rany p)
(send (new interp-Rany-class) interp-program p))

Figure 8.9: Interpreter for RAny.

162 8. DYNAMIC TYPING

(define/public (apply-inject v tg) (Tagged v tg))

(define/public (apply-project v ty2)
(define tag2 (any-tag ty2))
(match v
[(Tagged v1 tag1)
(cond
[(eq? tag1 tag2)
(match ty2
[`(Vector ,ts ...)
(define l1 ((interp-op 'vector-length) v1))
(cond
[(eq? l1 (length ts)) v1]
[else (error 'apply-project "vector length mismatch, ~a != ~a"

l1 (length ts))])]
[`(,ts ... -> ,rt)
(match v1
[`(function ,xs ,body ,env)
(cond [(eq? (length xs) (length ts)) v1]

[else
(error 'apply-project "arity mismatch ~a != ~a"

(length xs) (length ts))])]
[else (error 'apply-project "expected function not ~a" v1)])]

[else v1])]
[else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]

[else (error 'apply-project "expected tagged value, not ~a" v)]))

Figure 8.10: Auxiliary functions for injection and projection.

8.3. CAST INSERTION: COMPILING RDYN TO RANY 163

8.3 Cast Insertion: Compiling RDyn to RAny

The cast-insert pass compiles from RDyn to RAny. Figure 8.11 shows the
compilation of many of the RDyn forms into RAny. An important invariant
of this pass is that given a subexpression e in the RDyn program, the pass
will produce an expression e′ in RAny that has type Any. For example, the
first row in Figure 8.11 shows the compilation of the Boolean #t, which
must be injected to produce an expression of type Any. The second row
of Figure 8.11, the compilation of addition, is representative of compilation
for many primitive operations: the arguments have type Any and must be
projected to Integer before the addition can be performed.

The compilation of lambda (third row of Figure 8.11) shows what hap-
pens when we need to produce type annotations: we simply use Any. The
compilation of if and eq? demonstrate how this pass has to account for
some differences in behavior between RDyn and RAny. The RDyn language is
more permissive than RAny regarding what kind of values can be used in
various places. For example, the condition of an if does not have to be a
Boolean. For eq?, the arguments need not be of the same type (in that case
the result is #f).

8.4 Reveal Casts

In the reveal-casts pass we recommend compiling project into an if
expression that checks whether the value’s tag matches the target type; if
it does, the value is converted to a value of the target type by removing the
tag; if it does not, the program exits. To perform these actions we need
a new primitive operation, tag-of-any, and two new forms, ValueOf and
Exit. The tag-of-any operation retrieves the type tag from a tagged value
of type Any. The ValueOf form retrieves the underlying value from a tagged
value. The ValueOf form includes the type for the underlying value which
is used by the type checker. Finally, the Exit form ends the execution of
the program.

If the target type of the projection is Boolean or Integer, then Project
can be translated as follows.

164 8. DYNAMIC TYPING

#t ⇒ (inject #t Boolean)

(+ e1 e2) ⇒
(inject

(+ (project e′1 Integer)
(project e′2 Integer))

Integer)

(lambda (x1 . . . xn) e) ⇒
(inject

(lambda: ([x1:Any]. . .[xn:Any]):Any e′)
(Any. . .Any -> Any))

(e0 e1 . . . en) ⇒ ((project e′0 (Any. . .Any -> Any)) e′1 . . . e
′
n)

(vector-ref e1 e2) ⇒ (any-vector-ref e′1 e′2)

(if e1 e2 e3) ⇒ (if (eq? e′1 (inject #f Boolean)) e′3 e′2)

(eq? e1 e2) ⇒ (inject (eq? e′1 e′2) Boolean)

(not e1) ⇒ (if (eq? e′1 (inject #f Boolean))
(inject #t Boolean) (inject #f Boolean))

Figure 8.11: Cast Insertion

8.4. REVEAL CASTS 165

(Project e ftype)
⇒
(Let tmp e′

(If (Prim 'eq? (list (Prim 'tag-of-any (list (Var tmp)))
(Int tagof (ftype))))

(ValueOf tmp ftype)
(Exit)))

If the target type of the projection is a vector or function type, then there
is a bit more work to do. For vectors, check that the length of the vector
type matches the length of the vector (using the vector-length primitive).
For functions, check that the number of parameters in the function type
matches the function’s arity (using procedure-arity).

Regarding inject, we recommend compiling it to a slightly lower-level
primitive operation named make-any. This operation takes a tag instead of
a type.

(Inject e ftype)
⇒
(Prim 'make-any (list e′ (Int tagof (ftype))))

The type predicates (boolean?, etc.) can be translated into uses of
tag-of-any and eq? in a similar way as in the translation of Project.

The any-vector-ref and any-vector-set! operations combine the
projection action with the vector operation. Also, the read and write op-
erations allow arbitrary expressions for the index so the type checker for
RAny (Figure 8.6) cannot guarantee that the index is within bounds. Thus,
we insert code to perform bounds checking at runtime. The translation for
any-vector-ref is as follows and the other two operations are translated
in a similar way.

(Prim 'any-vector-ref (list e1 e2))
⇒
(Let v e′1
(Let i e′2
(If (Prim 'eq? (list (Prim 'tag-of-any (list (Var v))) (Int 2)))
(If (Prim '< (list (Var i)

(Prim 'any-vector-length (list (Var v)))))
(Prim 'any-vector-ref (list (Var v) (Var i)))
(Exit))))

166 8. DYNAMIC TYPING

exp ::= . . . | (Prim ’any-vector-ref (atm atm))
| (Prim ’any-vector-set! (list atm atm atm))
| (ValueOf exp ftype)

stmt ::= (Assign (Var var) exp) | (Collect int)
tail ::= (Return exp) | (Seq stmt tail) | (Goto label)

| (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
| (TailCall atm atm . . .) | (Exit)

def ::= (Def label ([var:type] . . .) type info ((label . tail) . . .))
CClos ::= (ProgramDefs info (def . . .))

Figure 8.12: The abstract syntax of CAny, extending CClos (Figure 7.9).

8.5 Remove Complex Operands

The ValueOf and Exit forms are both complex expressions. The subexpres-
sion of ValueOf must be atomic.

8.6 Explicate Control and CAny

The output of explicate-control is the CAny language whose syntax is
defined in Figure 8.12. The ValueOf form that we added to RAny remains
an expression and the Exit expression becomes a tail. Also, note that the
index argument of vector-ref and vector-set! is an atm instead of an
integer, as in CVec (Figure 5.13).

8.7 Select Instructions

In the select-instructions pass we translate the primitive operations on
the Any type to x86 instructions that involve manipulating the 3 tag bits of
the tagged value.

Make-any We recommend compiling the make-any primitive as follows if
the tag is for Integer or Boolean. The salq instruction shifts the destina-
tion to the left by the number of bits specified its source argument (in this
case 3, the length of the tag) and it preserves the sign of the integer. We
use the orq instruction to combine the tag and the value to form the tagged
value.

8.7. SELECT INSTRUCTIONS 167

(Assign lhs (Prim 'make-any (list e (Int tag))))
⇒
movq e′, lhs′
salq $3, lhs′
orq $tag, lhs′

The instruction selection for vectors and procedures is different because their
is no need to shift them to the left. The rightmost 3 bits are already zeros
as described at the beginning of this chapter. So we just combine the value
and the tag using orq.

(Assign lhs (Prim 'make-any (list e (Int tag))))
⇒
movq e′, lhs′
orq $tag, lhs′

Tag-of-any Recall that the tag-of-any operation extracts the type tag
from a value of type Any. The type tag is the bottom three bits, so we obtain
the tag by taking the bitwise-and of the value with 111 (7 in decimal).
(Assign lhs (Prim 'tag-of-any (list e)))
⇒
movq e′, lhs′
andq $7, lhs′

ValueOf Like make-any, the instructions for ValueOf are different de-
pending on whether the type T is a pointer (vector or procedure) or not
(Integer or Boolean). The following shows the instruction selection for Inte-
ger and Boolean. We produce an untagged value by shifting it to the right
by 3 bits.
(Assign lhs (ValueOf e T))
⇒
movq e′, lhs′
sarq $3, lhs′

In the case for vectors and procedures, there is no need to shift. Instead we
just need to zero-out the rightmost 3 bits. We accomplish this by creating
the bit pattern . . . 0111 (7 in decimal) and apply bitwise-not to obtain
. . . 11111000 (-8 in decimal) which we movq into the destination lhs. We
then apply andq with the tagged value to get the desired result.

168 8. DYNAMIC TYPING

(Assign lhs (ValueOf e T))
⇒
movq $−8, lhs′
andq e′, lhs′

(Assign lhs (Prim 'any-vector-length (list a1)))
=⇒
movq ¬111, %r11
andq a′1, %r11
movq 0(%r11), %r11
andq $126, %r11
sarq $1, %r11
movq %r11, lhs′

Any-vector-ref The index may be an arbitrary atom so instead of com-
puting the offset at compile time, instructions need to be generated to com-
pute the offset at runtime as follows. Note the use of the new instruction
imulq.

(Assign lhs (Prim 'any-vector-ref (list a1 a2)))
=⇒
movq ¬111, %r11
andq a′1, %r11
movq a′2, %rax
addq $1, %rax
imulq $8, %rax
addq %rax, %r11
movq 0(%r11) lhs′

Any-vector-set! The code generation for any-vector-set! is similar to
the other any-vector operations.

8.8 Register Allocation for RAny

There is an interesting interaction between tagged values and garbage collec-
tion that has an impact on register allocation. A variable of type Any might
refer to a vector and therefore it might be a root that needs to be inspected
and copied during garbage collection. Thus, we need to treat variables of

8.8. REGISTER ALLOCATION FOR RANY 169

type Any in a similar way to variables of type Vector for purposes of register
allocation. In particular,

• If a variable of type Any is live during a function call, then it must be
spilled. This can be accomplished by changing build-interference
to mark all variables of type Any that are live after a callq as inter-
fering with all the registers.

• If a variable of type Any is spilled, it must be spilled to the root stack
instead of the normal procedure call stack.

Another concern regarding the root stack is that the garbage collector
needs to differentiate between (1) plain old pointers to tuples, (2) a tagged
value that points to a tuple, and (3) a tagged value that is not a tuple.
We enable this differentiation by choosing not to use the tag 000 in the
tagof function. Instead, that bit pattern is reserved for identifying plain
old pointers to tuples. That way, if one of the first three bits is set, then
we have a tagged value and inspecting the tag can differentiation between
vectors (010) and the other kinds of values.

Exercise 35. Expand your compiler to handle RAny as discussed in the last
few sections. Create 5 new programs that use the Any type and the new
operations (inject, project, boolean?, etc.). Test your compiler on these
new programs and all of your previously created test programs.

Exercise 36. Expand your compiler to handle RDyn as outlined in this
chapter. Create tests for RDyn by adapting ten of your previous test programs
by removing type annotations. Add 5 more tests programs that specifically
rely on the language being dynamically typed. That is, they should not be
legal programs in a statically typed language, but nevertheless, they should
be valid RDyn programs that run to completion without error.

Figure 8.13 provides an overview of all the passes needed for the compi-
lation of RDyn.

170 8. DYNAMIC TYPING

RDyn RDyn RDyn RFunRef
Dyn

RFunRef
Any RFunRef

Any

RFunRef
AnyRFunRef

AnyRFunRef
AnyRAlloc

AnyRAlloc
Any

CAny

x86Var
callq∗

x86Var
callq∗ x86Var

callq∗

x86Var
callq∗ x86callq∗

x86callq∗

shrink uniquify reveal-functions

cast-insert
check-bounds

reveal-casts

convert-to-clos.

limit-fun.expose-alloc.remove-complex.

explicate-control

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 8.13: Diagram of the passes for RDyn, a dynamically typed language.

9

Loops and Assignment

In this chapter we study two features that are the hallmarks of imperative
programming languages: loops and assignments to local variables. The
following example demonstrates these new features by computing the sum
of the first five positive integers.
(let ([sum 0])
(let ([i 5])
(begin
(while (> i 0)
(begin
(set! sum (+ sum i))
(set! i (- i 1))))

sum)))

The while loop consists of a condition and a body. The set! consists of a
variable and a right-hand-side expression. The primary purpose of both the
while loop and set! is to cause side effects, so it is convenient to also include
in a language feature for sequencing side effects: the begin expression. It
consists of one or more subexpressions that are evaluated left-to-right.

9.1 The RWhile Language

The concrete syntax of RWhile is defined in Figure 9.1 and its abstract syntax
is defined in Figure 9.2. The definitional interpreter for RWhile is shown in
Figure 9.3. We add three new cases for SetBang, WhileLoop, and Begin and
we make changes to the cases for Var, Let, and Apply regarding variables.
To support assignment to variables and to make their lifetimes indefinite
(see the second example in Section 9.2), we box the value that is bound to

171

172 9. LOOPS AND ASSIGNMENT

exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)
| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (eq? exp exp) | (if exp exp exp)
| (vector exp . . .) | (vector-ref exp int)
| (vector-set! exp int exp) | (void) | (exp exp . . .)
| (procedure-arity exp) | (lambda: ([var:type] . . .) : type exp)
| (set! var exp) | (begin exp . . . exp) | (while exp exp)

def ::= (define (var [var:type] . . .) : type exp)
RWhile ::= def . . . exp

Figure 9.1: The concrete syntax of RWhile, extending RAny (Figure 12.1).

exp ::= (Int int)(Var var) | (Let var exp exp)
| (Prim op (exp . . .))
| (Bool bool) | (If exp exp exp)
| (Void) | (HasType exp type) | (Apply exp exp . . .)
| (Lambda ([var:type] . . .) type exp)
| (SetBang var exp) | (Begin (exp . . .) exp) | (WhileLoop exp exp)

def ::= (Def var ([var:type] . . .) type ’() exp)
RWhile ::= (ProgramDefsExp ’() (def . . .) exp)

Figure 9.2: The abstract syntax of RWhile, extending RAny (Figure 8.5).

9.1. THE RWHILE LANGUAGE 173

(define interp-Rwhile-class
(class interp-Rany-class

(super-new)

(define/override ((interp-exp env) e)
(define recur (interp-exp env))
(match e

[(SetBang x rhs)
(set-box! (lookup x env) (recur rhs))]

[(WhileLoop cnd body)
(define (loop)

(cond [(recur cnd) (recur body) (loop)]
[else (void)]))

(loop)]
[(Begin es body)
(for ([e es]) (recur e))
(recur body)]

[else ((super interp-exp env) e)]))
))

(define (interp-Rwhile p)
(send (new interp-Rwhile-class) interp-program p))

Figure 9.3: Interpreter for RWhile.

each variable (in Let) and function parameter (in Apply). The case for Var
unboxes the value. Now to discuss the new cases. For SetBang, we lookup
the variable in the environment to obtain a boxed value and then we change
it using set-box! to the result of evaluating the right-hand side. The result
value of a SetBang is void. For the WhileLoop, we repeatedly 1) evaluate the
condition, and if the result is true, 2) evaluate the body. The result value of
a while loop is also void. Finally, the (Begin es body) expression evaluates
the subexpressions es for their effects and then evaluates and returns the
result from body.

The type checker for RWhile is define in Figure 9.4. For SetBang, the
type of the variable and the right-hand-side must agree. The result type is
Void. For the WhileLoop, the condition must be a Boolean. The result type
is also Void. For Begin, the result type is the type of its last subexpression.

At first glance, the translation of these language features to x86 seems
straightforward because the CFun intermediate language already supports all
of the ingredients that we need: assignment, goto, conditional branching,
and sequencing. However, there are two complications that arise which we
discuss in the next two sections. After that we introduce one new compiler

174 9. LOOPS AND ASSIGNMENT

(define type-check-Rwhile-class
(class type-check-Rany-class

(super-new)
(inherit check-type-equal?)

