
Essentials of Compilation
An Incremental Approach

Jeremy G. Siek, Ryan R. Newton
Indiana University

with contributions from:
Carl Factora

Andre Kuhlenschmidt
Michael M. Vitousek

Cameron Swords

January 22, 2018

ii

This book is dedicated to the programming
language wonks at Indiana University.

iv

Contents

1 Preliminaries 1
1.1 Abstract Syntax Trees . 1
1.2 Grammars . 2
1.3 S-Expressions . 4
1.4 Pattern Matching . 4
1.5 Recursion . 5
1.6 Interpreters . 6
1.7 Example Compiler: a Partial Evaluator 9

2 Compiling Integers and Variables 11
2.1 The R1 Language . 11
2.2 The x86 Assembly Language 14
2.3 Planning the trip to x86 via the C0 language 17
2.4 Uniquify Variables . 20
2.5 Flatten Expressions . 22
2.6 Select Instructions . 23
2.7 Assign Homes . 25
2.8 Patch Instructions . 25
2.9 Print x86 . 26

3 Register Allocation 29
3.1 Liveness Analysis . 30
3.2 Building the Interference Graph 32
3.3 Graph Coloring via Sudoku 34
3.4 Print x86 and Conventions for Registers 39
3.5 Challenge: Move Biasing∗ . 40

4 Booleans, Control Flow, and Type Checking 45
4.1 The R2 Language . 46

v

vi CONTENTS

4.2 Type Checking R2 Programs 47
4.3 The C1 Language . 50
4.4 Flatten Expressions . 51
4.5 XOR, Comparisons, and Control Flow in x86 52
4.6 Select Instructions . 53
4.7 Register Allocation . 54

4.7.1 Liveness Analysis . 54
4.7.2 Build Interference . 55
4.7.3 Assign Homes . 55

4.8 Lower Conditionals (New Pass) 56
4.9 Patch Instructions . 56
4.10 An Example Translation . 56
4.11 Challenge: Optimizing Conditions∗ 58

5 Tuples and Garbage Collection 61
5.1 The R3 Language . 61
5.2 Garbage Collection . 63

5.2.1 Graph Copying via Cheney’s Algorithm 67
5.2.2 Data Representation 68
5.2.3 Implementation of the Garbage Collector 70

5.3 Compiler Passes . 72
5.3.1 Expose Allocation (New) 72
5.3.2 Flatten and the C2 intermediate language 75
5.3.3 Select Instructions . 77
5.3.4 Register Allocation . 80
5.3.5 Print x86 . 80

6 Functions 83
6.1 The R4 Language . 83
6.2 Functions in x86 . 84
6.3 The compilation of functions 86
6.4 An Example Translation . 90

7 Lexically Scoped Functions 93
7.1 The R5 Language . 94
7.2 Interpreting R5 . 95
7.3 Type Checking R5 . 97
7.4 Closure Conversion . 97
7.5 An Example Translation . 98

CONTENTS vii

8 Dynamic Typing 101
8.1 The R6 Language: Typed Racket + Any 102
8.2 The R7 Language: Untyped Racket 103
8.3 Compiling R6 . 103
8.4 Compiling R7 to R6 . 108

9 Gradual Typing 111

10 Parametric Polymorphism 113

11 High-level Optimization 115

12 Appendix 117
12.1 Interpreters . 117
12.2 Utility Functions . 117

12.2.1 Graphs . 117
12.2.2 Testing . 118

12.3 x86 Instruction Set Quick-Reference 119

viii CONTENTS

List of Figures

1.1 The syntax of R0, a language of integer arithmetic. 4
1.2 Interpreter for the R0 language. 7
1.3 A partial evaluator for R0 expressions. 9

2.1 The syntax of R1, a language of integers and variables. 12
2.2 Interpreter for the R1 language. 13
2.3 A subset of the x86 assembly language (AT&T syntax). . . . 14
2.4 An x86 program equivalent to (+ 10 32). 15
2.5 An x86 program equivalent to (+ 52 (- 10)). 16
2.6 Memory layout of a frame. 17
2.7 Abstract syntax for x86 assembly. 18
2.8 The C0 intermediate language. 19
2.9 Skeleton for the uniquify pass. 22
2.10 Overview of the passes for compiling R1. 28

3.1 An example program for register allocation. 30
3.2 An example program annotated with live-after sets. 31
3.3 The interference graph of the example program. 33
3.4 A Sudoku game board and the corresponding colored graph. . 35
3.5 The saturation-based greedy graph coloring algorithm. 36
3.6 Diagram of the passes for R1 with register allocation. 44

4.1 The syntax of R2, extending R1 with Booleans and conditionals. 46
4.2 Interpreter for the R2 language. 48
4.3 Skeleton of a type checker for the R2 language. 49
4.4 The C1 language, extending C0 with Booleans and conditionals. 50
4.5 The x861 language (extends x860 of Figure 2.7). 53
4.6 Example compilation of an if expression to x86. 57
4.7 Diagram of the passes for R2, a language with conditionals. . 59
4.8 Example program with optimized conditionals. 60

ix

x LIST OF FIGURES

5.1 Example program that creates tuples and reads from them. . 62
5.2 The syntax of R3, extending R2 with tuples. 62
5.3 Interpreter for the R3 language. 64
5.4 Type checker for the R3 language. 65
5.5 A copying collector in action. 66
5.6 Depiction of the Cheney algorithm copying the live tuples. . . 69
5.7 Maintaining a root stack to facilitate garbage collection. . . . 70
5.8 Representation for tuples in the heap. 71
5.9 The compiler’s interface to the garbage collector. 71
5.10 Output of the expose-allocation pass, minus all of the

has-type forms. 74
5.11 The C2 language, extending C1 with support for tuples. . . . 75
5.12 Output of flatten for the running example. 76
5.13 The x862 language (extends x861 of Figure 4.5). 78
5.14 Output of the select-instructions pass. 79
5.15 Output of the print-x86 pass. 81
5.16 Diagram of the passes for R3, a language with tuples. 82

6.1 Syntax of R4, extending R3 with functions. 84
6.2 Example of using functions in R4. 84
6.3 Interpreter for the R4 language. 85
6.4 Memory layout of caller and callee frames. 87
6.5 The F1 language, an extension of R3 (Figure 5.2). 87
6.6 The C3 language, extending C2 with functions. 88
6.7 The x863 language (extends x862 of Figure 5.13). 89
6.8 Example compilation of a simple function to x86. 91

7.1 Example of a lexically scoped function. 93
7.2 Syntax of R5, extending R4 with lambda. 94
7.3 Example closure representation for the lambda’s in Figure 7.1. 95
7.4 Interpreter for R5. 96
7.5 Type checking the lambda’s in R5. 97
7.6 Example of closure conversion. 99

8.1 Syntax of R6, extending R5 with Any. 103
8.2 Type checker for the R6 language. 104
8.3 Interpreter for R6. 105
8.4 Syntax of R7, an untyped language (a subset of Racket). . . . 105
8.5 Interpreter for the R7 language. 106
8.6 Compiling R7 to R6. 109

1

Preliminaries

In this chapter, we review the basic tools that are needed for implementing
a compiler. We use abstract syntax trees (ASTs), which refer to data struc-
tures in the compilers memory, rather than programs as they are stored on
disk, in concrete syntax. ASTs can be represented in many different ways,
depending on the programming language used to write the compiler. Be-
cause this book uses Racket (http://racket-lang.org), a descendant of
Scheme, we use S-expressions to represent programs (Section 1.1) and pat-
tern matching to inspect individual nodes in an AST (Section 1.4). We use
recursion to construct and deconstruct entire ASTs (Section 1.5).

1.1 Abstract Syntax Trees

The primary data structure that is commonly used for representing pro-
grams is the abstract syntax tree (AST). When considering some part of a
program, a compiler needs to ask what kind of part it is and what sub-parts
it has. For example, the program on the left, represented by an S-expression,
corresponds to the AST on the right.

(+ (read) (- 8))

+

read -

8

(1.1)

1

http://racket-lang.org

2 1. PRELIMINARIES

We shall use the standard terminology for trees: each circle above is called
a node. The arrows connect a node to its children (which are also nodes).
The top-most node is the root. Every node except for the root has a parent
(the node it is the child of). If a node has no children, it is a leaf node.
Otherwise it is an internal node.

When deciding how to compile the above program, we need to know that
the root node operation is addition and that it has two children: read and
a negation. The abstract syntax tree data structure directly supports these
queries and hence is a good choice. In this book, we will often write down
the textual representation of a program even when we really have in mind
the AST because the textual representation is more concise. We recommend
that, in your mind, you always interpret programs as abstract syntax trees.

1.2 Grammars
A programming language can be thought of as a set of programs. The
set is typically infinite (one can always create larger and larger programs),
so one cannot simply describe a language by listing all of the programs
in the language. Instead we write down a set of rules, a grammar, for
building programs. We shall write our rules in a variant of Backus-Naur
Form (BNF) [??]. As an example, we describe a small language, named R0,
of integers and arithmetic operations. The first rule says that any integer is
an expression, exp, in the language:

exp ::= int (1.2)

Each rule has a left-hand-side and a right-hand-side. The way to read a rule
is that if you have all the program parts on the right-hand-side, then you
can create an AST node and categorize it according to the left-hand-side.
A name such as exp that is defined by the grammar rules is a non-terminal.
The name int is a also a non-terminal, however, we do not define int be-
cause the reader already knows what an integer is. Further, we make the
simplifying design decision that all of the languages in this book only handle
machine-representable integers. On most modern machines this corresponds
to integers represented with 64-bits, i.e., the in range −263 to 263− 1. How-
ever, we restrict this range further to match the Racket fixnum datatype,
which allows 63-bit integers on a 64-bit machine.

The second grammar rule is the read operation that receives an input
integer from the user of the program.

exp ::= (read) (1.3)

1.2. GRAMMARS 3

The third rule says that, given an exp node, you can build another exp
node by negating it.

exp ::= (- exp) (1.4)

Symbols such as - in typewriter font are terminal symbols and must literally
appear in the program for the rule to be applicable.

We can apply the rules to build ASTs in the R0 language. For example,
by rule (1.2), 8 is an exp, then by rule (1.4), the following AST is an exp.

(- 8)

–

8

(1.5)

The following grammar rule defines addition expressions:

exp ::= (+ exp exp) (1.6)

Now we can see that the AST (1.1) is an exp in R0. We know that (read) is
an exp by rule (1.3) and we have shown that (- 8) is an exp, so we can apply
rule (1.6) to show that (+ (read) (- 8)) is an exp in the R0 language.

If you have an AST for which the above rules do not apply, then the
AST is not in R0. For example, the AST (- (read) (+ 8)) is not in R0
because there are no rules for + with only one argument, nor for - with two
arguments. Whenever we define a language with a grammar, we implicitly
mean for the language to be the smallest set of programs that are justified
by the rules. That is, the language only includes those programs that the
rules allow.

The last grammar for R0 states that there is a program node to mark
the top of the whole program:

R0 ::= (program exp)

The read-program function provided in utilities.rkt reads programs
in from a file (the sequence of characters in the concrete syntax of Racket)
and parses them into the abstract syntax tree. The concrete syntax does
not include a program form; that is added by the read-program function as
it creates the AST. See the description of read-program in Appendix 12.2
for more details.

It is common to have many rules with the same left-hand side, such as
exp in the grammar for R0, so there is a vertical bar notation for gathering
several rules, as shown in Figure 1.1. Each clause between a vertical bar is
called an alternative.

4 1. PRELIMINARIES

exp ::= int | (read) | (- exp) | (+ exp exp)
R0 ::= (program exp)

Figure 1.1: The syntax of R0, a language of integer arithmetic.

1.3 S-Expressions

Racket, as a descendant of Lisp, has convenient support for creating and
manipulating abstract syntax trees with its symbolic expression feature, or
S-expression for short. We can create an S-expression simply by writing a
backquote followed by the textual representation of the AST. (Technically
speaking, this is called a quasiquote in Racket.) For example, an S-expression
to represent the AST (1.1) is created by the following Racket expression:

‘(+ (read) (- 8))

To build larger S-expressions one often needs to splice together sev-
eral smaller S-expressions. Racket provides the comma operator to splice
an S-expression into a larger one. For example, instead of creating the
S-expression for AST (1.1) all at once, we could have first created an S-
expression for AST (1.5) and then spliced that into the addition S-expression.

(define ast1.4 ‘(- 8))
(define ast1.1 ‘(+ (read) ,ast1.4))

In general, the Racket expression that follows the comma (splice) can be
any expression that computes an S-expression.

1.4 Pattern Matching

As mentioned above, one of the operations that a compiler needs to perform
on an AST is to access the children of a node. Racket provides the match
form to access the parts of an S-expression. Consider the following example
and the output on the right.