(define/override (type-check-exp env)
(lambda (e)

(define recur (type-check-exp env))
(match e

[(SetBang x rhs)
(define-values (rhs^ rhsT) (recur rhs))
(define varT (dict-ref env x))
(check-type-equal? rhsT varT e)
(values (SetBang x rhs^) 'Void)]

[(WhileLoop cnd body)
(define-values (cnd^ Tc) (recur cnd))
(check-type-equal? Tc 'Boolean e)
(define-values (body^ Tbody) ((type-check-exp env) body))
(values (WhileLoop cnd^ body^) 'Void)]

[(Begin es body)
(define-values (es^ ts)

(for/lists (l1 l2) ([e es]) (recur e)))
(define-values (body^ Tbody) (recur body))
(values (Begin es^ body^) Tbody)]

[else ((super type-check-exp env) e)])))
))

(define (type-check-Rwhile p)
(send (new type-check-Rwhile-class) type-check-program p))

Figure 9.4: Type checking SetBang, WhileLoop, and Begin in RWhile.

9.2. ASSIGNMENT AND LEXICALLY SCOPED FUNCTIONS 175

pass and the changes necessary to the existing passes.

9.2 Assignment and Lexically Scoped Functions

The addition of assignment raises a problem with our approach to imple-
menting lexically-scoped functions. Consider the following example in which
function f has a free variable x that is changed after f is created but before
the call to f.
(let ([x 0])
(let ([y 0])
(let ([z 20])
(let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
(begin
(set! x 10)
(set! y 12)
(f y))))))

The correct output for this example is 42 because the call to f is required
to use the current value of x (which is 10). Unfortunately, the closure
conversion pass (Section 7.3) generates code for the lambda that copies the
old value of x into a closure. Thus, if we naively add support for assignment
to our current compiler, the output of this program would be 32.

A first attempt at solving this problem would be to save a pointer to x in
the closure and change the occurrences of x inside the lambda to dereference
the pointer. Of course, this would require assigning x to the stack and not to
a register. However, the problem goes a bit deeper. Consider the following
example in which we create a counter abstraction by creating a pair of
functions that share the free variable x.
(define (f [x : Integer]) : (Vector (-> Integer) (-> Void))
(vector
(lambda: () : Integer x)
(lambda: () : Void (set! x (+ 1 x)))))

(let ([counter (f 0)])
(let ([get (vector-ref counter 0)])
(let ([inc (vector-ref counter 1)])
(begin
(inc)
(get)))))

In this example, the lifetime of x extends beyond the lifetime of the call to
f. Thus, if we were to store x on the stack frame for the call to f, it would

176 9. LOOPS AND ASSIGNMENT

be gone by the time we call inc and get, leaving us with dangling pointers
for x. This example demonstrates that when a variable occurs free inside a
lambda, its lifetime becomes indefinite. Thus, the value of the variable needs
to live on the heap. The verb “box” is often used for allocating a single value
on the heap, producing a pointer, and “unbox” for dereferencing the pointer.

We recommend solving these problems by “boxing” the local variables
that are in the intersection of 1) variables that appear on the left-hand-side of
a set! and 2) variables that occur free inside a lambda. We shall introduce
a new pass named convert-assignments in Section 9.4 to perform this
translation. But before diving into the compiler passes, we one more problem
to discuss.

9.3 Cyclic Control Flow and Dataflow Analysis

Up until this point the control-flow graphs generated in explicate-control
were guaranteed to be acyclic. However, each while loop introduces a cycle
in the control-flow graph. But does that matter? Indeed it does. Recall that
for register allocation, the compiler performs liveness analysis to determine
which variables can share the same register. In Section 4.10.1 we analyze
the control-flow graph in reverse topological order, but topological order is
only well-defined for acyclic graphs.

Let us return to the example of computing the sum of the first five
positive integers. Here is the program after instruction selection but before
register allocation.

(define (main) : Integer
mainstart:

movq $0, sum1
movq $5, i2
jmp block5

block5:
movq i2, tmp3
cmpq tmp3, $0
jl block7
jmp block8

block7:
addq i2, sum1
movq $1, tmp4
negq tmp4
addq tmp4, i2
jmp block5

block8:
movq $27, %rax
addq sum1, %rax
jmp mainconclusion

)

Recall that liveness analysis works backwards, starting at the end of each
function. For this example we could start with block8 because we know

9.3. CYCLIC CONTROL FLOW AND DATAFLOW ANALYSIS 177

what is live at the beginning of the conclusion, just rax and rsp. So the
live-before set for block8 is {rsp, sum1}. Next we might try to analyze
block5 or block7, but block5 jumps to block7 and vice versa, so it seems
that we are stuck.

The way out of this impasse comes from the realization that one can
perform liveness analysis starting with an empty live-after set to compute
an under-approximation of the live-before set. By under-approximation, we
mean that the set only contains variables that are really live, but it may be
missing some. Next, the under-approximations for each block can be im-
proved by 1) updating the live-after set for each block using the approximate
live-before sets from the other blocks and 2) perform liveness analysis again
on each block. In fact, by iterating this process, the under-approximations
eventually become the correct solutions! This approach of iteratively ana-
lyzing a control-flow graph is applicable to many static analysis problems
and goes by the name dataflow analysis. It was invented by Kildall [62] in
his Ph.D. thesis at the University of Washington.

Let us apply this approach to the above example. We use the empty
set for the initial live-before set for each block. Let m0 be the following
mapping from label names to sets of locations (variables and registers).

mainstart: {}
block5: {}
block7: {}
block8: {}

Using the above live-before approximations, we determine the live-after for
each block and then apply liveness analysis to each block. This produces
our next approximation m1 of the live-before sets.

mainstart: {}
block5: {i2}
block7: {i2, sum1}
block8: {rsp, sum1}

For the second round, the live-after for mainstart is the current live-
before for block5, which is {i2}. So the liveness analysis for mainstart
computes the empty set. The live-after for block5 is the union of the live-
before sets for block7 and block8, which is {i2 , rsp, sum1}. So the
liveness analysis for block5 computes {i2 , rsp, sum1}. The live-after
for block7 is the live-before for block5 (from the previous iteration), which
is {i2}. So the liveness analysis for block7 remains {i2, sum1}. Together
these yield the following approximation m2 of the live-before sets.

178 9. LOOPS AND ASSIGNMENT

mainstart: {}
block5: {i2, rsp, sum1}
block7: {i2, sum1}
block8: {rsp, sum1}

In the preceding iteration, only block5 changed, so we can limit our atten-
tion to mainstart and block7, the two blocks that jump to block5. As a
result, the live-before sets for mainstart and block7 are updated to include
rsp, yielding the following approximation m3.

mainstart: {rsp}
block5: {i2, rsp, sum1}
block7: {i2, rsp, sum1}
block8: {rsp, sum1}

Because block7 changed, we analyze block5 once more, but its live-before
set remains { i2, rsp, sum1 }. At this point our approximations have
converged, so m3 is the solution.

This iteration process is guaranteed to converge to a solution by the
Kleene Fixed-Point Theorem, a general theorem about functions on lat-
tices [63]. Roughly speaking, a lattice is any collection that comes with a
partial ordering v on its elements, a least element ⊥ (pronounced bottom),
and a join operator t.1 When two elements are ordered mi v mj , it means
that mj contains at least as much information as mi, so we can think of mj

as a better-or-equal approximation than mi. The bottom element ⊥ repre-
sents the complete lack of information, i.e., the worst approximation. The
join operator takes two lattice elements and combines their information, i.e.,
it produces the least upper bound of the two.

A dataflow analysis typically involves two lattices: one lattice to repre-
sent abstract states and another lattice that aggregates the abstract states
of all the blocks in the control-flow graph. For liveness analysis, an abstract
state is a set of locations. We form the lattice L by taking its elements to
be sets of locations, the ordering to be set inclusion (⊆), the bottom to be
the empty set, and the join operator to be set union. We form a second
lattice M by taking its elements to be mappings from the block labels to
sets of locations (elements of L). We order the mappings point-wise, us-
ing the ordering of L. So given any two mappings mi and mj , mi vM mj

when mi(`) ⊆ mj(`) for every block label ` in the program. The bottom
1Technically speaking, we will be working with join semi-lattices.

9.3. CYCLIC CONTROL FLOW AND DATAFLOW ANALYSIS 179

element of M is the mapping ⊥M that sends every label to the empty set,
i.e., ⊥M (`) = ∅.

We can think of one iteration of liveness analysis as being a function f
on the latticeM . It takes a mapping as input and computes a new mapping.

f(mi) = mi+1

Next let us think for a moment about what a final solution ms should look
like. If we perform liveness analysis using the solution ms as input, we
should get ms again as the output. That is, the solution should be a fixed
point of the function f .

f(ms) = ms

Furthermore, the solution should only include locations that are forced to be
there by performing liveness analysis on the program, so the solution should
be the least fixed point.

The Kleene Fixed-Point Theorem states that if a function f is monotone
(better inputs produce better outputs), then the least fixed point of f is the
least upper bound of the ascending Kleene chain obtained by starting at ⊥
and iterating f as follows.

⊥ v f(⊥) v f(f(⊥)) v · · · v fn(⊥) v · · ·

When a lattice contains only finitely-long ascending chains, then every Kleene
chain tops out at some fixed point after a number of iterations of f . So that
fixed point is also a least upper bound of the chain.

⊥ v f(⊥) v f(f(⊥)) v · · · v fk(⊥) = fk+1(⊥) = ms

The liveness analysis is indeed a monotone function and the lattice M
only has finitely-long ascending chains because there are only a finite number
of variables and blocks in the program. Thus we are guaranteed that itera-
tively applying liveness analysis to all blocks in the program will eventually
produce the least fixed point solution.

Next let us consider dataflow analysis in general and discuss the generic
work list algorithm (Figure 9.5). The algorithm has four parameters: the
control-flow graph G, a function transfer that applies the analysis to one
block, the bottom and join operator for the lattice of abstract states. The
algorithm begins by creating the bottom mapping, represented by a hash
table. It then pushes all of the nodes in the control-flow graph onto the work
list (a queue). The algorithm repeats the while loop as long as there are
items in the work list. In each iteration, a node is popped from the work list

180 9. LOOPS AND ASSIGNMENT

(define (analyze-dataflow G transfer bottom join)
(define mapping (make-hash))
(for ([v (in-vertices G)])
(dict-set! mapping v bottom))

(define worklist (make-queue))
(for ([v (in-vertices G)])
(enqueue! worklist v))

(define trans-G (transpose G))
(while (not (queue-empty? worklist))
(define node (dequeue! worklist))
(define input (for/fold ([state bottom])

([pred (in-neighbors trans-G node)])
(join state (dict-ref mapping pred))))

(define output (transfer node input))
(cond [(not (equal? output (dict-ref mapping node)))

(dict-set! mapping node output)
(for ([v (in-neighbors G node)])
(enqueue! worklist v))]))

mapping)

Figure 9.5: Generic work list algorithm for dataflow analysis

and processed. The input for the node is computed by taking the join of
the abstract states of all the predecessor nodes. The transfer function is
then applied to obtain the output abstract state. If the output differs from
the previous state for this block, the mapping for this block is updated and
its successor nodes are pushed onto the work list.

Having discussed the two complications that arise from adding support
for assignment and loops, we turn to discussing the one new compiler pass
and the significant changes to existing passes.

9.4 Convert Assignments

Recall that in Section 9.2 we learned that the combination of assignments
and lexically-scoped functions requires that we box those variables that are
both assigned-to and that appear free inside a lambda. The purpose of
the convert-assignments pass is to carry out that transformation. We
recommend placing this pass after uniquify but before reveal-functions.

Consider again the first example from Section 9.2:
(let ([x 0])

9.4. CONVERT ASSIGNMENTS 181

(let ([y 0])
(let ([z 20])
(let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
(begin
(set! x 10)
(set! y 12)
(f y))))))

The variables x and y are assigned-to. The variables x and z occur free
inside the lambda. Thus, variable x needs to be boxed but not y and z.
The boxing of x consists of three transformations: initialize x with a vector,
replace reads from x with vector-ref’s, and replace each set! on x with a
vector-set!. The output of convert-assignments for this example is as
follows.
(define (main) : Integer
(let ([x0 (vector 0)])
(let ([y1 0])
(let ([z2 20])
(let ([f4 (lambda: ([a3 : Integer]) : Integer

(+ a3 (+ (vector-ref x0 0) z2)))])
(begin
(vector-set! x0 0 10)
(set! y1 12)
(f4 y1)))))))

Assigned & Free We recommend defining an auxiliary function named
assigned&free that takes an expression and simultaneously computes 1) a
set of assigned variables A, 2) a set F of variables that occur free within
lambda’s, and 3) a new version of the expression that records which bound
variables occurred in the intersection of A and F . You can use the struct
AssignedFree to do this. Consider the case for (Let x rhs body). Suppose
the the recursive call on rhs produces rhs′, Ar, and Fr and the recursive call
on the body produces body′, Ab, and Fb. If x is in Ab ∩ Fb, then transforms
the Let as follows.
(Let x rhs body)
⇒
(Let (AssignedFree x) rhs′ body′)

If x is not in Ab ∩ Fb then omit the use of AssignedFree. The set of
assigned variables for this Let is Ar ∪ (Ab − {x}) and the set of variables
free in lambda’s is Fr ∪ (Fb − {x}).

182 9. LOOPS AND ASSIGNMENT

The case for (SetBang x rhs) is straightforward but important. Recur-
sively process rhs to obtain rhs′, Ar, and Fr. The result is (SetBang x rhs′),
{x} ∪Ar, and Fr.

The case for (Lambda params T body) is a bit more involved. Let body′,
Ab, and Fb be the result of recursively processing body. Wrap each of param-
eter that occurs in Ab∩Fb with AssignedFree to produce params′. Let P be
the set of parameter names in params. The result is (Lambda params′ T body′),
Ab − P , and (Fb ∪ FV(body))− P , where FV computes the free variables of
an expression (see Chapter 7).

Convert Assignments Next we discuss the convert-assignment pass
with its auxiliary functions for expressions and definitions. The function
for expressions, cnvt-assign-exp, should take an expression and a set of
assigned-and-free variables (obtained from the result of assigned&free. In
the case for (Var x), if x is assigned-and-free, then unbox it by translating
(Var x) to a vector-ref.

(Var x)
⇒
(Prim 'vector-ref (list (Var x) (Int 0)))

In the case for (Let (AssignedFreex) rhs body), recursively process rhs
to obtain rhs′. Next, recursively process body to obtain body′ but with x
added to the set of assigned-and-free variables. Translate the let-expression
as follows to bind x to a boxed value.

(Let (AssignedFree x) rhs body)
⇒
(Let x (Prim 'vector (list rhs′)) body′)

In the case for (SetBang x rhs), recursively process rhs to obtain rhs′. If x
is in the assigned-and-free variables, translate the set! into a vector-set!
as follows.

(SetBang x rhs)
⇒
(Prim 'vector-set! (list (Var x) (Int 0) rhs′))

The case for Lambda is non-trivial, but it is similar to the case for function
definitions, which we discuss next.

The auxiliary function for definitions, cnvt-assign-def, applies assign-
ment conversion to function definitions. We translate a function definition
as follows.

9.5. REMOVE COMPLEX OPERANDS 183

atm ::= (Int int) | (Var var) | (Bool bool) | (Void)
exp ::= . . . | (Let var exp exp)

| (WhileLoop exp exp) | (SetBang var exp) | (Begin (exp . . .) exp)
def ::= (Def var ([var:type] . . .) type ’() exp)
R†8 ::= (ProgramDefs ’() def)

Figure 9.6: RANF
While is RWhile in administrative normal form (ANF).