(match ast1.1
[‘(,op ,child1 ,child2)
(print op) (newline)
(print child1) (newline)
(print child2)])

’+
’(read)
’(- 8)

1.5. RECURSION 5

The match form takes AST (1.1) and binds its parts to the three variables
op, child1, and child2. In general, a match clause consists of a pattern
and a body. The pattern is a quoted S-expression that may contain pattern-
variables (preceded by a comma). The pattern is not the same thing as
a quasiquote expression used to construct ASTs, however, the similarity
is intentional: constructing and deconstructing ASTs uses similar syntax.
While the pattern uses a restricted syntax, the body of the match clause
may contain any Racket code whatsoever.

A match form may contain several clauses, as in the following function
leaf? that recognizes when an R0 node is a leaf. The match proceeds
through the clauses in order, checking whether the pattern can match the
input S-expression. The body of the first clause that matches is executed.
The output of leaf? for several S-expressions is shown on the right. In the
below match, we see another form of pattern: the (? fixnum?) applies
the predicate fixnum? to the input S-expression to see if it is a machine-
representable integer.

(define (leaf? arith)
(match arith
[(? fixnum?) #t]
[‘(read) #t]
[‘(- ,c1) #f]
[‘(+ ,c1 ,c2) #f]))

(leaf? ‘(read))
(leaf? ‘(- 8))
(leaf? ‘(+ (read) (- 8)))

#t
#f
#f

1.5 Recursion
Programs are inherently recursive in that an R0 exp AST is made up of
smaller expressions. Thus, the natural way to process in entire program is
with a recursive function. As a first example of such a function, we define
R0? below, which takes an arbitrary S-expression, sexp, and determines
whether or not sexp is in arith. Note that each match clause corresponds
to one grammar rule for R0 and the body of each clause makes a recursive
call for each child node. This pattern of recursive function is so common that
it has a name, structural recursion. In general, when a recursive function
is defined using a sequence of match clauses that correspond to a grammar,
and each clause body makes a recursive call on each child node, then we say
the function is defined by structural recursion.

6 1. PRELIMINARIES

(define (R0? sexp)
(define (exp? ex)
(match ex
[(? fixnum?) #t]
[‘(read) #t]
[‘(- ,e) (exp? e)]
[‘(+ ,e1 ,e2)
(and (exp? e1) (exp? e2))]))

(match sexp
[‘(program ,e) (exp? e)]
[else #f]))

(R0? ‘(+ (read) (- 8)))
(R0? ‘(- (read) (+ 8)))

#t
#f

Indeed, the structural recursion follows the grammar itself. We can
generally expect to write a recursive function to handle each non-terminal
in the grammar1

You may be tempted to write the program like this:

(define (R0? sexp)
(match sexp
[(? fixnum?) #t]
[‘(read) #t]
[‘(- ,e) (R0? e)]
[‘(+ ,e1 ,e2) (and (R0? e1) (R0? e2))]
[‘(program ,e) (R0? e)]
[else #f]))

Sometimes such a trick will save a few lines of code, especially when it comes
to the program wrapper. Yet this style is generally not recommended, be-
cause it can get you into trouble. For instance, the above function is subtly
wrong: (R0? ‘(program (program 3))) will return true, when it should re-
turn false.

1.6 Interpreters
The meaning, or semantics, of a program is typically defined in the specifi-
cation of the language. For example, the Scheme language is defined in the

1If you took the How to Design Programs course http://www.ccs.neu.edu/home/
matthias/HtDP2e/, this principle of structuring code according to the data definition
is probably quite familiar.

http://www.ccs.neu.edu/home/matthias/HtDP2e/
http://www.ccs.neu.edu/home/matthias/HtDP2e/

1.6. INTERPRETERS 7

(define (interp-R0 p)
(define (exp ex)
(match ex
[(? fixnum?) ex]
[‘(read)
(let ([r (read)])
(cond [(fixnum? r) r]

[else (error ’interp-R0 "input␣not␣an␣integer" r)]))]
[‘(- ,e) (fx- 0 (exp e))]
[‘(+ ,e1 ,e2) (fx+ (exp e1) (exp e2))]))

(match p
[‘(program ,e) (exp e)]))

Figure 1.2: Interpreter for the R0 language.

report by ?. The Racket language is defined in its reference manual [?]. In
this book we use an interpreter to define the meaning of each language that
we consider, following Reynold’s advice in this regard [?]. Here we will warm
up by writing an interpreter for the R0 language, which will also serve as a
second example of structural recursion. The interp-R0 function is defined
in Figure 1.2. The body of the function is a match on the input program
p and then a call to the exp helper function, which in turn has one match
clause per grammar rule for R0 expressions.

The exp function is naturally recursive: clauses for internal AST nodes
make recursive calls on each child node. Note that the recursive cases for
negation and addition are a place where we could have made use of the app
feature of Racket’s match to apply a function and bind the result. The two
recursive cases of interp-R0 would become:

[‘(- ,(app exp v)) (fx- 0 v)]
[‘(+ ,(app exp v1) ,(app exp v2)) (fx+ v1 v2)]))

Here we use (app exp v) to recursively apply exp to the child node and
bind the result value to variable v. The difference between this version
and the code in Figure 1.2 is mainly stylistic, although if side effects are
involved the order of evaluation can become important. Further, when we
write functions with multiple return values, the app form can be convenient
for binding the resulting values.

Let us consider the result of interpreting some example R0 programs.
The following program simply adds two integers.

(+ 10 32)

8 1. PRELIMINARIES

The result is 42, as you might have expected. Here we have written the
program in concrete syntax, whereas the parsed abstract syntax would be
the slightly different: (program (+ 10 32)).

The next example demonstrates that expressions may be nested within
each other, in this case nesting several additions and negations.

(+ 10 (- (+ 12 20)))

What is the result of the above program?
If we interpret the AST (1.1) and give it the input 50

(interp-R0 ast1.1)

we get the answer to life, the universe, and everything:

42

Moving on, the read operation prompts the user of the program for an
integer. Given an input of 10, the following program produces 42.

(+ (read) 32)

We include the read operation in R1 so that a compiler for R1 cannot be
implemented simply by running the interpreter at compilation time to obtain
the output and then generating the trivial code to return the output. (A
clever did this in a previous version of the course.)

The job of a compiler is to translate a program in one language into a
program in another language so that the output program behaves the same
way as the input program. This idea is depicted in the following diagram.
Suppose we have two languages, L1 and L2, and an interpreter for each
language. Suppose that the compiler translates program P1 in language
L1 into program P2 in language L2. Then interpreting P1 and P2 on their
respective interpreters with input i should yield the same output o.

P1 P2

o

compile

interp-L2(i)interp-L1(i)
(1.7)

In the next section we see our first example of a compiler, which is another
example of structural recursion.

1.7. EXAMPLE COMPILER: A PARTIAL EVALUATOR 9

(define (pe-neg r)
(cond [(fixnum? r) (fx- 0 r)]

[else ‘(- ,r)]))

(define (pe-add r1 r2)
(cond [(and (fixnum? r1) (fixnum? r2)) (fx+ r1 r2)]

[else ‘(+ ,r1 ,r2)]))

(define (pe-arith e)
(match e
[(? fixnum?) e]
[‘(read) ‘(read)]
[‘(- ,(app pe-arith r1))
(pe-neg r1)]

[‘(+ ,(app pe-arith r1) ,(app pe-arith r2))
(pe-add r1 r2)]))

Figure 1.3: A partial evaluator for R0 expressions.

1.7 Example Compiler: a Partial Evaluator

In this section we consider a compiler that translates R0 programs into R0
programs that are more efficient, that is, this compiler is an optimizer. Our
optimizer will accomplish this by trying to eagerly compute the parts of the
program that do not depend on any inputs. For example, given the following
program

(+ (read) (- (+ 5 3)))

our compiler will translate it into the program

(+ (read) -8)

Figure 1.3 gives the code for a simple partial evaluator for the R0 lan-
guage. The output of the partial evaluator is an R0 program, which we build
up using a combination of quasiquotes and commas. (Though no quasiquote
is necessary for integers.) In Figure 1.3, the normal structural recursion is
captured in the main pe-arith function whereas the code for partially eval-
uating negation and addition is factored into two separate helper functions:
pe-neg and pe-add. The input to these helper functions is the output of
partially evaluating the children nodes.

Our code for pe-neg and pe-add implements the simple idea of checking
whether the inputs are integers and if they are, to go ahead and perform

10 1. PRELIMINARIES

the arithmetic. Otherwise, we use quasiquote to create an AST node for
the appropriate operation (either negation or addition) and use comma to
splice in the child nodes.

To gain some confidence that the partial evaluator is correct, we can test
whether it produces programs that get the same result as the input program.
That is, we can test whether it satisfies Diagram (1.7). The following code
runs the partial evaluator on several examples and tests the output program.
The assert function is defined in Appendix 12.2.
(define (test-pe p)
(assert "testing␣pe-arith"

(equal? (interp-R0 p) (interp-R0 (pe-arith p)))))

(test-pe ‘(+ (read) (- (+ 5 3))))
(test-pe ‘(+ 1 (+ (read) 1)))
(test-pe ‘(- (+ (read) (- 5))))

Exercise 1. We challenge the reader to improve on the simple partial eval-
uator in Figure 1.3 by replacing the pe-neg and pe-add helper functions
with functions that know more about arithmetic. For example, your partial
evaluator should translate

(+ 1 (+ (read) 1))

into
(+ 2 (read))

To accomplish this, we recommend that your partial evaluator produce out-
put that takes the form of the residual non-terminal in the following gram-
mar.

exp ::= (read) | (- (read)) | (+ exp exp)
residual ::= int | (+ int exp) | exp

2

Compiling Integers and
Variables

This chapter concerns the challenge of compiling a subset of Racket, which
we name R1, to x86-64 assembly code [?]. (Henceforth we shall refer to x86-
64 simply as x86). The chapter begins with a description of the R1 language
(Section 2.1) and then a description of x86 (Section 2.2). The x86 assembly
language is quite large, so we only discuss what is needed for compiling R1.
We introduce more of x86 in later chapters. Once we have introduced R1
and x86, we reflect on their differences and come up with a plan breaking
down the translation from R1 to x86 into a handful of steps (Section 2.3).
The rest of the sections in this Chapter give detailed hints regarding each
step (Sections 2.4 through 2.8). We hope to give enough hints that the well-
prepared reader can implement a compiler from R1 to x86 while at the same
time leaving room for some fun and creativity.

2.1 The R1 Language

The R1 language extends the R0 language (Figure 1.1) with variable defi-
nitions. The syntax of the R1 language is defined by the grammar in Fig-
ure 2.1. The non-terminal var may be any Racket identifier. As in R0, read
is a nullary operator, - is a unary operator, and + is a binary operator. In
addition to variable definitions, the R1 language includes the program form
to mark the top of the program, which is helpful in some of the compiler
passes. The R1 language is rich enough to exhibit several compilation tech-
niques but simple enough so that the reader can implement a compiler for
it in a week of part-time work. To give the reader a feeling for the scale of

11

12 2. COMPILING INTEGERS AND VARIABLES

exp ::= int | (read) | (- exp) | (+ exp exp)
| var | (let ([var exp]) exp)

R1 ::= (program exp)

Figure 2.1: The syntax of R1, a language of integers and variables.

this first compiler, the instructor solution for the R1 compiler consists of 6
recursive functions and a few small helper functions that together span 256
lines of code.

The let construct defines a variable for use within its body and initializes
the variable with the value of an expression. So the following program
initializes x to 32 and then evaluates the body (+ 10 x), producing 42.

(program
(let ([x (+ 12 20)]) (+ 10 x)))

When there are multiple let’s for the same variable, the closest enclosing
let is used. That is, variable definitions overshadow prior definitions. Con-
sider the following program with two let’s that define variables named x.
Can you figure out the result?

(program
(let ([x 32]) (+ (let ([x 10]) x) x)))

For the purposes of showing which variable uses correspond to which defini-
tions, the following shows the x’s annotated with subscripts to distinguish
them. Double check that your answer for the above is the same as your
answer for this annotated version of the program.

(program
(let ([x1 32]) (+ (let ([x2 10]) x2) x1)))

The initializing expression is always evaluated before the body of the let,
so in the following, the read for x is performed before the read for y. Given
the input 52 then 10, the following produces 42 (and not -42).

(program
(let ([x (read)]) (let ([y (read)]) (- x y))))

Figure 2.2 shows the interpreter for the R1 language. It extends the
interpreter for R0 with two new match clauses for variables and for let. For
let, we will need a way to communicate the initializing value of a variable
to all the uses of a variable. To accomplish this, we maintain a mapping
from variables to values, which is traditionally called an environment. For
simplicity, here we use an association list to represent the environment. The

2.1. THE R1 LANGUAGE 13

(define (interp-R1 env)
(lambda (e)
(define recur (interp-R1 env))
(match e
[(? symbol?) (lookup e env)]
[‘(let ([,x ,(app recur v)]) ,body)
(define new-env (cons (cons x v) env))
((interp-R1 new-env) body)]
[(? fixnum?) e]
[‘(read)
(define r (read))
(cond [(fixnum? r) r]

[else (error ’interp-R1 "expected␣an␣integer" r)])]
[‘(- ,(app recur v))
(fx- 0 v)]
[‘(+ ,(app recur v1) ,(app recur v2))
(fx+ v1 v2)]
[‘(program ,e) ((interp-R1 ’()) e)]
)))

Figure 2.2: Interpreter for the R1 language.

interp-R1 function takes the current environment, env, as an extra param-
eter. When the interpreter encounters a variable, it finds the corresponding
value using the lookup function (Appendix 12.2). When the interpreter
encounters a let, it evaluates the initializing expression, extends the envi-
ronment with the result bound to the variable, then evaluates the body of
the let.