(Def f params T info body1)
⇒
(Def f params′ T info body4)

So it remains to explain params′ and body4. Let body2 , Ab, and Fb be
the result of assigned&free on body1 . Let P be the parameter names in
params. We then apply cnvt-assign-exp to body2 to obtain body3 , passing
Ab∩Fb∩P as the set of assigned-and-free variables. Finally, we obtain body4
by wrapping body3 in a sequence of let-expressions that box the parameters
that are in Ab∩Fb. Regarding params′, change the names of the parameters
that are in Ab ∩ Fb to maintain uniqueness (and so the let-bound variables
can retain the original names). Recall the second example in Section 9.2
involving a counter abstraction. The following is the output of assignment
version for function f.
(define (f0 [x1 : Integer]) : (Vector (-> Integer) (-> Void))
(vector
(lambda: () : Integer x1)
(lambda: () : Void (set! x1 (+ 1 x1)))))

⇒
(define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
(let ([x1 (vector param_x1)])
(vector (lambda: () : Integer (vector-ref x1 0))

(lambda: () : Void
(vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))

9.5 Remove Complex Operands
The three new language forms, while, set!, and begin are all complex
expressions and their subexpressions are allowed to be complex. Figure 6.8
defines the output language RANF

Fun of this pass.
As usual, when a complex expression appears in a grammar position

that needs to be atomic, such as the argument of a primitive operator, we

184 9. LOOPS AND ASSIGNMENT

must introduce a temporary variable and bind it to the complex expression.
This approach applies, unchanged, to handle the new language forms. For
example, in the following code there are two begin expressions appearing
as arguments to +. The output of rco-exp is shown below, in which the
begin expressions have been bound to temporary variables. Recall that
let expressions in RANF

While are allowed to have arbitrary expressions in their
right-hand-side expression, so it is fine to place begin there.
(let ([x0 10])
(let ([y1 0])
(+ (+ (begin (set! y1 (read)) x0)

(begin (set! x0 (read)) y1))
x0)))

⇒
(let ([x0 10])
(let ([y1 0])
(let ([tmp2 (begin (set! y1 (read)) x0)])
(let ([tmp3 (begin (set! x0 (read)) y1)])
(let ([tmp4 (+ tmp2 tmp3)])
(+ tmp4 x0))))))

9.6 Explicate Control and C	

Recall that in the explicate-control pass we define one helper function
for each kind of position in the program. For the RVar language of integers
and variables we needed kinds of positions: assignment and tail. The if
expressions of RIf introduced predicate positions. For RWhile, the begin
expression introduces yet another kind of position: effect position. Except
for the last subexpression, the subexpressions inside a begin are evaluated
only for their effect. Their result values are discarded. We can generate
better code by taking this fact into account.

The output language of explicate-control is C	 (Figure 9.7), which
is nearly identical to CClos. The only syntactic difference is that Call,
vector-set!, and readmay also appear as statements. The most significant
difference between CClos and C	 is that the control-flow graphs of the later
may contain cycles.

The new auxiliary function explicate-effect takes an expression (in an
effect position) and a promise of a continuation block. The function returns
a promise for a tail that includes the generated code for the input expression
followed by the continuation block. If the expression is obviously pure, that
is, never causes side effects, then the expression can be removed, so the

9.7. SELECT INSTRUCTIONS 185

stmt ::= (Assign (Var var) exp) | (Collect int)
| (Call atm (atm . . .)) | (Prim read ())
| (Prim ’vector-set! (list atm (Int int) atm))

def ::= (Def label ([var:type] . . .) type info ((label . tail) . . .))
C	 ::= (ProgramDefs info (def . . .))

Figure 9.7: The abstract syntax of C	, extending CClos (Figure 7.9).

result is just the continuation block. The (WhileLoop cnd body) expression
is the most interesting case. First, you will need a fresh label loop for the
top of the loop. Recursively process the body (in effect position) with the
a goto to loop as the continuation, producing body′. Next, process the cnd
(in predicate position) with body′ as the then-branch and the continuation
block as the else-branch. The result should be added to the control-flow
graph with the label loop. The result for the whole while loop is a goto to
the loop label. Note that the loop should only be added to the control-flow
graph if the loop is indeed used, which can be accomplished using delay.

The auxiliary functions for tail, assignment, and predicate positions need
to be updated. The three new language forms, while, set!, and begin,
can appear in assignment and tail positions. Only begin may appear in
predicate positions; the other two have result type Void.

9.7 Select Instructions

Only three small additions are needed in the select-instructions pass to
handle the changes to C	. That is, Call, read, and vector-set! may now
appear as stand-alone statements instead of only appearing on the right-
hand side of an assignment statement. The code generation is nearly iden-
tical; just leave off the instruction for moving the result into the left-hand
side.

9.8 Register Allocation

As discussed in Section 9.3, the presence of loops in RWhile means that
the control-flow graphs may contain cycles, which complicates the liveness
analysis needed for register allocation.

186 9. LOOPS AND ASSIGNMENT

9.8.1 Liveness Analysis

We recommend using the generic analyze-dataflow function that was pre-
sented at the end of Section 9.3 to perform liveness analysis, replacing the
code in uncover-live-CFG that processed the basic blocks in topological
order (Section 4.10.1).

The analyze-dataflow function has four parameters.

1. The first parameter G should be a directed graph from the racket/graph
package (see the sidebar in Section 3.3) that represents the control-flow
graph.

2. The second parameter transfer is a function that applies liveness
analysis to a basic block. It takes two parameters: the label for the
block to analyze and the live-after set for that block. The transfer
function should return the live-before set for the block. Also, as a side-
effect, it should update the block’s info with the liveness information
for each instruction. To implement the transfer function, you should
be able to reuse the code you already have for analyzing basic blocks.

3. The third and fourth parameters of analyze-dataflow are bottom
and join for the lattice of abstract states, i.e. sets of locations. The
bottom of the lattice is the empty set (set) and the join operator is
set-union.

Figure 9.8 provides an overview of all the passes needed for the compi-
lation of RWhile.

9.8. REGISTER ALLOCATION 187

RWhile RWhile RWhile RFunRef
While

RFunRef
WhileRFunRef

WhileRFunRef
WhileRAlloc

WhileRAlloc
While

C	

x86Var
callq∗

x86Var
callq∗ x86Var

callq∗

x86Var
callq∗ x86callq∗

x86callq∗

shrink uniquify reveal-functions

convert-assignments

convert-to-clos.

limit-fun.expose-alloc.remove-complex.

explicate-control

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 9.8: Diagram of the passes for RWhile (loops and assignment).

188 9. LOOPS AND ASSIGNMENT

10

Gradual Typing

This chapter studies a language, R?, in which the programmer can choose
between static and dynamic type checking in different parts of a program,
thereby mixing the statically typed RWhile language with the dynamically
typed RDyn. There are several approaches to mixing static and dynamic
typing, including multi-language integration [97, 71] and hybrid type check-
ing [36, 47]. In this chapter we focus on gradual typing, in which the pro-
grammer controls the amount of static versus dynamic checking by adding or
removing type annotations on parameters and variables [5, 90]. The concrete
syntax of R? is defined in Figure 10.1 and its abstract syntax is defined in
Figure 10.2. The main syntactic difference between RWhile and R? is the ad-
ditional param and ret non-terminals that make type annotations optional.
The return types are not optional in the abstract syntax; the parser fills in
Any when the return type is not specified in the concrete syntax.

Both the type checker and the interpreter for R? require some interesting
changes to enable gradual typing, which we discuss in the next two sections
in the context of the map-vec example from Chapter 6. In Figure 10.3 we
revised the map-vec example, omitting the type annotations from the add1
function.

10.1 Type Checking R?, Casts, and Rcast

The type checker for R? uses the Any type for missing parameter and return
types. For example, the x parameter of add1 in Figure 10.3 is given the
type Any and the return type of add1 is Any. Next consider the + operator
inside add1. It expects both arguments to have type Integer, but its first
argument x has type Any. In a gradually typed language, such differences

189

190 10. GRADUAL TYPING

param ::= var | [var:type]
ret ::= ε | :type
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (eq? exp exp) | (if exp exp exp)
| (vector exp . . .) | (vector-ref exp int)
| (vector-set! exp int exp) | (void) | (exp exp . . .)
| (procedure-arity exp) | (lambda: (param . . .) ret exp)
| (set! var exp) | (begin exp . . . exp) | (while exp exp)

def ::= (define (var param . . .) ret exp)
R? ::= def . . . exp

Figure 10.1: The concrete syntax of R?, extending RWhile (Figure 9.1).

param ::= var | [var:type]
exp ::= (Int int)(Var var) | (Let var exp exp)

| (Prim op (exp . . .))
| (Bool bool) | (If exp exp exp)
| (Void) | (HasType exp type) | (Apply exp exp . . .)
| (Lambda (param . . .) type exp)
| (SetBang var exp) | (Begin (exp . . .) exp)
| (WhileLoop exp exp)

def ::= (Def var (param . . .) type ’() exp)
R? ::= (ProgramDefsExp ’() (def . . .) exp)

Figure 10.2: The abstract syntax of R?, extending RWhile (Figure 9.2).

(define (map-vec [f : (Integer -> Integer)]
[v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))

(define (add1 x) (+ x 1))

(vector-ref (map-vec add1 (vector 0 41)) 1)

Figure 10.3: A partially-typed version of the map-vec example.

10.1. TYPE CHECKING R?, CASTS, AND RCAST 191

(define/public (consistent? t1 t2)
(match* (t1 t2)
[('Integer 'Integer) #t]
[('Boolean 'Boolean) #t]
[('Void 'Void) #t]
[('Any t2) #t]
[(t1 'Any) #t]
[(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
(for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
[(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
(and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))

(consistent? rt1 rt2))]
[(other wise) #f]))

Figure 10.4: The consistency predicate on types, a method in
type-check-gradual-class.

are allowed so long as the types are consistent, that is, they are equal except
in places where there is an Any type. The type Any is consistent with every
other type. Figure 10.4 defines the consistent? predicate.

Returning to the map-vec example of Figure 10.3, the add1 function
has type (Any -> Any) but parameter f of map-vec has type (Integer ->
Integer). The type checker for R? allows this because the two types are
consistent. In particular, -> is equal to -> and because Any is consistent
with Integer.

Next consider a program with an error, such as applying the map-vec to
a function that sometimes returns a Boolean, as shown in Figure 10.6. The
type checker for R? accepts this program because the type of maybe-add1 is
consistent with the type of parameter f of map-vec, that is, (Any -> Any)
is consistent with (Integer -> Integer). One might say that a gradual
type checker is optimistic in that it accepts programs that might execute
without a runtime type error. Unfortunately, running this program with
input 1 triggers an error when the maybe-add1 function returns #t. R?
performs checking at runtime to ensure the integrity of the static types,
such as the (Integer -> Integer) annotation on parameter f of map-vec.
This runtime checking is carried out by a new Cast form that is inserted by
the type checker. Thus, the output of the type checker is a program in the
Rcast language, which adds Cast to RWhile, as shown in Figure 10.5.

Figure 10.7 shows the output of the type checker for map-vec and maybe-add1.
The idea is that Cast is inserted every time the type checker sees two types

192 10. GRADUAL TYPING

exp ::= . . . | (Cast exp type type)
Rcast ::= (ProgramDefsExp ’() (def . . .) exp)

Figure 10.5: The abstract syntax of Rcast, extending RWhile (Figure 9.2).

(define (map-vec [f : (Integer -> Integer)]
[v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))
(define (add1 x) (+ x 1))
(define (true) #t)
(define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))

(vector-ref (map-vec maybe-add1 (vector 0 41)) 0)

Figure 10.6: A variant of the map-vec example with an error.

that are consistent but not equal. In the add1 function, x is cast to Integer
and the result of the + is cast to Any. In the call to map-vec, the add1
argument is cast from (Any -> Any) to (Integer -> Integer).

The type checker for R? is defined in Figures 10.8, 10.9, and 10.10.

(define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))
(define (add1 [x : Any]) : Any

(cast (+ (cast x Any Integer) 1) Integer Any))
(define (true) : Any (cast #t Boolean Any))
(define (maybe-add1 [x : Any]) : Any

(if (eq? 0 (read)) (add1 x) (true)))

(vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
(vector 0 41)) 0)

Figure 10.7: Output of type checking map-vec and maybe-add1.

10.1. TYPE CHECKING R?, CASTS, AND RCAST 193

(define type-check-gradual-class
(class type-check-Rwhile-class

(super-new)
(inherit operator-types type-predicates)

(define/override (type-check-exp env)
(lambda (e)

(define recur (type-check-exp env))
(match e

[(Prim 'vector-length (list e1))
(define-values (e1^ t) (recur e1))
(match t

[`(Vector ,ts ...)
(values (Prim 'vector-length (list e1^)) 'Integer)]

['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
[(Prim 'vector-ref (list e1 e2))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(check-consistent? t2 'Integer e)
(match t1

[`(Vector ,ts ...)
(match e2^

[(Int i)
(unless (and (0 . <= . i) (i . < . (length ts)))

(error 'type-check "invalid index ~a in ~a" i e))
(values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]

[else (define e1^^ (make-cast e1^ t1 'Any))
(define e2^^ (make-cast e2^ t2 'Integer))
(values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]

['Any
(define e2^^ (make-cast e2^ t2 'Integer))
(values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]

[else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
[(Prim 'vector-set! (list e1 e2 e3))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(define-values (e3^ t3) (recur e3))
(check-consistent? t2 'Integer e)
(match t1

[`(Vector ,ts ...)
(match e2^

[(Int i)
(unless (and (0 . <= . i) (i . < . (length ts)))

(error 'type-check "invalid index ~a in ~a" i e))
(check-consistent? (list-ref ts i) t3 e)
(define e3^^ (make-cast e3^ t3 (list-ref ts i)))
(values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]

[else
(define e1^^ (make-cast e1^ t1 'Any))
(define e2^^ (make-cast e2^ t2 'Integer))
(define e3^^ (make-cast e3^ t3 'Any))
(values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]

['Any
(define e2^^ (make-cast e2^ t2 'Integer))
(define e3^^ (make-cast e3^ t3 'Any))
(values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]

[else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]

Figure 10.8: Type checker for the R? language, part 1.

194 10. GRADUAL TYPING

[(Prim 'eq? (list e1 e2))
(define-values (e1^ t1) (recur e1))
(define-values (e2^ t2) (recur e2))
(check-consistent? t1 t2 e)
(define T (meet t1 t2))
(values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))

'Boolean)]
[(Prim 'not (list e1))
(define-values (e1^ t1) (recur e1))
(match t1

['Any
(recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))

(Bool #t) (Bool #f)))]
[else
(define-values (t-ret new-es^)

(type-check-op 'not (list t1) (list e1^) e))
(values (Prim 'not new-es^) t-ret)])]

[(Prim 'and (list e1 e2))
(recur (If e1 e2 (Bool #f)))]

[(Prim 'or (list e1 e2))
(define tmp (gensym 'tmp))
(recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]

[(Prim op es)
#:when (not (set-member? explicit-prim-ops op))
(define-values (new-es ts)

(for/lists (exprs types) ([e es])
(recur e)))

(define-values (t-ret new-es^) (type-check-op op ts new-es e))
(values (Prim op new-es^) t-ret)]

[(If e1 e2 e3)
(define-values (e1^ T1) (recur e1))
(define-values (e2^ T2) (recur e2))
(define-values (e3^ T3) (recur e3))
(check-consistent? T2 T3 e)
(match T1

['Boolean
(define Tif (join T2 T3))
(values (If e1^ (make-cast e2^ T2 Tif)

(make-cast e3^ T3 Tif)) Tif)]
['Any
(define Tif (meet T2 T3))
(values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))

(make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
Tif)]

[else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
[(HasType e1 T)
(define-values (e1^ T1) (recur e1))
(check-consistent? T1 T)
(values (make-cast e1^ T1 T) T)]

[(SetBang x e1)
(define-values (e1^ T1) (recur e1))
(define varT (dict-ref env x))
(check-consistent? T1 varT e)
(values (SetBang x (make-cast e1^ T1 varT)) 'Void)]

[(WhileLoop e1 e2)
(define-values (e1^ T1) (recur e1))
(check-consistent? T1 'Boolean e)
(define-values (e2^ T2) ((type-check-exp env) e2))
(values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]

Figure 10.9: Type checker for the R? language, part 2.