The goal for this chapter is to implement a compiler that translates
any program P1 in the R1 language into an x86 assembly program P2 such
that P2 exhibits the same behavior on an x86 computer as the R1 program
running in a Racket implementation. That is, they both output the same
integer n.

P1 P2

n

compile

interp-R1 interp-x86

In the next section we introduce enough of the x86 assembly language to
compile R1.

14 2. COMPILING INTEGERS AND VARIABLES

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg, arg | subq arg, arg | negq arg | movq arg, arg |

callq label | pushq arg | popq arg | retq
prog ::= .globl main

main: instr+

Figure 2.3: A subset of the x86 assembly language (AT&T syntax).

2.2 The x86 Assembly Language

An x86 program is a sequence of instructions. The program is stored in
the computer’s memory and the program counter points to the address of
the next instruction to be executed. For most instructions, once the in-
struction is executed, the program counter is incremented to point to the
immediately following instruction in the program. Each instruction may re-
fer to integer constants (called immediate values), variables called registers,
and instructions may load and store values into memory. For our purposes,
we can think of the computer’s memory as a mapping of 64-bit addresses
to 64-bit values1. Figure 2.3 defines the syntax for the subset of the x86
assembly language needed for this chapter. (We use the AT&T syntax ex-
pected by the GNU assembler that comes with the C compiler we use for
this course: gcc.) Also, Appendix 12.3 includes a quick-reference of all the
x86 instructions used in this book and a short explanation of what they do.

An immediate value is written using the notation $n where n is an in-
teger. A register is written with a % followed by the register name, such as
%rax. An access to memory is specified using the syntax n(%r), which reads
register r and then offsets the address by n bytes (8 bits). The address is
then used to either load or store to memory depending on whether it occurs
as a source or destination argument of an instruction.

An arithmetic instruction, such as addq s, d, reads from the source s and
destination d, applies the arithmetic operation, then writes the result in d.
The move instruction, movq s d reads from s and stores the result in d. The

1This simple story doesn’t fully cover contemporary x86 processors, which combine
multiple processing cores per silicon chip, together with hardware memory caches. The
result is that, at some instants in real time, different programs may hold conflicting cached
values for a given memory address.

2.2. THE X86 ASSEMBLY LANGUAGE 15

.globl main
main:

movq $10, %rax
addq $32, %rax
movq %rax, %rdi
callq print_int
movq $0, %rax
retq

Figure 2.4: An x86 program equivalent to (+ 10 32).

callq label instruction executes the procedure specified by the label.
Figure 2.4 depicts an x86 program that is equivalent to (+ 10 32). The

globl directive says that the main procedure is externally visible, which
is necessary so that the operating system can call it. The label main: in-
dicates the beginning of the main procedure which is where the operating
system starts executing this program. The instruction movq $10, %rax puts
10 into register rax. The following instruction addq $32, %rax adds 32 to
the 10 in rax and puts the result, 42, back into rax. Finally, the instruc-
tion movq %rax, %rdi moves the value in rax into another register, rdi, and
callq print_int calls the external function print_int, which prints the
value in rdi.

The last two instructions—movq $0, %rax and retq—finish the main
function by returning the integer in rax to the operating system. The
operating system interprets this integer as the program’s exit code. By
convention, an exit code of 0 indicates the program was successful, and all
other exit codes indicate various errors. To ensure that we successfully com-
municate with the operating system, we explicitly move 0 into rax, lest the
previous value in rax be misinterpreted as an error code.

Unfortunately, x86 varies in a couple ways depending on what operating
system it is assembled in. The code examples shown here are correct on
Linux and most Unix-like platforms, but when assembled on Mac OS X,
labels like main must be prefixed with an underscore. So the correct output
for the above program on Mac would begin with:

.globl _main
_main:

...

The next example exhibits the use of memory. Figure 2.5 lists an x86
program that is equivalent to (+ 52 (- 10)). To understand how this x86

16 2. COMPILING INTEGERS AND VARIABLES

.globl main
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp

movq $10, -8(%rbp)
negq -8(%rbp)
movq $52, %rax
addq -8(%rbp), %rax

movq %rax, %rdi
callq print_int
addq $16, %rsp
movq $0, %rax
popq %rbp
retq

Figure 2.5: An x86 program equivalent to (+ 52 (- 10)).

program works, we need to explain a region of memory called the procedure
call stack (or stack for short). The stack consists of a separate frame for
each procedure call. The memory layout for an individual frame is shown
in Figure 2.6. The register rsp is called the stack pointer and points to
the item at the top of the stack. The stack grows downward in memory,
so we increase the size of the stack by subtracting from the stack pointer.
The frame size is required to be a multiple of 16 bytes. The register rbp is
the base pointer which serves two purposes: 1) it saves the location of the
stack pointer for the procedure that called the current one and 2) it is used
to access variables associated with the current procedure. We number the
variables from 1 to n. Variable 1 is stored at address −8(%rbp), variable 2
at −16(%rbp), etc.

Getting back to the program in Figure 2.5, the first three instructions
are the typical prelude for a procedure. The instruction pushq %rbp saves
the base pointer for the procedure that called the current one onto the stack
and subtracts 8 from the stack pointer. The second instruction movq %rsp,
%rbp changes the base pointer to the top of the stack. The instruction subq
$16, %rsp moves the stack pointer down to make enough room for storing
variables. This program just needs one variable (8 bytes) but because the
frame size is required to be a multiple of 16 bytes, it rounds to 16 bytes.

2.3. PLANNING THE TRIP TO X86 VIA THE C0 LANGUAGE 17

Position Contents
8(%rbp) return address
0(%rbp) old rbp
-8(%rbp) variable 1

-16(%rbp) variable 2
.

0(%rsp) variable n

Figure 2.6: Memory layout of a frame.

The next four instructions carry out the work of computing (+ 52 (- 10)).
The first instruction movq $10, -8(%rbp) stores 10 in variable 1. The in-
struction negq -8(%rbp) changes variable 1 to −10. The movq $52, %rax
places 52 in the register rax and addq -8(%rbp), %rax adds the contents
of variable 1 to rax, at which point rax contains 42.