10.1. TYPE CHECKING R?, CASTS, AND RCAST 195

[(Apply e1 e2s)
(define-values (e1^ T1) (recur e1))
(define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
(match T1

[`(,T1ps ... -> ,T1rt)
(for ([T2 T2s] [Tp T1ps])

(check-consistent? T2 Tp e))
(define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])

(make-cast e2 src tgt)))
(values (Apply e1^ e2s^^) T1rt)]

[`Any
(define e1^^ (make-cast e1^ 'Any

`(,@(for/list ([e e2s]) 'Any) -> Any)))
(define e2s^^ (for/list ([e2 e2s^] [src T2s])

(make-cast e2 src 'Any)))
(values (Apply e1^^ e2s^^) 'Any)]

[else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
[(Lambda params Tr e1)
(define-values (xs Ts) (for/lists (l1 l2) ([p params])

(match p
[`[,x : ,T] (values x T)]
[(? symbol? x) (values x 'Any)])))

(define-values (e1^ T1)
((type-check-exp (append (map cons xs Ts) env)) e1))

(check-consistent? Tr T1 e)
(values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr

(make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
[else ((super type-check-exp env) e)]
)))

Figure 10.10: Type checker for the R? language, part 3.

196 10. GRADUAL TYPING

(define/public (join t1 t2)
(match* (t1 t2)

[('Integer 'Integer) 'Integer]
[('Boolean 'Boolean) 'Boolean]
[('Void 'Void) 'Void]
[('Any t2) t2]
[(t1 'Any) t1]
[(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
`(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]

[(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
`(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))

-> ,(join rt1 rt2))]))

(define/public (meet t1 t2)
(match* (t1 t2)

[('Integer 'Integer) 'Integer]
[('Boolean 'Boolean) 'Boolean]
[('Void 'Void) 'Void]
[('Any t2) 'Any]
[(t1 'Any) 'Any]
[(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
`(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]

[(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
`(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))

-> ,(meet rt1 rt2))]))

(define/public (make-cast e src tgt)
(cond [(equal? src tgt) e] [else (Cast e src tgt)]))

(define/public (check-consistent? t1 t2 e)
(unless (consistent? t1 t2)

(error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))

(define/override (type-check-op op arg-types args e)
(match (dict-ref (operator-types) op)

[`(,param-types . ,return-type)
(for ([at arg-types] [pt param-types])

(check-consistent? at pt e))
(values return-type

(for/list ([e args] [s arg-types] [t param-types])
(make-cast e s t)))]

[else (error 'type-check-op "unrecognized ~a" op)]))

(define explicit-prim-ops
(set-union
(type-predicates)
(set 'procedure-arity 'eq?

'vector 'vector-length 'vector-ref 'vector-set!
'any-vector-length 'any-vector-ref 'any-vector-set!)))

(define/override (fun-def-type d)
(match d

[(Def f params rt info body)
(define ps

(for/list ([p params])
(match p

[`[,x : ,T] T]
[(? symbol?) 'Any]
[else (error 'fun-def-type "unmatched parameter ~a" p)])))

`(,@ps -> ,rt)]
[else (error 'fun-def-type "ill-formed function definition in ~a" d)]))

Figure 10.11: Auxiliary functions for type checking R?.

10.2. INTERPRETING RCAST 197

10.2 Interpreting Rcast

The runtime behavior of first-order casts is straightforward, that is, casts
involving simple types such as Integer and Boolean. For example, a cast
from Integer to Any can be accomplished with the Inject operator of RAny,
which puts the integer into a tagged value (Figure 8.9). Similarly, a cast
from Any to Integer is accomplished with the Project operator, that is,
by checking the value’s tag and either retrieving the underlying integer or
signaling an error if it the tag is not the one for integers (Figure 8.10).
Things get more interesting for higher-order casts, that is, casts involving
function or vector types.

Consider the cast of the function maybe-add1 from (Any -> Any) to
(Integer -> Integer). When a function flows through this cast at run-
time, we can’t know in general whether the function will always return an
integer.1 The Rcast interpreter therefore delays the checking of the cast un-
til the function is applied. This is accomplished by wrapping maybe-add1
in a new function that casts its parameter from Integer to Any, applies
maybe-add1, and then casts the return value from Any to Integer.

Turning our attention to casts involving vector types, we consider the
example in Figure 10.12 that defines a partially-typed version of map-vec
whose parameter v has type (Vector Any Any) and that updates v in place
instead of returning a new vector. So we name this function map-vec!.
We apply map-vec! to a vector of integers, so the type checker inserts a
cast from (Vector Integer Integer) to (Vector Any Any). A naive way
for the Rcast interpreter to cast between vector types would be a build a
new vector whose elements are the result of casting each of the original
elements to the appropriate target type. However, this approach is only
valid for immutable vectors; and our vectors are mutable. In the example
of Figure 10.12, if the cast created a new vector, then the updates inside of
map-vec! would happen to the new vector and not the original one.

Instead the interpreter needs to create a new kind of value, a vector
proxy, that intercepts every vector operation. On a read, the proxy reads
from the underlying vector and then applies a cast to the resulting value.
On a write, the proxy casts the argument value and then performs the write
to the underlying vector. For the first (vector-ref v 0) in map-vec!, the
proxy casts 0 from Integer to Any. For the first vector-set!, the proxy
casts a tagged 1 from Any to Integer.

1Predicting the return value of a function is equivalent to the halting problem, which
is undecidable.

198 10. GRADUAL TYPING

(define (map-vec! [f : (Any -> Any)]
[v : (Vector Any Any)]) : Void

(begin
(vector-set! v 0 (f (vector-ref v 0)))
(vector-set! v 1 (f (vector-ref v 1)))))

(define (add1 x) (+ x 1))

(let ([v (vector 0 41)])
(begin (map-vec! add1 v) (vector-ref v 1)))

Figure 10.12: An example involving casts on vectors.

(define (map-vec! [f : (Any -> Any)] v) : Void
(begin
(vector-set! v 0 (f (vector-ref v 0)))
(vector-set! v 1 (f (vector-ref v 1)))))

(define (add1 x) (+ x 1))

(let ([v (vector 0 41)])
(begin (map-vec! add1 v) (vector-ref v 1)))

Figure 10.13: Casting a vector to Any.

The final category of cast that we need to consider are casts between
the Any type and either a function or a vector type. Figure 10.13 shows a
variant of map-vec! in which parameter v does not have a type annotation,
so it is given type Any. In the call to map-vec!, the vector has type (Vector
Integer Integer) so the type checker inserts a cast from (Vector Integer
Integer) to Any. A first thought is to use Inject, but that doesn’t work
because (Vector Integer Integer) is not a flat type. Instead, we must
first cast to (Vector Any Any) (which is flat) and then inject to Any.

The Rcast interpreter uses an auxiliary function named apply-cast to
cast a value from a source type to a target type, shown in Figure 10.14.
You’ll find that it handles all of the kinds of casts that we’ve discussed in
this section.

The interpreter for Rcast is defined in Figure 10.15, with the case for
Cast dispatching to apply-cast. To handle the addition of vector prox-
ies, we update the vector primitives in interp-op using the functions in

10.2. INTERPRETING RCAST 199

(define/public (apply-cast v s t)
(match* (s t)

[(t1 t2) #:when (equal? t1 t2) v]
[('Any t2)
(match t2

[`(,ts ... -> ,rt)
(define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
(define v^ (apply-project v any->any))
(apply-cast v^ any->any `(,@ts -> ,rt))]

[`(Vector ,ts ...)
(define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
(define v^ (apply-project v vec-any))
(apply-cast v^ vec-any `(Vector ,@ts))]

[else (apply-project v t2)])]
[(t1 'Any)
(match t1

[`(,ts ... -> ,rt)
(define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
(define v^ (apply-cast v `(,@ts -> ,rt) any->any))
(apply-inject v^ (any-tag any->any))]

[`(Vector ,ts ...)
(define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
(define v^ (apply-cast v `(Vector ,@ts) vec-any))
(apply-inject v^ (any-tag vec-any))]

[else (apply-inject v (any-tag t1))])]
[(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
(define x (gensym 'x))
(define cast-reads (for/list ([t1 ts1] [t2 ts2])

`(function (,x) ,(Cast (Var x) t1 t2) ())))
(define cast-writes

(for/list ([t1 ts1] [t2 ts2])
`(function (,x) ,(Cast (Var x) t2 t1) ())))

`(vector-proxy ,(vector v (apply vector cast-reads)
(apply vector cast-writes)))]

[(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
(define xs (for/list ([t2 ts2]) (gensym 'x)))
`(function ,xs ,(Cast

(Apply (Value v)
(for/list ([x xs][t1 ts1][t2 ts2])

(Cast (Var x) t2 t1)))
rt1 rt2) ())]

))

Figure 10.14: The apply-cast auxiliary method.

200 10. GRADUAL TYPING

Figure 10.16.

10.3 Lower Casts

The next step in the journey towards x86 is the lower-casts pass that
translates the casts in Rcast to the lower-level Inject and Project oper-
ators and a new operator for creating vector proxies, extending the RWhile
language to create Rproxy. We recommend creating an auxiliary function
named lower-cast that takes an expression (in Rcast), a source type, and
a target type, and translates it to expression in Rproxy that has the same
behavior as casting the expression from the source to the target type in the
interpreter.

The lower-cast function can follow a code structure similar to the
apply-cast function (Figure 10.14) used in the interpreter for Rcast be-
cause it must handle the same cases as apply-cast and it needs to mimic
the behavior of apply-cast. The most interesting cases are those concern-
ing the casts between two vector types and between two function types.

As mentioned in Section 10.2, a cast from one vector type to another vec-
tor type is accomplished by creating a proxy that intercepts the operations
on the underlying vector. Here we make the creation of the proxy explicit
with the vector-proxy primitive operation. It takes three arguments, the
first is an expression for the vector, the second is a vector of functions for
casting an element that is being read from the vector, and the third is a
vector of functions for casting an element that is being written to the vec-
tor. You can create the functions using Lambda. Also, as we shall see in the
next section, we need to differentiate these vectors from the user-created
ones, so we recommend using a new primitive operator named raw-vector
instead of vector to create these vectors of functions. Figure 10.17 shows
the output of lower-casts on the example in Figure 10.12 that involved
casting a vector of integers to a vector of Any.

A cast from one function type to another function type is accomplished
by generating a Lambda whose parameter and return types match the target
function type. The body of the Lambda should cast the parameters from the
target type to the source type (yes, backwards! functions are contravariant in
the parameters), then call the underlying function, and finally cast the result
from the source return type to the target return type. Figure 10.18 shows
the output of the lower-casts pass on the map-vec example in Figure 10.3.
Note that the add1 argument in the call to map-vec is wrapped in a lambda.

10.3. LOWER CASTS 201

(define interp-Rcast-class
(class interp-Rwhile-class

(super-new)
(inherit apply-fun apply-inject apply-project)

(define/override (interp-op op)
(match op

['vector-length guarded-vector-length]
['vector-ref guarded-vector-ref]
['vector-set! guarded-vector-set!]
['any-vector-ref (lambda (v i)

(match v [`(tagged ,v^ ,tg)
(guarded-vector-ref v^ i)]))]

['any-vector-set! (lambda (v i a)
(match v [`(tagged ,v^ ,tg)

(guarded-vector-set! v^ i a)]))]
['any-vector-length (lambda (v)

(match v [`(tagged ,v^ ,tg)
(guarded-vector-length v^)]))]

[else (super interp-op op)]
))

(define/override ((interp-exp env) e)
(define (recur e) ((interp-exp env) e))
(match e

[(Value v) v]
[(Cast e src tgt) (apply-cast (recur e) src tgt)]
[else ((super interp-exp env) e)]))

))

(define (interp-Rcast p)
(send (new interp-Rcast-class) interp-program p))

Figure 10.15: The interpreter for Rcast.

202 10. GRADUAL TYPING

(define (guarded-vector-ref vec i)
(match vec

[`(vector-proxy ,proxy)
(define val (guarded-vector-ref (vector-ref proxy 0) i))
(define rd (vector-ref (vector-ref proxy 1) i))
(apply-fun rd (list val) 'guarded-vector-ref)]

[else (vector-ref vec i)]))

(define (guarded-vector-set! vec i arg)
(match vec

[`(vector-proxy ,proxy)
(define wr (vector-ref (vector-ref proxy 2) i))
(define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
(guarded-vector-set! (vector-ref proxy 0) i arg^)]

[else (vector-set! vec i arg)]))

(define (guarded-vector-length vec)
(match vec

[`(vector-proxy ,proxy)
(guarded-vector-length (vector-ref proxy 0))]

[else (vector-length vec)]))

Figure 10.16: The guarded-vector auxiliary functions.

10.4 Differentiate Proxies

So far the job of differentiating vectors and vector proxies has been the
job of the interpreter. For example, the interpreter for Rcast implements
vector-ref using the guarded-vector-ref function in Figure 10.16. In the
differentiate-proxies pass we shift this responsibility to the generated
code.

We begin by designing the output language Rp8. In R? we used the type
Vector for both real vectors and vector proxies. In Rp8 we return the Vector
type to its original meaning, as the type of real vectors, and we introduce a
new type, PVector, whose values can be either real vectors or vector proxies.
This new type comes with a suite of new primitive operations for creating
and using values of type PVector. We don’t need to introduce a new type to
represent vector proxies. A proxy is represented by a vector containing three
things: 1) the underlying vector, 2) a vector of functions for casting elements
that are read from the vector, and 3) a vector of functions for casting values
to be written to the vector. So we define the following abbreviation for the

10.4. DIFFERENTIATE PROXIES 203

(define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
(begin

(vector-set! v 0 (f (vector-ref v 0)))
(vector-set! v 1 (f (vector-ref v 1)))))

(define (add1 [x : Any]) : Any
(inject (+ (project x Integer) 1) Integer))

(let ([v (vector 0 41)])
(begin

(map-vec! add1 (vector-proxy v
(raw-vector (lambda: ([x9 : Integer]) : Any

(inject x9 Integer))
(lambda: ([x9 : Integer]) : Any
(inject x9 Integer)))

(raw-vector (lambda: ([x9 : Any]) : Integer
(project x9 Integer))

(lambda: ([x9 : Any]) : Integer
(project x9 Integer)))))

(vector-ref v 1)))

Figure 10.17: Output of lower-casts on the example in Figure 10.12.

(define (map-vec [f : (Integer -> Integer)]
[v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))

(define (add1 [x : Any]) : Any
(inject (+ (project x Integer) 1) Integer))

(vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
(project (add1 (inject x9 Integer)) Integer))

(vector 0 41)) 1)

Figure 10.18: Output of lower-casts on the example in Figure 10.3.

204 10. GRADUAL TYPING

type of a vector proxy:

Proxy(T . . .⇒ T ′ . . .) = (Vector (PVector T . . .) R W)→ (PVector T ′ . . .)

where R = (Vector (T → T ′) . . .) and W = (Vector (T ′ → T) . . .). Next
we describe each of the new primitive operations.

inject-vector : (Vector T . . .) → (PVector T . . .)
This operation brands a vector as a value of the PVector type.

inject-proxy : Proxy(T . . .⇒ T ′ . . .) → (PVector T ′ . . .)
This operation brands a vector proxy as value of the PVector type.

proxy? : (PVector T . . .) → Boolean
returns true if the value is a vector proxy and false if it is a real vector.

project-vector : (PVector T . . .) → (Vector T . . .)
Assuming that the input is a vector (and not a proxy), this operation
returns the vector.

proxy-vector-length : (PVector T . . .) → Boolean
Given a vector proxy, this operation returns the length of the under-
lying vector.

proxy-vector-ref : (PVector T . . .) → (i : Integer) → Ti
Given a vector proxy, this operation returns the ith element of the
underlying vector.

proxy-vector-set! : (PVector T . . .) → (i : Integer) → Ti → Void
Given a vector proxy, this operation writes a value to the ith element
of the underlying vector.