The last six instructions are the typical conclusion of a procedure. The
first two print the final result of the program. The latter three are necessary
to get the state of the machine back to where it was before the current
procedure was called. The addq $16, %rsp instruction moves the stack
pointer back to point at the old base pointer. The amount added here needs
to match the amount that was subtracted in the prelude of the procedure.
The movq $0, %rax instruction ensures that the returned exit code is 0.
Then popq %rbp returns the old base pointer to rbp and adds 8 to the stack
pointer. The retq instruction jumps back to the procedure that called this
one and subtracts 8 from the stack pointer.

The compiler will need a convenient representation for manipulating x86
programs, so we define an abstract syntax for x86 in Figure 2.7. The int field
of the program AST node is number of bytes of stack space needed for vari-
ables in the program. (Some of the intermediate languages will store other
information in that location for the purposes of communicating auxiliary
data from one step of the compiler to the next.)

2.3 Planning the trip to x86 via the C0 language
To compile one language to another it helps to focus on the differences
between the two languages. It is these differences that the compiler will
need to bridge. What are the differences between R1 and x86 assembly?
Here we list some of the most important the differences.

1. x86 arithmetic instructions typically take two arguments and update

18 2. COMPILING INTEGERS AND VARIABLES

register ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= (int int) | (reg register) | (deref register int)
instr ::= (addq arg arg) | (subq arg arg) | (movq arg arg) | (retq)

| (negq arg) | (callq label) | (pushq arg) | (popq arg)
x860 ::= (program int instr+)

Figure 2.7: Abstract syntax for x86 assembly.

the second argument in place. In contrast, R1 arithmetic operations
only read their arguments and produce a new value.

2. An argument to an R1 operator can be any expression, whereas x86
instructions restrict their arguments to integers, registers, and memory
locations.

3. An R1 program can have any number of variables whereas x86 has
only 16 registers.

4. Variables in R1 can overshadow other variables with the same name.
The registers and memory locations of x86 all have unique names.

We ease the challenge of compiling from R1 to x86 by breaking down
the problem into several steps, dealing with the above differences one at
a time. The main question then becomes: in what order do we tackle
these differences? This is often one of the most challenging questions that
a compiler writer must answer because some orderings may be much more
difficult to implement than others. It is difficult to know ahead of time which
orders will be better so often some trial-and-error is involved. However, we
can try to plan ahead and choose the orderings based on this planning.

For example, to handle difference #2 (nested expressions), we shall in-
troduce new variables and pull apart the nested expressions into a sequence
of assignment statements. To deal with difference #3 we will be replacing
variables with registers and/or stack locations. Thus, it makes sense to deal
with #2 before #3 so that #3 can replace both the original variables and the
new ones. Next, consider where #1 should fit in. Because it has to do with
the format of x86 instructions, it makes more sense after we have flattened
the nested expressions (#2). Finally, when should we deal with #4 (variable
overshadowing)? We shall solve this problem by renaming variables to make
sure they have unique names. Recall that our plan for #2 involves moving

2.3. PLANNING THE TRIP TO X86 VIA THE C0 LANGUAGE 19

arg ::= int | var
exp ::= arg | (read) | (- arg) | (+ arg arg)
stmt ::= (assign var exp) | (return arg)
C0 ::= (program (var∗) stmt+)

Figure 2.8: The C0 intermediate language.

nested expressions, which could be problematic if it changes the shadowing
of variables. However, if we deal with #4 first, then it will not be an issue.
Thus, we arrive at the following ordering.

4 2 1 3

We further simplify the translation from R1 to x86 by identifying an in-
termediate language named C0, roughly half-way between R1 and x86, to
provide a rest stop along the way. We name the language C0 because it is
vaguely similar to the C language [?]. The differences #4 and #1, regard-
ing variables and nested expressions, will be handled by two steps, uniquify
and flatten, which bring us to C0.

R1 R1 C0

uniquify flatten

Each of these steps in the compiler is implemented by a function, typically a
structurally recursive function that translates an input AST into an output
AST. We refer to such a function as a pass because it makes a pass over, i.e.
it traverses the entire AST.

The syntax for C0 is defined in Figure 2.8. The C0 language supports
the same operators as R1 but the arguments of operators are now restricted
to just variables and integers. The let construct of R1 is replaced by an
assignment statement and there is a return construct to specify the return
value of the program. A program consists of a sequence of statements that
include at least one return statement. Each program is also annotated
with a list of variables (viz. (var*)). At the start of the program, these
variables are uninitialized (they contain garbage) and each variable becomes
initialized on its first assignment. All of the variables used in the program
must be present in this list exactly once.

To get from C0 to x86 assembly it remains for us to handle difference #1
(the format of instructions) and difference #3 (variables versus registers).
These two differences are intertwined, creating a bit of a Gordian Knot.

20 2. COMPILING INTEGERS AND VARIABLES

To handle difference #3, we need to map some variables to registers (there
are only 16 registers) and the remaining variables to locations on the stack
(which is unbounded). To make good decisions regarding this mapping,
we need the program to be close to its final form (in x86 assembly) so we
know exactly when which variables are used. After all, variables that are
used in disjoint parts of the program can be assigned to the same register.
However, our choice of x86 instructions depends on whether the variables
are mapped to registers or stack locations, so we have a circular depen-
dency. We cut this knot by doing an optimistic selection of instructions
in the select-instructions pass, followed by the assign-homes pass to
map variables to registers or stack locations, and conclude by finalizing the
instruction selection in the patch-instructions pass.

C0 x86∗ x86∗ x86
select-instr. assign-homes patch-instr.

The select-instructions pass is optimistic in the sense that it treats
variables as if they were all mapped to registers. The select-instructions
pass generates a program that consists of x86 instructions but that still uses
variables, so it is an intermediate language that is technically different than
x86, which explains the asterisks in the diagram above.

In this Chapter we shall take the easy road to implementing assign-homes
and simply map all variables to stack locations. The topic of Chapter 3 is
implementing a smarter approach in which we make a best-effort to map
variables to registers, resorting to the stack only when necessary.

Once variables have been assigned to their homes, we can finalize the
instruction selection by dealing with an idiosyncrasy of x86 assembly. Many
x86 instructions have two arguments but only one of the arguments may be
a memory reference (and the stack is a part of memory). Because some vari-
ables may get mapped to stack locations, some of our generated instructions
may violate this restriction. The purpose of the patch-instructions pass
is to fix this problem by replacing every violating instruction with a short se-
quence of instructions that use the rax register. Once we have implemented
a good register allocator (Chapter 3), the need to patch instructions will be
relatively rare.