Now to discuss the translation that differentiates vectors from proxies.
First, every type annotation in the program must be translated (recursively)
to replace Vector with PVector. Next, we must insert uses of PVector
operations in the appropriate places. For example, we wrap every vector
creation with an inject-vector.
(vector e1 . . . en)
⇒
(inject-vector (vector e′1 . . . e

′
n))

The raw-vector operator that we introduced in the previous section does
not get injected.

10.5. REVEAL CASTS 205

(raw-vector e1 . . . en)
⇒
(vector e′1 . . . e

′
n)

The vector-proxy primitive translates as follows.

(vector-proxy e1 e2 e3)
⇒
(inject-proxy (vector e′1 e′2 e′3))

We translate the vector operations into conditional expressions that
check whether the value is a proxy and then dispatch to either the appro-
priate proxy vector operation or the regular vector operation. For example,
the following is the translation for vector-ref.

(vector-ref e1 i)
⇒
(let ([v e1])
(if (proxy? v)
(proxy-vector-ref v i)
(vector-ref (project-vector v) i)

Note in the case of a real vector, we must apply project-vector before the
vector-ref.

10.5 Reveal Casts

Recall that the reveal-casts pass (Section 8.4) is responsible for lowering
Inject and Project into lower-level operations. In particular, Project
turns into a conditional expression that inspects the tag and retrieves the
underlying value. Here we need to augment the translation of Project to
handle the situation when the target type is PVector. Instead of using
vector-length we need to use proxy-vector-length.

(project e (PVector Any1 . . . Anyn))
⇒
(let tmp e′

(if (eq? (tag-of-any tmp 2))
(let vec (value-of tmp (PVector Any . . . Any))
(if (eq? (proxy-vector-length vec) n) vec (exit)))

(exit)))

206 10. GRADUAL TYPING

10.6 Closure Conversion
The closure conversion pass only requires one minor adjustment. The auxil-
iary function that translates type annotations needs to be updated to handle
the PVector type.

10.7 Explicate Control
Update the explicate-control pass to handle the new primitive operations
on the PVector type.

10.8 Select Instructions
Recall that the select-instructions pass is responsible for lowering the
primitive operations into x86 instructions. So we need to translate the new
PVector operations to x86. To do so, the first question we need to answer is
how will we differentiate the two kinds of values (vectors and proxies) that
can inhabit PVector. We need just one bit to accomplish this, so we use the
57th bit of the 64-bit tag at the front of every vector (see Figure 5.9). So
far, this bit has been set to 0, so for inject-vector we leave it that way.
(Assign lhs (Prim 'inject-vector (list e1)))
⇒
movq e′1, lhs′

On the other hand, inject-proxy sets the 57th bit to 1.
(Assign lhs (Prim 'inject-proxy (list e1)))
⇒
movq e′1, %r11
movq (1 << 57), %rax
orq 0(%r11), %rax
movq %rax, 0(%r11)
movq %r11, lhs′

The proxy? operation consumes the information so carefully stashed
away by inject-vector and inject-proxy. It isolates the 57th bit to tell
whether the value is a real vector or a proxy.
(Assign lhs (Prim 'proxy? (list e)))
⇒
movq e′1, %r11
movq 0(%r11), %rax
sarq $57, %rax

10.8. SELECT INSTRUCTIONS 207

andq $1, %rax
movq %rax, lhs′

The project-vector operation is straightforward to translate, so we
leave it up to the reader.

Regarding the proxy-vector operations, the runtime provides proce-
dures that implement them (they are recursive functions!) so here we simply
need to translate these vector operations into the appropriate function call.
For example, here is the translation for proxy-vector-ref.
(Assign lhs (Prim 'proxy-vector-ref (list e1 e2)))
⇒
movq e′1, %rdi
movq e′2, %rsi
callq proxy_vector_ref
movq %rax, lhs′

We have another batch of vector operations to deal with, those for the
Any type. Recall that the type checker for R? generates an any-vector-ref
when there is a vector-ref on something of type Any, and similarly for
any-vector-set! and any-vector-length (Figure 10.8). In Section 8.7
we selected instructions for these operations based on the idea that the
underlying value was a real vector. But in the current setting, the underlying
value is of type PVector. So any-vector-ref can be translates to pseudo-
x86 as follows. We begin by projecting the underlying value out of the tagged
value and then call the proxy_vector_ref procedure in the runtime.
(Assign lhs (Prim 'any-vector-ref (list e1 e2)))
movq ¬111, %rdi
andq e′1, %rdi
movq e′2, %rsi
callq proxy_vector_ref
movq %rax, lhs′

The any-vector-set! and any-vector-length operators can be trans-
lated in a similar way.

Exercise 37. Implement a compiler for the gradually-typed R? language by
extending and adapting your compiler for RWhile. Create 10 new partially-
typed test programs. In addition to testing with these new programs, also
test your compiler on all the tests for RWhile and tests for RDyn. Sometimes
you may get a type checking error on the RDyn programs but you can adapt
them by inserting a cast to the Any type around each subexpression causing
a type error. While RDyn doesn’t have explicit casts, you can induce one

208 10. GRADUAL TYPING

by wrapping the subexpression e with a call to an un-annotated identity
function, like this: ((lambda (x) x) e).

Figure 10.19 provides an overview of all the passes needed for the com-
pilation of R?.

10.9 Further Reading
This chapter just scratches the surface of gradual typing. The basic approach
described here is missing two key ingredients that one would want in a
implementation of gradual typing: blame tracking [97, 99] and space-efficient
casts [51, 52]. The problem addressed by blame tracking is that when a cast
on a higher-order value fails, it often does so at a point in the program
that is far removed from the original cast. Blame tracking is a technique
for propagating extra information through casts and proxies so that when
a cast fails, the error message can point back to the original location of the
cast in the source program.

The problem addressed by space-efficient casts also relates to higher-
order casts. It turns out that in partially typed programs, a function or
vector can flow through very-many casts at runtime. With the approach
described in this chapter, each cast adds another lambda wrapper or a vector
proxy. Not only does this take up considerable space, but it also makes the
function calls and vector operations slow. For example, a partially-typed
version of quicksort could, in the worst case, build a chain of proxies of
length O(n) around the vector, changing the overall time complexity of the
algorithm from O(n2) to O(n3)! Herman et al. [51] suggested a solution to
this problem by representing casts using the coercion calculus of Henglein
[50], which prevents the creation of long chains of proxies by compressing
them into a concise normal form. Siek et al. [91] give and algorithm for
compressing coercions and Kuhlenschmidt et al. [66] show how to implement
these ideas in the Grift compiler.

https://github.com/Gradual-Typing/Grift

There are also interesting interactions between gradual typing and other
language features, such as parametetric polymorphism, information-flow
types, and type inference, to name a few. We recommend the reader to
the online gradual typing bibliography:

http://samth.github.io/gradual-typing-bib/

https://github.com/Gradual-Typing/Grift
http://samth.github.io/gradual-typing-bib/

10.9. FURTHER READING 209

R?RcastRproxy

RPVec RPVec RPVec RFunRef
PVec RFunRef

PVec

RFunRef
PVecRFunRef

PVecRFunRef
PVecRAlloc

PVecRAlloc
PVec

CPVec
	

x86Var
callq∗

x86Var
callq∗ x86Var

callq∗

x86Var
callq∗ x86callq∗

x86callq∗

type-checklower-casts

differentiate-proxies
shrink uniquify reveal-functions reveal-casts

convert-assignments

convert-to-clos.

limit-fun.expose-alloc.remove-complex.

explicate-control

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 10.19: Diagram of the passes for R? (gradual typing).

210 10. GRADUAL TYPING

11

Parametric Polymorphism

This chapter studies the compilation of parametric polymorphism (aka.
generics) in the subset RPoly of Typed Racket. Parametric polymorphism
enables improved code reuse by parameterizing functions and data structures
with respect to the types that they operate on. For example, Figure 11.1
revisits the map-vec example but this time gives it a more fitting type. This
map-vec function is parameterized with respect to the element type of the
vector. The type of map-vec is the following polymorphic type as specified
by the All and the type parameter a.
(All (a) ((a -> a) (Vector a a) -> (Vector a a)))

The idea is that map-vec can be used at all choices of a type for parameter
a. In Figure 11.1 we apply map-vec to a vector of integers, a choice of
Integer for a, but we could have just as well applied map-vec to a vector
of Booleans (and a function on Booleans).

Figure 11.2 defines the concrete syntax of RPoly and Figure 11.3 defines
the abstract syntax. We add a second form for function definitions in which
a type declaration comes before the define. In the abstract syntax, the

(: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
(define (map-vec f v)
(vector (f (vector-ref v 0)) (f (vector-ref v 1))))

(define (add1 [x : Integer]) : Integer (+ x 1))

(vector-ref (map-vec add1 (vector 0 41)) 1)

Figure 11.1: The map-vec example using parametric polymorphism.

211

212 11. PARAMETRIC POLYMORPHISM

type ::= . . . | (All (var . . .) type) | var
def ::= (define (var [var:type] . . .) : type exp)

| (: var type)
(define (var var . . .) exp)

RPoly ::= def . . . exp

Figure 11.2: The concrete syntax of RPoly, extending RWhile (Figure 9.1).

type ::= . . . | (All (var . . .) type) | var
def ::= (Def var ([var:type] . . .) type ’() exp)

| (Decl var type)
(Def var (var . . .) ’Any ’() exp)

RPoly ::= (ProgramDefsExp ’() (def . . .) exp)

Figure 11.3: The abstract syntax of RPoly, extending RWhile (Figure 9.2).

return type in the Def is Any, but that should be ignored in favor of the
return type in the type declaration. (The Any comes from using the same
parser as in Chapter 8.) The presence of a type declaration enables the use
of an All type for a function, thereby making it polymorphic. The grammar
for types is extended to include polymorphic types and type variables.

By including polymorphic types in the type non-terminal we choose
to make them first-class which has interesting repercussions on the com-
piler. Many languages with polymorphism, such as C++ [94] and Standard
ML [76], only support second-class polymorphism, so it is useful to see an
example of first-class polymorphism. In Figure 11.4 we define a function
apply-twice whose parameter is a polymorphic function. The occurrence
of a polymorphic type underneath a function type is enabled by the normal
recursive structure of the grammar for type and the categorization of the All
type as a type. The body of apply-twice applies the polymorphic function
to a Boolean and to an integer.

The type checker for RPoly in Figure 11.7 has three new responsibilities
(compared to RWhile). The type checking of function application is extended
to handle the case where the operator expression is a polymorphic function.
In that case the type arguments are deduced by matching the type of the
parameters with the types of the arguments. The match-types auxiliary
function carries out this deduction by recursively descending through a pa-
rameter type pt and the corresponding argument type at, making sure that
they are equal except when there is a type parameter on the left (in the
parameter type). If it’s the first time that the type parameter has been en-

213

(: apply-twice ((All (b) (b -> b)) -> Integer))
(define (apply-twice f)
(if (f #t) (f 42) (f 777)))

(: id (All (a) (a -> a)))
(define (id x) x)

(apply-twice id)

Figure 11.4: An example illustrating first-class polymorphism.

countered, then the algorithm deduces an association of the type parameter
to the corresponding type on the right (in the argument type). If it’s not
the first time that the type parameter has been encountered, the algorithm
looks up its deduced type and makes sure that it is equal to the type on
the right. Once the type arguments are deduced, the operator expression is
wrapped in an Inst AST node (for instantiate) that records the type of the
operator, but more importantly, records the deduced type arguments. The
return type of the application is the return type of the polymorphic func-
tion, but with the type parameters replaced by the deduced type arguments,
using the subst-type function.

The second responsibility of the type checker is extending the function
type-equal? to handle the All type. This is not quite a simple as equal
on other types, such as function and vector types, because two polymorphic
types can be syntactically different even though they are equivalent types.
For example, (All (a) (a -> a)) is equivalent to (All (b) (b -> b)).
Two polymorphic types should be considered equal if they differ only in the
choice of the names of the type parameters. The type-equal? function in
Figure 11.8 renames the type parameters of the first type to match the type
parameters of the second type.

The third responsibility of the type checker is making sure that only
defined type variables appear in type annotations. The check-well-formed
function defined in Figure 11.9 recursively inspects a type, making sure that
each type variable has been defined.

The output language of the type checker is RInst, defined in Figure 11.5.
The type checker combines the type declaration and polymorphic function
into a single definition, using the Poly form, to make polymorphic functions
more convenient to process in next pass of the compiler.

The output of the type checker on the polymorphic map-vec example is

214 11. PARAMETRIC POLYMORPHISM

type ::= . . . | (All (var . . .) type) | var
exp ::= . . . | (Inst exp type (type . . .))
def ::= (Def var ([var:type] . . .) type ’() exp)

| (Poly (var . . .) (Def var ([var:type] . . .) type ’() exp))
RInst ::= (ProgramDefsExp ’() (def . . .) exp)

Figure 11.5: The abstract syntax of RInst, extending RWhile (Figure 9.2).

(poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
(vector (f (vector-ref v 0)) (f (vector-ref v 1)))))

(define (add1 [x : Integer]) : Integer (+ x 1))

(vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
(Integer))

add1 (vector 0 41)) 1)

Figure 11.6: Output of the type checker on the map-vec example.

listed in Figure 11.6.

11.1 Compiling Polymorphism
Broadly speaking, there are four approaches to compiling parametric poly-
morphism, which we describe below.

Monomorphization generates a different version of a polymorphic func-
tion for each set of type arguments that it is used with, producing
type-specialized code. This approach results in the most efficient code
but requires whole-program compilation (no separate compilation) and
increases code size. For our current purposes monomorphization is a
non-starter because, with first-class polymorphism, it is sometimes
not possible to determine which generic functions are used with which
type arguments during compilation. (It can be done at runtime, with
just-in-time compilation.) This approach is used to compile C++ tem-
plates [94] and polymorphic functions in NESL [13] and ML [100].

Uniform representation generates one version of each polymorphic func-
tion but requires all values have a common “boxed” format, such as
the tagged values of type Any in RAny. Non-polymorphic code (i.e.

11.1. COMPILING POLYMORPHISM 215

(define type-check-poly-class
(class type-check-Rwhile-class

(super-new)
(inherit check-type-equal?)

(define/override (type-check-apply env e1 es)
(define-values (e^ ty) ((type-check-exp env) e1))
(define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])

((type-check-exp env) e)))
(match ty

[`(,ty^* ... -> ,rt)
(for ([arg-ty ty*] [param-ty ty^*])

(check-type-equal? arg-ty param-ty (Apply e1 es)))
(values e^ es^ rt)]

[`(All ,xs (,tys ... -> ,rt))
(define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
(define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])

(match-types env^^ param-ty arg-ty)))
(define targs

(for/list ([x xs])
(match (dict-ref env^^ x (lambda () #f))

[#f (error 'type-check "type variable ~a not deduced\nin ~v"
x (Apply e1 es))]

[ty ty])))
(values (Inst e^ ty targs) es^ (subst-type env^^ rt))]

[else (error 'type-check "expected a function, not ~a" ty)]))

(define/override ((type-check-exp env) e)
(match e

[(Lambda `([,xs : ,Ts] ...) rT body)
(for ([T Ts]) ((check-well-formed env) T))
((check-well-formed env) rT)
((super type-check-exp env) e)]

[(HasType e1 ty)
((check-well-formed env) ty)
((super type-check-exp env) e)]

[else ((super type-check-exp env) e)]))

(define/override ((type-check-def env) d)
(verbose 'type-check "poly/def" d)
(match d

[(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
(define ts-env (for/list ([t ts]) (cons t 'Type)))
(for ([p ps]) ((check-well-formed ts-env) p))
((check-well-formed ts-env) rt)
(define new-env (append ts-env (map cons xs ps) env))
(define-values (body^ ty^) ((type-check-exp new-env) body))
(check-type-equal? ty^ rt body)
(Generic ts (Def f p:t* rt info body^))]

[else ((super type-check-def env) d)]))

(define/override (type-check-program p)
(match p

[(Program info body)
(type-check-program (ProgramDefsExp info '() body))]

[(ProgramDefsExp info ds body)
(define ds^ (combine-decls-defs ds))
(define new-env (for/list ([d ds^])

(cons (def-name d) (fun-def-type d))))
(define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
(define-values (body^ ty) ((type-check-exp new-env) body))
(check-type-equal? ty 'Integer body)
(ProgramDefsExp info ds^^ body^)]))

))

Figure 11.7: Type checker for the RPoly language.

216 11. PARAMETRIC POLYMORPHISM

(define/override (type-equal? t1 t2)
(match* (t1 t2)

[(`(All ,xs ,T1) `(All ,ys ,T2))
(define env (map cons xs ys))
(type-equal? (subst-type env T1) T2)]

[(other wise)
(super type-equal? t1 t2)]))

(define/public (match-types env pt at)
(match* (pt at)

[('Integer 'Integer) env] [('Boolean 'Boolean) env]
[('Void 'Void) env] [('Any 'Any) env]
[(`(Vector ,pts ...) `(Vector ,ats ...))
(for/fold ([env^ env]) ([pt1 pts] [at1 ats])

(match-types env^ pt1 at1))]
[(`(,pts ... -> ,prt) `(,ats ... -> ,art))
(define env^ (match-types env prt art))
(for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])

(match-types env^^ pt1 at1))]
[(`(All ,pxs ,pt1) `(All ,axs ,at1))
(define env^ (append (map cons pxs axs) env))
(match-types env^ pt1 at1)]

[((? symbol? x) at)
(match (dict-ref env x (lambda () #f))

[#f (error 'type-check "undefined type variable ~a" x)]
['Type (cons (cons x at) env)]
[t^ (check-type-equal? at t^ 'matching) env])]

[(other wise) (error 'type-check "mismatch ~a != a" pt at)]))

(define/public (subst-type env pt)
(match pt

['Integer 'Integer] ['Boolean 'Boolean]
['Void 'Void] ['Any 'Any]
[`(Vector ,ts ...)
`(Vector ,@(for/list ([t ts]) (subst-type env t)))]

[`(,ts ... -> ,rt)
`(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]

[`(All ,xs ,t)
`(All ,xs ,(subst-type (append (map cons xs xs) env) t))]

[(? symbol? x) (dict-ref env x)]
[else (error 'type-check "expected a type not ~a" pt)]))

(define/public (combine-decls-defs ds)
(match ds

['() '()]
[`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
(unless (equal? name f)

(error 'type-check "name mismatch, ~a != ~a" name f))
(match type

[`(All ,xs (,ps ... -> ,rt))
(define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
(cons (Generic xs (Def name params^ rt info body))

(combine-decls-defs ds^))]
[`(,ps ... -> ,rt)
(define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
(cons (Def name params^ rt info body) (combine-decls-defs ds^))]

[else (error 'type-check "expected a function type, not ~a" type)])]
[`(,(Def f params rt info body) . ,ds^)
(cons (Def f params rt info body) (combine-decls-defs ds^))]))

Figure 11.8: Auxiliary functions for type checking RPoly.

11.1. COMPILING POLYMORPHISM 217

(match ty
['Integer (void)]
['Boolean (void)]
['Void (void)]
[(? symbol? a)
(match (dict-ref env a (lambda () #f))
['Type (void)]
[else (error 'type-check "undefined type variable ~a" a)])]

[`(Vector ,ts ...)
(for ([t ts]) ((check-well-formed env) t))]
[`(,ts ... -> ,t)
(for ([t ts]) ((check-well-formed env) t))
((check-well-formed env) t)]
[`(All ,xs ,t)
(define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
((check-well-formed env^) t)]
[else (error 'type-check "unrecognized type ~a" ty)]))

Figure 11.9: Well-formed types.

monomorphic code) is compiled similarly to code in a dynamically
typed language (like RDyn), in which primitive operators require their
arguments to be projected from Any and their results are injected into
Any. (In object-oriented languages, the projection is accomplished
via virtual method dispatch.) The uniform representation approach
is compatible with separate compilation and with first-class polymor-
phism. However, it produces the least-efficient code because it in-
troduces overhead in the entire program, including non-polymorphic
code. This approach is used in the implementation of CLU [70, 69],
ML [19, 7], and Java [14].

Mixed representation generates one version of each polymorphic func-
tion, using a boxed representation for type variables. Monomorphic
code is compiled as usual (as in RWhile) and conversions are performed
at the boundaries between monomorphic and polymorphic (e.g. when
a polymorphic function is instantiated and called). This approach
is compatible with separate compilation and first-class polymorphism
and maintains the efficiency for monomorphic code. The tradeoff is in-
creased overhead at the boundary between monomorphic and polymor-
phic code. This approach is used in compilers for variants of ML [67]
and starting in Java 5 with the addition of autoboxing.

218 11. PARAMETRIC POLYMORPHISM

(define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
: (Vector Any Any)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))

(define (add1 [x : Integer]) : Integer (+ x 1))

(vector-ref ((cast map-vec
((Any -> Any) (Vector Any Any) -> (Vector Any Any))
((Integer -> Integer) (Vector Integer Integer)

-> (Vector Integer Integer)))
add1 (vector 0 41)) 1)

Figure 11.10: The polymorphic map-vec example after type erasure.

Type passing uses the unboxed representation in both monomorphic and
polymorphic code. Each polymorphic function is compiled to a single
function with extra parameters that describe the type arguments. The
type information is used by the generated code to direct access of the
unboxed values at runtime. This approach is used in compilers for
the Napier88 language [79] and ML [48]. This approach is compatible
with separate compilation and first-class polymorphism and maintains
the efficiency for monomorphic code. There is runtime overhead in
polymorphic code from dispatching on type information.

In this chapter we use the mixed representation approach, partly because
of its favorable attributes, and partly because it is straightforward to imple-
ment using the tools that we have already built to support gradual typing.
To compile polymorphic functions, we add just one new pass, erase-types,
to compile RInst to Rcast.

11.2 Erase Types
We use the Any type from Chapter 8 to represent type variables. For exam-
ple, Figure 11.10 shows the output of the erase-types pass on the poly-
morphic map-vec (Figure 11.1). The occurrences of type parameter a are
replaced by Any and the polymorphic All types are removed from the type
of map-vec.

This process of type erasure creates a challenge at points of instantiation.
For example, consider the instantiation of map-vec in Figure 11.6. The type
of map-vec is

11.2. ERASE TYPES 219

(All (a) ((a -> a) (Vector a a) -> (Vector a a)))

and it is instantiated to
((Integer -> Integer) (Vector Integer Integer)

-> (Vector Integer Integer))

After erasure, the type of map-vec is
((Any -> Any) (Vector Any Any) -> (Vector Any Any))

but we need to convert it to the instantiated type. This is easy to do in the
target language Rcast with a single cast. In Figure 11.10, the instantiation
of map-vec has been compiled to a cast from the type of map-vec to the
instantiated type. The source and target type of a cast must be consistent
(Figure 10.4), which indeed is the case because both the source and target
are obtained from the same polymorphic type of map-vec, replacing the type
parameters with Any in the former and with the deduced type arguments in
the later. (Recall that the Any type is consistent with any type.)

To implement the erase-types pass, we recommend defining a recur-
sive auxiliary function named erase-type that applies the following two
transformations. It replaces type variables with Any

x
⇒
Any

and it removes the polymorphic All types.
(All xs T1)
⇒
T ′1

Apply the erase-type function to all of the type annotations in the pro-
gram.

Regarding the translation of expressions, the case for Inst is the inter-
esting one. We translate it into a Cast, as shown below. The type of the
subexpression e is the polymorphic type (AllxsT). The source type of the
cast is the erasure of T , the type T ′. The target type T ′′ is the result of
substituting the arguments types ts for the type parameters xs in T followed
by doing type erasure.
(Inst e (All xs T) ts)
⇒
(Cast e′ T ′ T ′′)

where T ′′ = (erase-type (subst-type s T)) and s = (map cons xs ts).

220 11. PARAMETRIC POLYMORPHISM

Finally, each polymorphic function is translated to a regular functions
in which type erasure has been applied to all the type annotations and the
body.
(Poly ts (Def f ([x1 : T1] . . .) Tr info e))
⇒
(Def f ([x1 : T ′1] . . .) T ′r info e′)

Exercise 38. Implement a compiler for the polymorphic language RPoly by
extending and adapting your compiler for R?. Create 6 new test programs
that use polymorphic functions. Some of them should make use of first-class
polymorphism.

Figure 11.11 provides an overview of all the passes needed for the com-
pilation of RPoly.

11.2. ERASE TYPES 221

RPolyRInstRcastRproxy

RPVec RPVec RPVec RFunRef
PVec RFunRef

PVec

RFunRef
PVecRFunRef

PVecRFunRef
PVecRAlloc

PVecRAlloc
PVec

CPVec
	

x86Var
callq∗

x86Var
callq∗ x86Var

callq∗

x86Var
callq∗ x86callq∗

x86callq∗

type-checkerase-typeslower-casts

differentiate-proxies
shrink uniquify reveal-functions reveal-casts

convert-assignments

convert-to-clos.

limit-fun.expose-alloc.remove-complex.

explicate-control

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 11.11: Diagram of the passes for RPoly (parametric polymorphism).

222 11. PARAMETRIC POLYMORPHISM

12

Appendix

12.1 Interpreters

We provide interpreters for each of the source languages RInt, RVar, . . .
in the files interp-Rint.rkt, interp-Rvar.rkt, etc. The interpreters
for the intermediate languages CVar and CIf are in interp-Cvar.rkt and
interp-C1.rkt. The interpreters for CVec, CFun, pseudo-x86, and x86 are
in the interp.rkt file.

12.2 Utility Functions

The utility functions described in this section are in the utilities.rkt file
of the support code.

interp-tests The interp-tests function runs the compiler passes and
the interpreters on each of the specified tests to check whether each pass is
correct. The interp-tests function has the following parameters:

name (a string) a name to identify the compiler,

typechecker a function of exactly one argument that either raises an error
using the error function when it encounters a type error, or returns
#f when it encounters a type error. If there is no type error, the type
checker returns the program.

passes a list with one entry per pass. An entry is a list with four things:

1. a string giving the name of the pass,

223

224 12. APPENDIX

2. the function that implements the pass (a translator from AST to
AST),

3. a function that implements the interpreter (a function from AST
to result value) for the output language,

4. and a type checker for the output language. Type checkers for the
R and C languages are provided in the support code. For exam-
ple, the type checkers forRVar and CVar are in type-check-Rvar.rkt
and type-check-Cvar.rkt. The type checker entry is optional.
The support code does not provide type checkers for the x86 lan-
guages.

source-interp an interpreter for the source language. The interpreters
from Appendix 12.1 make a good choice.

test-family (a string) for example, "r1", "r2", etc.

tests a list of test numbers that specifies which tests to run. (see below)

The interp-tests function assumes that the subdirectory tests has a
collection of Racket programs whose names all start with the family name,
followed by an underscore and then the test number, ending with the file
extension .rkt. Also, for each test program that calls read one or more
times, there is a file with the same name except that the file extension is
.in that provides the input for the Racket program. If the test program
is expected to fail type checking, then there should be an empty file of the
same name but with extension .tyerr.

compiler-tests runs the compiler passes to generate x86 (a .s file) and
then runs the GNU C compiler (gcc) to generate machine code. It runs
the machine code and checks that the output is 42. The parameters to the
compiler-tests function are similar to those of the interp-tests function,
and consist of

• a compiler name (a string),

• a type checker,

• description of the passes,

• name of a test-family, and

• a list of test numbers.

12.3. X86 INSTRUCTION SET QUICK-REFERENCE 225

compile-file takes a description of the compiler passes (see the comment
for interp-tests) and returns a function that, given a program file name
(a string ending in .rkt), applies all of the passes and writes the output
to a file whose name is the same as the program file name but with .rkt
replaced with .s.

read-program takes a file path and parses that file (it must be a Racket
program) into an abstract syntax tree.

parse-program takes an S-expression representation of an abstract syntax
tree and converts it into the struct-based representation.

assert takes two parameters, a string (msg) and Boolean (bool), and
displays the message msg if the Boolean bool is false.

lookup takes a key and an alist, and returns the first value that is asso-
ciated with the given key, if there is one. If not, an error is triggered. The
alist may contain both immutable pairs (built with cons) and mutable pairs
(built with mcons).

12.3 x86 Instruction Set Quick-Reference
Table 12.1 lists some x86 instructions and what they do. We write A → B
to mean that the value of A is written into location B. Address offsets are
given in bytes. The instruction arguments A,B,C can be immediate con-
stants (such as $4), registers (such as %rax), or memory references (such as
-4(%ebp)). Most x86 instructions only allow at most one memory reference
per instruction. Other operands must be immediates or registers.

226 12. APPENDIX

Instruction Operation
addq A, B A+B → B
negq A −A→ A
subq A, B B −A→ B
callq L Pushes the return address and jumps to label L
callq *A Calls the function at the address A.
retq Pops the return address and jumps to it
popq A ∗rsp→ A; rsp + 8→ rsp
pushq A rsp− 8→ rsp;A→ ∗rsp
leaq A,B A→ B (B must be a register)
cmpq A, B compare A and B and set the flag register (B must not be an immediate)
je L Jump to label L if the flag register matches the

condition code of the instruction, otherwise go to the
next instructions. The condition codes are e for
“equal”, l for “less”, le for “less or equal”, g for
“greater”, and ge for “greater or equal”.

jl L
jle L
jg L
jge L
jmp L Jump to label L
movq A, B A→ B
movzbq A, B A→ B, where A is a single-byte register (e.g., al or

cl), B is a 8-byte register, and the extra bytes of B are
set to zero.

notq A ∼ A→ A (bitwise complement)
orq A, B A|B → B (bitwise-or)
andq A, B A&B → B (bitwise-and)
salq A, B B « A→ B (arithmetic shift left, where A is a constant)
sarq A, B B » A→ B (arithmetic shift right, where A is a constant)
sete A If the flag matches the condition code, then 1→ A, else

0→ A. Refer to je above for the description of the
condition codes. A must be a single byte register (e.g.,
al or cl).

setl A
setle A
setg A
setge A

Table 12.1: Quick-reference for the x86 instructions used in this book.

12.4. CONCRETE SYNTAX FOR INTERMEDIATE LANGUAGES 227

type ::= Integer | Boolean | (Vector type . . .) | Void
| (type . . . -> type) | Any

ftype ::= Integer | Boolean | Void | (Vector Any . . .)
| (Any . . . -> Any)

exp ::= . . . (inject exp ftype)) | (project exp ftype)
| (any-vector-length exp) | (any-vector-ref exp exp)
| (any-vector-set! exp exp exp)
| (boolean? exp) | (integer? exp) | (void? exp)
| (vector? exp) | (procedure? exp)

def ::= (define (var [var:type] . . .) : type exp)
RAny ::= def . . . exp

Figure 12.1: The concrete syntax of RAny, extending Rλ (Figure 7.4) with
Any.

atm ::= int | var
exp ::= atm | (read) | (- atm) | (+ atm atm)
stmt ::= var = exp;
tail ::= return exp; | stmt tail
CVar ::= (label: tail) . . .