2.4 Uniquify Variables
The purpose of this pass is to make sure that each let uses a unique variable
name. For example, the uniquify pass should translate the program on the

2.4. UNIQUIFY VARIABLES 21

left into the program on the right.
(program
(let ([x 32])
(+ (let ([x 10]) x) x)))

⇒
(program
(let ([x.1 32])
(+ (let ([x.2 10]) x.2) x.1)))

The following is another example translation, this time of a program with a
let nested inside the initializing expression of another let.
(program
(let ([x (let ([x 4])

(+ x 1))])
(+ x 2)))

⇒
(program
(let ([x.2 (let ([x.1 4])

(+ x.1 1))])
(+ x.2 2)))

We recommend implementing uniquify as a structurally recursive func-
tion that mostly copies the input program. However, when encountering a
let, it should generate a unique name for the variable (the Racket function
gensym is handy for this) and associate the old name with the new unique
name in an association list. The uniquify function will need to access this
association list when it gets to a variable reference, so we add another param-
eter to uniquify for the association list. It is quite common for a compiler
pass to need a map to store extra information about variables. Such maps
are often called symbol tables.

The skeleton of the uniquify function is shown in Figure 2.9. The
function is curried so that it is convenient to partially apply it to an associ-
ation list and then apply it to different expressions, as in the last clause for
primitive operations in Figure 2.9. In the last match clause for the prim-
itive operators, note the use of the comma-@ operator to splice a list of
S-expressions into an enclosing S-expression.

Exercise 2. Complete the uniquify pass by filling in the blanks, that is,
implement the clauses for variables and for the let construct.

Exercise 3. Test your uniquify pass by creating five example R1 programs
and checking whether the output programs produce the same result as the
input programs. The R1 programs should be designed to test the most
interesting parts of the uniquify pass, that is, the programs should include
let constructs, variables, and variables that overshadow each other. The five
programs should be in a subdirectory named tests and they should have the
same file name except for a different integer at the end of the name, followed
by the ending .rkt. Use the interp-tests function (Appendix 12.2) from
utilities.rkt to test your uniquify pass on the example programs.

22 2. COMPILING INTEGERS AND VARIABLES

(define (uniquify alist)
(lambda (e)
(match e
[(? symbol?) ___]
[(? integer?) e]
[‘(let ([,x ,e]) ,body) ___]
[‘(program ,e)
‘(program ,((uniquify alist) e))]
[‘(,op ,es ...)
‘(,op ,@(map (uniquify alist) es))]
)))

Figure 2.9: Skeleton for the uniquify pass.

2.5 Flatten Expressions

The flatten pass will transform R1 programs into C0 programs. In par-
ticular, the purpose of the flatten pass is to get rid of nested expressions,
such as the (- 10) in the program below. This can be accomplished by
introducing a new variable, assigning the nested expression to the new vari-
able, and then using the new variable in place of the nested expressions, as
shown in the output of flatten on the right.

(program
(+ 52 (- 10))) ⇒

(program (tmp.1 tmp.2)
(assign tmp.1 (- 10))
(assign tmp.2 (+ 52 tmp.1))
(return tmp.2))

The clause of flatten for let is straightforward to implement as it
just requires the generation of an assignment statement for the let-bound
variable. The following shows the result of flatten for a let.

(program
(let ([x (+ (- 10) 11)])
(+ x 41)))

⇒

(program (tmp.1 x tmp.2)
(assign tmp.1 (- 10))
(assign x (+ tmp.1 11))
(assign tmp.2 (+ x 41))
(return tmp.2))

We recommend implementing flatten as a structurally recursive func-
tion that returns three things, 1) the newly flattened expression, 2) a list of
assignment statements, one for each of the new variables introduced during
the flattening the expression, and 3) a list of all the variables including both
let-bound variables and the generated temporary variables. The newly flat-
tened expression should be an arg in the C0 syntax (Figure 2.8), that is, it

2.6. SELECT INSTRUCTIONS 23

should be an integer or a variable. You can return multiple things from a
function using the values form and you can receive multiple things from a
function call using the define-values form. If you are not familiar with
these constructs, the Racket documentation will be of help. Also, the map3
function (Appendix 12.2) is useful for applying a function to each element
of a list, in the case where the function returns three values. The result of
map3 is three lists.

The clause of flatten for the program node needs to recursively flatten
the body of the program and the newly flattened expression should be placed
in a return statement. Remember that the variable list in the program node
should contain no duplicates.

Take special care for programs such as the following that initialize vari-
ables with integers or other variables. It should be translated to the program
on the right

(let ([a 42])
(let ([b a])
b))

⇒
(program (a b)
(assign a 42)
(assign b a)
(return b))

and not to the following, which could result from a naive implementation of
flatten.

(program (tmp.1 a tmp.2 b)
(assign tmp.1 42)
(assign a tmp.1)
(assign tmp.2 a)
(assign b tmp.2)
(return b))

Exercise 4. Implement the flatten pass and test it on all of the example
programs that you created to test the uniquify pass and create three new
example programs that are designed to exercise all of the interesting code
in the flatten pass. Use the interp-tests function (Appendix 12.2) from
utilities.rkt to test your passes on the example programs.

2.6 Select Instructions

In the select-instructions pass we begin the work of translating from
C0 to x86. The target language of this pass is a pseudo-x86 language that
still uses variables, so we add an AST node of the form (var var) to the
x86 abstract syntax. Also, the program form should still list the variables

24 2. COMPILING INTEGERS AND VARIABLES

(similar to C0):
(program (var∗) instr+)

The select-instructions pass deals with the differing format of arith-
metic operations. For example, in C0 an addition operation can take the
form below. To translate to x86, we need to use the addq instruction which
does an in-place update. So we must first move 10 to x.

(assign x (+ 10 32)) ⇒ (movq (int 10) (var x))
(addq (int 32) (var x))

There are some cases that require special care to avoid generating need-
lessly complicated code. If one of the arguments is the same as the left-hand
side of the assignment, then there is no need for the extra move instruction.
For example, the following assignment statement can be translated into a
single addq instruction.

(assign x (+ 10 x)) ⇒ (addq (int 10) (var x))

The read operation does not have a direct counterpart in x86 assembly,
so we have instead implemented this functionality in the C language, with
the function read_int in the file runtime.c. In general, we refer to all of
the functionality in this file as the runtime system, or simply the runtime
for short. When compiling your generated x86 assembly code, you will need
to compile runtime.c to runtime.o (an “object file”, using gcc option -c)
and link it into the final executable. For our purposes of code generation,
all you need to do is translate an assignment of read to some variable lhs
(for left-hand side) into a call to the read_int function followed by a move
from rax to the left-hand side. The move from rax is needed because the
return value from read_int goes into rax, as is the case in general.