Figure 12.2: The concrete syntax of the CVar intermediate language.

12.4 Concrete Syntax for Intermediate Languages
The concrete syntax of RAny is defined in Figure 12.1.

The concrete syntax for CVar, CIf, CVec and CFun is defined in Fig-
ures 12.2, 12.3, 12.4, and 12.5, respectively.

228 12. APPENDIX

atm ::= int | var | bool
cmp ::= eq? | <
exp ::= atm | (read) | (- atm) | (+ atm atm)

| (not atm) | (cmp atm atm)
stmt ::= var = exp;
tail ::= return exp; | stmt tail | goto label;

| if (cmp atm atm) goto label; else goto label;
CIf ::= (label: tail) . . .

Figure 12.3: The concrete syntax of the CIf intermediate language.

atm ::= int | var | bool
cmp ::= eq? | <
exp ::= atm | (read) | (- atm) | (+ atm atm)

| (not atm) | (cmp atm atm)
| (allocate int type)
| (vector-ref atm int) | (vector-set! atm int atm)
| (global-value var) | (void)

stmt ::= var = exp; | (collect int)
tail ::= return exp; | stmt tail | goto label;

| if (cmp atm atm) goto label; else goto label;
CVec ::= (label: tail) . . .

Figure 12.4: The concrete syntax of the CVec intermediate language.

atm ::= int | var | #t | #f
cmp ::= eq? | <
exp ::= atm | (read) | (- atm) | (+ atm atm) | (not atm) | (cmp atm atm)

| (allocate int type) | (vector-ref atm int)
| (vector-set! atm int atm) | (global-valuename) | (void)
| (fun-ref label) | (call atm atm . . .)

stmt ::= (Assign var exp) | (Return exp) | (collect int)
tail ::= (Return exp) | (seq stmt tail)

| (goto label) | (If (cmp atm atm) (goto label) (goto label))
| (tail-call atm atm . . .)

def ::= (define (label [var:type] . . .):type ((label . tail) . . .))
CFun ::= def . . .

Figure 12.5: The CFun language, extending CVec (Figure 12.4) with functions.

Index

abstract syntax tree, 5
abstract syntax, 5
administrative normal form, 32
alias, 92
alist, 21
allocate, 92, 104
ANF, 32
association list, 21
AST, 5
atomic expression, 28

back-patching, 119
Backus-Naur Form, 7
base pointer, 25
basic block, 26
block, 26
BNF, 7
Boolean, 65
bottom, 178

callee-saved registers, 43
caller-saved registers, 43
calling conventions, 42, 58, 122
Cheney’s algorithm, 97
children, 6
class, 19
closure, 138
closure conversion, 142
color, 52
compiler pass, 28
complex expression, 28
complex operand, 32

conclusion, 26, 44, 58, 62, 111, 122
concrete syntax, 5
conditional expression, 65
constant, 7
contravariant, 200
control flow, 65
control-flow graph, 79
copying collector, 94

dataflow analysis, 177
definitional interpreter, 12
delay, 81
dictionary, 21
directed graph, 50
dynamic typing, 151

environment, 21

fixed point, 179
flat closure, 138
for/list, 31
for/lists, 33
force, 81
frame, 24, 38, 122, 124
free variable, 138
FromSpace, 94
function, 117
function application, 117
function pointer, 117

generational garbage collector, 115
generics, 211
gradual typing, 189

229

230 INDEX

grammar, 7
graph, 50
graph coloring, 52

heap, 91
heap allocate, 92

immediate value, 23
indirect function call, 122
indirect jump, 125
instruction, 23
instruction selection, 36, 83, 105, 128
integer, 7
interference graph, 50
intermediate language, 28
internal node, 6
interpreter, 12, 139, 223

join, 178

Kleene Fixed-Point Theorem, 179

lambda, 137
lattice, 178
lazy evaluation, 81
leaf, 6
least fixed point, 179
least upper bound, 178
lexical scoping, 137
literal, 7
live-after, 46
live-before, 46
liveness analysis, 46, 84, 131

match, 9
method overriding, 19
minimum priority queue, 56
move biasing, 59
move related, 60
mutation, 92

node, 6

non-terminal, 7

open recursion, 19

parametric polymorphism, 211
parent, 6
parse, 5
partial ordering, 178
partial evaluation, 14, 39, 80
pass, 28
pattern, 10
pattern matching, 9
PC, 23
prelude, 26, 44, 58, 62, 102, 111, 122
priority queue, 56
procedure call stack, 24, 122
program, 5
program counter, 23
program counter, 122
promise, 81

recursive function, 11
register, 23
register allocation, 41, 84, 111, 168
return address, 25
root, 6
root set, 94
root stack, 101
runtime system, 36

saturation, 53
semantic analysis, 67
set, 46
stack, 24
stack pointer, 24
struct, 5, 113
structural recursion, 11
structure, 113
Sudoku, 52
symbol table, 21

INDEX 231

tagged value, 153
tail call, 123
tail position, 30, 34
terminal, 8
topological order, 84
ToSpace, 94
tuple, 91
two-space copying collector, 94
type checking, 67, 139

undirected graph, 50
unquote-slicing, 94
unspecified behavior, 13

variable, 17
vector, 91

x86, 23, 74, 105, 128, 225

232 INDEX

Bibliography

[1] Harold Abelson and Gerald J. Sussman. Structure and Interpreta-
tion of Computer Programs. MIT Press, Cambridge, MA, USA, 2nd
edition, 1996. ISBN 0262011530.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: princi-
ples, techniques, and tools. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1986. ISBN 0-201-10088-6.

[3] Hussein Al-Omari and Khair Eddin Sabri. New graph coloring algo-
rithms. Journal of Mathematics and Statistics, 2(4), 2006.

[4] Frances E. Allen. Control flow analysis. In Proceedings of a symposium
on Compiler optimization, pages 1–19, 1970.

[5] Christopher Anderson and Sophia Drossopoulou. BabyJ - from object
based to class based programming via types. InWOOD ’03, volume 82.
Elsevier, 2003.

[6] Andrew W. Appel. Runtime tags aren’t necessary. LISP and Symbolic
Computation, 2(2):153–162, 1989. ISSN 0892-4635. doi: 10.1007/
BF01811537. URL http://dx.doi.org/10.1007/BF01811537.

[7] Andrew W. Appel and David B. MacQueen. A standard ML compiler,
pages 301–324. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.
ISBN 978-3-540-47879-9. doi: 10.1007/3-540-18317-5_17. URL http:
//dx.doi.org/10.1007/3-540-18317-5_17.

[8] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementa-
tion in Java. Cambridge University Press, 2003. ISBN 052182060X.

[9] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J.
Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein,
A. van Wijngaarden, and M. Woodger. Report on the algorithmic

233

http://dx.doi.org/10.1007/BF01811537
http://dx.doi.org/10.1007/3-540-18317-5_17
http://dx.doi.org/10.1007/3-540-18317-5_17

234 BIBLIOGRAPHY

language algol 60. Commun. ACM, 3(5):299–314, May 1960. ISSN
0001-0782. doi: 10.1145/367236.367262. URL http://doi.acm.org/
10.1145/367236.367262.

[10] J. Baker, A. Cunei, T. Kalibera, F. Pizlo, and J. Vitek. Accurate
garbage collection in uncooperative environments revisited. Concurr.
Comput. : Pract. Exper., 21(12):1572–1606, August 2009. ISSN 1532-
0626. doi: 10.1002/cpe.v21:12. URL http://dx.doi.org/10.1002/
cpe.v21:12.

[11] V. K. Balakrishnan. Introductory Discrete Mathematics. Dover Pub-
lications, Incorporated, 1996. ISBN 0486691152.

[12] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley.
Myths and realities: The performance impact of garbage collection.
In Proceedings of the Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’04/Performance
’04, pages 25–36, New York, NY, USA, 2004. ACM. ISBN 1-58113-
873-3. doi: 10.1145/1005686.1005693. URL http://doi.acm.org/
10.1145/1005686.1005693.

[13] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay
Sipelstein, and Marco Zagha. Implementation of a portable nested
data-parallel language. In Proceedings of the Fourth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, PPOPP ’93, pages 102–111, New York, NY, USA, 1993. Asso-
ciation for Computing Machinery. ISBN 0897915895. doi: 10.1145/
155332.155343. URL https://doi.org/10.1145/155332.155343.

[14] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: adding genericity to the java
programming language. In Proceedings of the 13th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, OOPSLA ’98, pages 183–200, New York, NY, USA, 1998.
ACM. ISBN 1-58113-005-8. doi: http://doi.acm.org/10.1145/286936.
286957. URL http://doi.acm.org/10.1145/286936.286957.

[15] Daniel Brélaz. New methods to color the vertices of a graph. Commun.
ACM, 22(4):251–256, 1979. ISSN 0001-0782.

[16] Randal E. Bryant and David R. O’Hallaron. x86-64 Machine-Level
Programming. Carnegie Mellon University, September 2005.

http://doi.acm.org/10.1145/367236.367262
http://doi.acm.org/10.1145/367236.367262
http://dx.doi.org/10.1002/cpe.v21:12
http://dx.doi.org/10.1002/cpe.v21:12
http://doi.acm.org/10.1145/1005686.1005693
http://doi.acm.org/10.1145/1005686.1005693
https://doi.org/10.1145/155332.155343
http://doi.acm.org/10.1145/286936.286957

BIBLIOGRAPHY 235

[17] Randal E. Bryant and David R. O’Hallaron. Computer Systems:
A Programmer’s Perspective. Addison-Wesley Publishing Company,
USA, 2nd edition, 2010. ISBN 0136108040, 9780136108047.

[18] Luca Cardelli. The functional abstract machine. Technical Report
TR-107, AT&T Bell Laboratories, 1983.

[19] Luca Cardelli. Compiling a functional language. In ACM Symposium
on LISP and Functional Programming, LFP ’84, pages 208–217. ACM,
1984.

[20] Luca Cardelli and Peter Wegner. On understanding types, data ab-
straction, and polymorphism. ACM Comput. Surv., 17(4):471–523,
1985. ISSN 0360-0300.

[21] C. J. Cheney. A nonrecursive list compacting algoirthm. Communi-
cations of the ACM, 13(11), 1970.

[22] George E. Collins. A method for overlapping and erasure of lists. Com-
mun. ACM, 3(12):655–657, December 1960. ISSN 0001-0782. doi:
10.1145/367487.367501. URL https://doi.org/10.1145/367487.
367501.

[23] Keith Cooper and Linda Torczon. Engineering a Compiler. Morgan
Kaufmann, 2nd edition, 2011.

[24] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education,
2001. ISBN 0070131511.

[25] Cody Cutler and Robert Morris. Reducing pause times with clus-
tered collection. In Proceedings of the 2015 International Symposium
on Memory Management, ISMM ’15, pages 131–142, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3589-8. doi: 10.1145/2754169.
2754184. URL http://doi.acm.org/10.1145/2754169.2754184.

[26] Olivier Danvy. Three steps for the CPS transformation. Technical
Report CIS-92-02, Kansas State University, December 1991.

[27] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis.
Garbage-first garbage collection. In Proceedings of the 4th Inter-
national Symposium on Memory Management, ISMM ’04, pages
37–48, New York, NY, USA, 2004. ACM. ISBN 1-58113-945-4.

https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/367487.367501
http://doi.acm.org/10.1145/2754169.2754184

236 BIBLIOGRAPHY

doi: 10.1145/1029873.1029879. URL http://doi.acm.org/10.1145/
1029873.1029879.

[28] E. W. Dijkstra. Why numbering should start at zero. Technical Report
EWD831, University of Texas at Austin, 1982.

[29] Amer Diwan, Eliot Moss, and Richard Hudson. Compiler support for
garbage collection in a statically typed language. In Proceedings of the
ACM SIGPLAN 1992 Conference on Programming Language Design
and Implementation, PLDI ’92, pages 273–282, New York, NY, USA,
1992. ACM. ISBN 0-89791-475-9. doi: 10.1145/143095.143140. URL
http://doi.acm.org/10.1145/143095.143140.

[30] R. Kent Dybvig. The SCHEME Programming Language. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1987. ISBN 0-13-791864-X.

[31] R. Kent Dybvig. The development of chez scheme. In Proceedings
of the Eleventh ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’06, pages 1–12, New York, NY, USA,
2006. ACM. ISBN 1-59593-309-3. doi: 10.1145/1159803.1159805. URL
http://doi.acm.org/10.1145/1159803.1159805.

[32] R. Kent Dybvig and Andrew Keep. P523 compiler assignments. Tech-
nical report, Indiana University, 2010.

[33] Matthias Felleisen and Daniel P. Friedman. Control operators, the
SECD-machine and the lambda-calculus. pages 193–217, 1986.

[34] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shri-
ram Krishnamurthi. How to Design Programs: An Introduction to
Programming and Computing. MIT Press, Cambridge, MA, USA,
2001. ISBN 0-262-06218-6.

[35] Matthias Felleisen, M.D. Barski Conrad, David Van Horn, and
Eight Students of Northeastern University. Realm of Racket: Learn to
Program, One Game at a Time! No Starch Press, San Francisco, CA,
USA, 2013. ISBN 1593274912, 9781593274917.

[36] Cormac Flanagan. Hybrid type checking. In POPL 2006: The 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 245–256, Charleston, South Carolina, January 2006.

http://doi.acm.org/10.1145/1029873.1029879
http://doi.acm.org/10.1145/1029873.1029879
http://doi.acm.org/10.1145/143095.143140
http://doi.acm.org/10.1145/1159803.1159805

BIBLIOGRAPHY 237

[37] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In Conference on Pro-
gramming Language Design and Implementation, PLDI, pages 502–
514, June 1993.

[38] Matthew Flatt and PLT. The Racket reference 6.0. Technical report,
PLT Inc., 2014. http://docs.racket-lang.org/reference/index.
html.

[39] Matthew Flatt, Robert Bruce Findler, and PLT. The racket guide.
Technical Report 6.0, PLT Inc., 2014.

[40] Daniel P. Friedman and Matthias Felleisen. The Little Schemer (4th
Ed.). MIT Press, Cambridge, MA, USA, 1996. ISBN 0-262-56099-2.

[41] Daniel P. Friedman and David S. Wise. Cons should not evaluate its
arguments. Technical Report TR44, Indiana University, 1976.

[42] Ben Gamari and Laura Dietz. Alligator collector: A latency-optimized
garbage collector for functional programming languages. In Proceed-
ings of the 2020 ACM SIGPLAN International Symposium on Mem-
ory Management, ISMM 2020, pages 87–99, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450375665.
doi: 10.1145/3381898.3397214. URL https://doi.org/10.1145/
3381898.3397214.

[43] Assefaw Hadish Gebremedhin. Parallel Graph Coloring. PhD thesis,
University of Bergen, 1999.

[44] Abdulaziz Ghuloum. An incremental approach to compiler construc-
tion. In Scheme and Functional Programming Workshop, 2006.

[45] Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might,
and David Van Horn. Pushdown control-flow analysis for free. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’16, pages 691–704,
New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450335492. doi: 10.1145/2837614.2837631. URL https:
//doi.org/10.1145/2837614.2837631.

[46] Benjamin Goldberg. Tag-free garbage collection for strongly typed
programming languages. In Proceedings of the ACM SIGPLAN 1991
Conference on Programming Language Design and Implementation,

http://docs.racket-lang.org/reference/index.html
http://docs.racket-lang.org/reference/index.html
https://doi.org/10.1145/3381898.3397214
https://doi.org/10.1145/3381898.3397214
https://doi.org/10.1145/2837614.2837631
https://doi.org/10.1145/2837614.2837631

238 BIBLIOGRAPHY

PLDI ’91, pages 165–176, New York, NY, USA, 1991. ACM. ISBN
0-89791-428-7. doi: 10.1145/113445.113460. URL http://doi.acm.
org/10.1145/113445.113460.

[47] Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund,
and Cormac Flanagan. Sage: Hybrid checking for flexible specifi-
cations. In Scheme and Functional Programming Workshop, pages
93–104, 2006.

[48] Robert Harper and Greg Morrisett. Compiling polymorphism using
intensional type analysis. In POPL ’95: Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 130–141. ACM Press, 1995. ISBN 0-89791-692-1.

[49] Fergus Henderson. Accurate garbage collection in an uncooperative
environment. In Proceedings of the 3rd International Symposium on
Memory Management, ISMM ’02, pages 150–156, New York, NY,
USA, 2002. ACM. ISBN 1-58113-539-4. doi: 10.1145/512429.512449.
URL http://doi.acm.org/10.1145/512429.512449.

[50] Fritz Henglein. Dynamic typing: syntax and proof theory. Science of
Computer Programming, 22(3):197–230, June 1994.

[51] David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient
gradual typing. In Trends in Functional Prog. (TFP), page XXVIII,
April 2007.

[52] David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient
gradual typing. Higher-Order and Symbolic Computation, 23(2):167–
189, 2010.

[53] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual
Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B, 3C and 3D, December
2015.

[54] Nicholas Jacek and J. Eliot B. Moss. Learning when to garbage collect
with random forests. In Proceedings of the 2019 ACM SIGPLAN In-
ternational Symposium on Memory Management, ISMM 2019, pages
53–63, New York, NY, USA, 2019. Association for Computing Ma-
chinery. ISBN 9781450367226. doi: 10.1145/3315573.3329983. URL
https://doi.org/10.1145/3315573.3329983.

http://doi.acm.org/10.1145/113445.113460
http://doi.acm.org/10.1145/113445.113460
http://doi.acm.org/10.1145/512429.512449
https://doi.org/10.1145/3315573.3329983

BIBLIOGRAPHY 239

[55] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial eval-
uation and automatic program generation. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1993. ISBN 0-13-020249-5.

[56] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley & Sons, Inc.,
New York, NY, USA, 1996. ISBN 0-471-94148-4.

[57] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage
Collection Handbook: The Art of Automatic Memory Management.
Chapman & Hall/CRC, 1st edition, 2011. ISBN 1420082795,
9781420082791.

[58] Andrew W. Keep. A Nanopass Framework for Commercial Compiler
Development. PhD thesis, Indiana University, December 2012.

[59] Andrew W. Keep, Alex Hearn, and R. Kent Dybvig. Optimizing clo-
sures in O(0)-time. In Proceedings of the 2012 Workshop on Scheme
and Functional Programming, Scheme ’12, 2012.

[60] R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 report on the al-
gorithmic language scheme. Higher-Order and Symbolic Computation,
11(1), August 1998.

[61] Brian W. Kernighan and Dennis M. Ritchie. The C programming
language. Prentice Hall Press, Upper Saddle River, NJ, USA, 1988.
ISBN 0-13-110362-8.

[62] Gary A. Kildall. A unified approach to global program optimization. In
POPL ’73: Proceedings of the 1st annual ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 194–206.
ACM Press, 1973.

[63] S. Kleene. Introduction to Metamathematics, 1952.

[64] Donald E. Knuth. Backus normal form vs. backus naur form.
Commun. ACM, 7(12):735–736, December 1964. ISSN 0001-0782.
doi: 10.1145/355588.365140. URL http://doi.acm.org/10.1145/
355588.365140.

[65] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In LFP ’86: Proceedings of the 1986
ACM conference on LISP and functional programming, pages 151–161,
New York, NY, USA, 1986. ACM. ISBN 0-89791-200-4.

http://doi.acm.org/10.1145/355588.365140
http://doi.acm.org/10.1145/355588.365140

240 BIBLIOGRAPHY

[66] Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek.
Toward efficient gradual typing for structural types via coercions. In
Conference on Programming Language Design and Implementation,
PLDI. ACM, June 2019.

[67] Xavier Leroy. Unboxed objects and polymorphic typing. In POPL
’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 177–188, New York, NY,
USA, 1992. ACM Press. ISBN 0-89791-453-8.

[68] Henry Lieberman and Carl Hewitt. A real-time garbage collector based
on the lifetimes of objects. Commun. ACM, 26(6):419–429, June 1983.
ISSN 0001-0782. doi: 10.1145/358141.358147. URL http://doi.acm.
org/10.1145/358141.358147.

[69] Barbara Liskov. A history of clu. In HOPL-II: The second ACM SIG-
PLAN conference on History of programming languages, pages 133–
147, New York, NY, USA, 1993. ACM. ISBN 0-89791-570-4.

[70] Barbara Liskov, Russ Atkinson, Toby Bloom, Eliot Moss, Craig Schaf-
fert, Bob Scheifler, and Alan Snyder. CLU reference manual. Technical
Report LCS-TR-225, MIT, October 1979.

[71] Jacob Matthews and Robert Bruce Findler. Operational semantics
for multi-language programs. In The 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, January 2007.

[72] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. Sys-
tem V Application Binary Interface, AMD64 Architecture Processor
Supplement, October 2013.

[73] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part i. Commun. ACM, 3(4):184–195, 1960.
ISSN 0001-0782.

[74] Microsoft. x64 architecture. https://docs.microsoft.com/en-us/
windows-hardware/drivers/debugger/x64-architecture, March
2018.

[75] Microsoft. x64 calling convention. https://docs.microsoft.com/
en-us/cpp/build/x64-calling-convention, July 2020.

[76] Robin Milner, Mads Tofte, and Robert Harper. The definition of
Standard ML. MIT Press, 1990. ISBN 0-262-63132-6.

http://doi.acm.org/10.1145/358141.358147
http://doi.acm.org/10.1145/358141.358147
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention

BIBLIOGRAPHY 241

[77] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed
closure conversion. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’96, pages 271–283, New York, NY, USA, 1996. ACM. ISBN 0-
89791-769-3. doi: http://doi.acm.org/10.1145/237721.237791. URL
http://doi.acm.org/10.1145/237721.237791.

[78] E.F. Moore. The shortest path through a maze. In Proceedings of an
International Symposium on the Theory of Switching, April 1959.

[79] R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An ad
hoc approach to the implementation of polymorphism. ACM Trans.
Program. Lang. Syst., 13(3):342–371, July 1991. ISSN 0164-0925.
doi: 10.1145/117009.117017. URL http://doi.acm.org/10.1145/
117009.117017.

[80] Erik Österlund and Welf Löwe. Block-free concurrent gc: Stack scan-
ning and copying. In Proceedings of the 2016 ACM SIGPLAN In-
ternational Symposium on Memory Management, ISMM 2016, pages
1–12, New York, NY, USA, 2016. Association for Computing Ma-
chinery. ISBN 9781450343176. doi: 10.1145/2926697.2926701. URL
https://doi.org/10.1145/2926697.2926701.

[81] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[82] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In ACM ’72: Proceedings of the ACM Annual Con-
ference, pages 717–740. ACM Press, 1972.

[83] Kenneth H. Rosen. Discrete Mathematics and Its Applications.
McGraw-Hill Higher Education, 2002. ISBN 0072474777.

[84] Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. A nanopass
infrastructure for compiler education. In ICFP ’04: Proceedings of
the ninth ACM SIGPLAN international conference on Functional pro-
gramming, pages 201–212. ACM Press, 2004. ISBN 1-58113-905-5.

[85] Rifat Shahriyar, Stephen M. Blackburn, Xi Yang, and Kathryn M.
McKinley. Taking off the gloves with reference counting immix. In
OOPSLA ’13: Proceeding of the 24th ACM SIGPLAN conference on
Object oriented programming systems languages and applications, oct
2013. doi: http://dx.doi.org/10.1145/2509136.2509527.

http://doi.acm.org/10.1145/237721.237791
http://doi.acm.org/10.1145/117009.117017
http://doi.acm.org/10.1145/117009.117017
https://doi.org/10.1145/2926697.2926701

242 BIBLIOGRAPHY

[86] Jonathan Shidal, Ari J. Spilo, Paul T. Scheid, Ron K. Cytron, and
Krishna M. Kavi. Recycling trash in cache. In Proceedings of the 2015
International Symposium on Memory Management, ISMM ’15, pages
118–130, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3589-8.
doi: 10.1145/2754169.2754183. URL http://doi.acm.org/10.1145/
2754169.2754183.

[87] O. Shivers. Control flow analysis in Scheme. In Proceedings of the
ACM SIGPLAN 1988 Conference on Programming Language Design
and Implementation, PLDI ’88, pages 164–174, New York, NY, USA,
1988. ACM.

[88] Fridtjof Siebert. Compiler Construction: 10th International Con-
ference, CC 2001 Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2001 Genova, Italy,
April 2–6, 2001 Proceedings, chapter Constant-Time Root Scan-
ning for Deterministic Garbage Collection, pages 304–318. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001. ISBN 978-3-540-45306-2.
doi: 10.1007/3-540-45306-7_21. URL http://dx.doi.org/10.1007/
3-540-45306-7_21.

[89] Jeremy G. Siek and Bor-Yuh Evan Chang. A problem course in com-
pilation: From python to x86 assembly. Technical report, Univesity of
Colorado, 2012.

[90] Jeremy G. Siek and Walid Taha. Gradual typing for functional lan-
guages. In Scheme and Functional Programming Workshop, pages
81–92, September 2006.

[91] Jeremy G. Siek, Peter Thiemann, and Philip Wadler. Blame and coer-
cion: Together again for the first time. In Conference on Programming
Language Design and Implementation, PLDI, June 2015.

[92] Michael Sperber, R. KENT DYBVIG, MATTHEW FLATT, ANTON
VAN STRAATEN, ROBBY FINDLER, and JACOB MATTHEWS.
Revised6 report on the algorithmic language scheme. Journal of
Functional Programming, 19:1–301, 8 2009. ISSN 1469-7653. doi:
10.1017/S0956796809990074. URL http://journals.cambridge.
org/article_S0956796809990074.

[93] Guy L. Steele, Jr. Data representations in pdp-10 maclisp. AI Memo
420, MIT Artificial Intelligence Lab, September 1977.

http://doi.acm.org/10.1145/2754169.2754183
http://doi.acm.org/10.1145/2754169.2754183
http://dx.doi.org/10.1007/3-540-45306-7_21
http://dx.doi.org/10.1007/3-540-45306-7_21
http://journals.cambridge.org/article_S0956796809990074
http://journals.cambridge.org/article_S0956796809990074

BIBLIOGRAPHY 243

[94] Bjarne Stroustrup. Parameterized types for C++. In USENIX C++
Conference, October 1988.

[95] Gerald Jay Sussman and Jr. Guy L. Steele. Scheme: an interpreter for
extended lambda calculus. Technical Report AI Memo No. 349, MIT,
December 1975.

[96] Gil Tene, Balaji Iyengar, and Michael Wolf. C4: the continuously con-
current compacting collector. In Proceedings of the international sym-
posium on Memory management, ISMM ’11, pages 79–88, New York,
NY, USA, 2011. ACM. doi: http://doi.acm.org/10.1145/1993478.
1993491.

[97] Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migra-
tion: From scripts to programs. In Dynamic Languages Symposium,
2006.

[98] David Ungar. Generation scavenging: A non-disruptive high perfor-
mance storage reclamation algorithm. In Proceedings of the First ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments, SDE 1, pages 157–167,
New York, NY, USA, 1984. ACM. ISBN 0-89791-131-8. doi: 10.
1145/800020.808261. URL http://doi.acm.org/10.1145/800020.
808261.

[99] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t
be blamed. In European Symposium on Programming, ESOP, pages
1–16, March 2009.

[100] Stephen Weeks. Whole-program compilation in mlton. In Proceed-
ings of the 2006 Workshop on ML, ML ’06, page 1, New York, NY,
USA, 2006. Association for Computing Machinery. ISBN 1595934839.
doi: 10.1145/1159876.1159877. URL https://doi.org/10.1145/
1159876.1159877.

[101] Paul Wilson. Uniprocessor garbage collection techniques. In Yves
Bekkers and Jacques Cohen, editors, Memory Management, volume
637 of Lecture Notes in Computer Science, pages 1–42. Springer Berlin
/ Heidelberg, 1992. URL http://dx.doi.org/10.1007/BFb0017182.
10.1007/BFb0017182.

http://doi.acm.org/10.1145/800020.808261
http://doi.acm.org/10.1145/800020.808261
https://doi.org/10.1145/1159876.1159877
https://doi.org/10.1145/1159876.1159877
http://dx.doi.org/10.1007/BFb0017182

	Preliminaries
	Abstract Syntax Trees and Racket Structures
	Grammars
	Pattern Matching
	Recursive Functions
	Interpreters
	Example Compiler: a Partial Evaluator

	Integers and Variables
	The RVar Language
	Extensible Interpreters via Method Overriding
	Definitional Interpreter for RVar

	The x86Int Assembly Language
	Planning the trip to x86 via the CVar language
	The CVar Intermediate Language
	The x86Var dialect

	Uniquify Variables
	Remove Complex Operands
	Explicate Control
	Select Instructions
	Assign Homes
	Patch Instructions
	Print x86
	Challenge: Partial Evaluator for RVar

	Register Allocation
	Registers and Calling Conventions
	Liveness Analysis
	Build the Interference Graph
	Graph Coloring via Sudoku
	Patch Instructions
	Print x86
	Challenge: Move Biasing

	Booleans and Control Flow
	The RIf Language
	Type Checking RIf Programs
	The CIf Intermediate Language
	The x86If Language
	Shrink the RIf Language
	Uniquify Variables
	Remove Complex Operands
	Explicate Control
	Select Instructions
	Register Allocation
	Liveness Analysis
	Build the Interference Graph

	Patch Instructions
	An Example Translation
	Challenge: Remove Jumps

	Tuples and Garbage Collection
	The RVec Language
	Garbage Collection
	Graph Copying via Cheney's Algorithm
	Data Representation
	Implementation of the Garbage Collector

	Shrink
	Expose Allocation
	Remove Complex Operands
	Explicate Control and the CVec language
	Select Instructions and the x86Global Language
	Register Allocation
	Print x86
	Challenge: Simple Structures
	Challenge: Generational Collection

	Functions
	The RFun Language
	Functions in x86
	Calling Conventions
	Efficient Tail Calls

	Shrink RFun
	Reveal Functions and the RFunRef language
	Limit Functions
	Remove Complex Operands
	Explicate Control and the CFun language
	Select Instructions and the x86callq* Language
	Register Allocation
	Liveness Analysis
	Build Interference Graph
	Allocate Registers

	Patch Instructions
	Print x86
	An Example Translation

	Lexically Scoped Functions
	The R Language
	Reveal Functions and the F2 language
	Closure Conversion
	An Example Translation
	Expose Allocation
	Explicate Control and CClos
	Select Instructions
	Challenge: Optimize Closures

	Dynamic Typing
	Representation of Tagged Values
	The RAny Language
	Cast Insertion: Compiling RDyn to RAny
	Reveal Casts
	Remove Complex Operands
	Explicate Control and CAny
	Select Instructions
	Register Allocation for RAny

	Loops and Assignment
	The RWhile Language
	Assignment and Lexically Scoped Functions
	Cyclic Control Flow and Dataflow Analysis
	Convert Assignments
	Remove Complex Operands
	Explicate Control and C
	Select Instructions
	Register Allocation
	Liveness Analysis

	Gradual Typing
	Type Checking R?, Casts, and Rcast
	Interpreting Rcast
	Lower Casts
	Differentiate Proxies
	Reveal Casts
	Closure Conversion
	Explicate Control
	Select Instructions
	Further Reading

	Parametric Polymorphism
	Compiling Polymorphism
	Erase Types

	Appendix
	Interpreters
	Utility Functions
	x86 Instruction Set Quick-Reference
	Concrete Syntax for Intermediate Languages

	Index
	Bibliography