(assign lhs (read)) ⇒ (callq read_int)
(movq (reg rax) (var lhs))

Regarding the (return arg) statement of C0, we recommend treating it
as an assignment to the rax register and let the procedure conclusion handle
the transfer of control back to the calling procedure.

Exercise 5. Implement the select-instructions pass and test it on all
of the example programs that you created for the previous passes and create
three new example programs that are designed to exercise all of the inter-
esting code in this pass. Use the interp-tests function (Appendix 12.2)
from utilities.rkt to test your passes on the example programs.

2.7. ASSIGN HOMES 25

2.7 Assign Homes
As discussed in Section 2.3, the assign-homes pass places all of the variables
on the stack. Consider again the example R1 program (+ 52 (- 10)),
which after select-instructions looks like the following.

(movq (int 10) (var tmp.1))
(negq (var tmp.1))
(movq (var tmp.1) (var tmp.2))
(addq (int 52) (var tmp.2))
(movq (var tmp.2) (reg rax)))

The variable tmp.1 is assigned to stack location -8(%rbp), and tmp.2 is
assign to -16(%rbp), so the assign-homes pass translates the above to

(movq (int 10) (deref rbp -8))
(negq (deref rbp -8))
(movq (deref rbp -8) (deref rbp -16))
(addq (int 52) (deref rbp -16))
(movq (deref rbp -16) (reg rax)))

In the process of assigning stack locations to variables, it is convenient
to compute and store the size of the frame (in bytes) in the first field of
the program node which will be needed later to generate the procedure
conclusion.

(program int instr+)

Some operating systems place restrictions on the frame size. For example,
Mac OS X requires the frame size to be a multiple of 16 bytes.

Exercise 6. Implement the assign-homes pass and test it on all of the ex-
ample programs that you created for the previous passes pass. I recommend
that assign-homes take an extra parameter that is a mapping of variable
names to homes (stack locations for now). Use the interp-tests function
(Appendix 12.2) from utilities.rkt to test your passes on the example
programs.

2.8 Patch Instructions
The purpose of this pass is to make sure that each instruction adheres to
the restrictions regarding which arguments can be memory references. For
most instructions, the rule is that at most one argument may be a memory
reference.

Consider again the following example.

26 2. COMPILING INTEGERS AND VARIABLES

(let ([a 42])
(let ([b a])
b))

After assign-homes pass, the above has been translated to
(movq (int 42) (deref rbp -8))
(movq (deref rbp -8) (deref rbp -16))
(movq (deref rbp -16) (reg rax))

The second movq instruction is problematic because both arguments are
stack locations. We suggest fixing this problem by moving from the source
to the register rax and then from rax to the destination, as follows.

(movq (int 42) (deref rbp -8))
(movq (deref rbp -8) (reg rax))
(movq (reg rax) (deref rbp -16))
(movq (deref rbp -16) (reg rax))

Exercise 7. Implement the patch-instructions pass and test it on all of
the example programs that you created for the previous passes and create
three new example programs that are designed to exercise all of the inter-
esting code in this pass. Use the interp-tests function (Appendix 12.2)
from utilities.rkt to test your passes on the example programs.

2.9 Print x86
The last step of the compiler from R1 to x86 is to convert the x86 AST
(defined in Figure 2.7) to the string representation (defined in Figure 2.3).
The Racket format and string-append functions are useful in this regard.
The main work that this step needs to perform is to create the main function
and the standard instructions for its prelude and conclusion, as shown in
Figure 2.5 of Section 2.2. You need to know the number of stack-allocated
variables, for which it is suggest that you compute in the assign-homes
pass (Section 2.7) and store in the info field of the program node.

Your compiled code should print the result of the program’s execution
by using the print_int function provided in runtime.c. If your compiler
has been implemented correctly so far, this final result should be stored in
the rax register. We’ll talk more about how to perform function calls with
arguments in general later on, but for now, make sure that your x86 printer
includes the following code as part of the conclusion:

movq %rax, %rdi
callq print_int

2.9. PRINT X86 27

These lines move the value in rax into the rdi register, which stores the
first argument to be passed into print_int.

If you want your program to run on Mac OS X, your code needs to
determine whether or not it is running on a Mac, and prefix underscores
to labels like main. You can determine the platform with the Racket call
(system-type ’os), which returns ’macosx, ’unix, or ’windows. In addi-
tion to placing underscores on main, you need to put them in front of callq
labels (so callq print_int becomes callq _print_int).

Exercise 8. Implement the print-x86 pass and test it on all of the example
programs that you created for the previous passes. Use the compiler-tests
function (Appendix 12.2) from utilities.rkt to test your complete com-
piler on the example programs.

Figure 2.10 provides an overview of all the compiler passes described in
this Chapter. The x86∗ language extends x86 with variables and looser rules
regarding instruction arguments. The x86† language is the concrete syntax
(string) for x86.

28 2. COMPILING INTEGERS AND VARIABLES

R1 R1

C0

x86∗ x86∗ x86 x86†

uniquify

flatten

select-instr.
assign-homes patch-instr. print-x86

Figure 2.10: Overview of the passes for compiling R1.

3

Register Allocation

In Chapter 2 we simplified the generation of x86 assembly by placing all
variables on the stack. We can improve the performance of the generated
code considerably if we instead try to place as many variables as possible
into registers. The CPU can access a register in a single cycle, whereas
accessing the stack takes many cycles to go to cache or many more to access
main memory. Figure 3.1 shows a program with four variables that serves
as a running example. We show the source program and also the output of
instruction selection. At that point the program is almost x86 assembly but
not quite; it still contains variables instead of stack locations or registers.

The goal of register allocation is to fit as many variables into registers as
possible. It is often the case that we have more variables than registers, so we
cannot map each variable to a different register. Fortunately, it is common
for different variables to be needed during different periods of time, and in
such cases several variables can be mapped to the same register. Consider
variables x and y in Figure 3.1. After the variable x is moved to z it is no
longer needed. Variable y, on the other hand, is used only after this point,
so x and y could share the same register. The topic of Section 3.1 is how
we compute where a variable is needed. Once we have that information,
we compute which variables are needed at the same time, i.e., which ones
interfere, and represent this relation as graph whose vertices are variables
and edges indicate when two variables interfere with eachother (Section 3.2).
We then model register allocation as a graph coloring problem, which we
discuss in Section 3.3.

In the event that we run out of registers despite these efforts, we place
the remaining variables on the stack, similar to what we did in Chapter 2. It
is common to say that when a variable that is assigned to a stack location,

29

30 3. REGISTER ALLOCATION

Source program:
(program
(let ([v 1])
(let ([w 46])
(let ([x (+ v 7)])
(let ([y (+ 4 x)])
(let ([z (+ x w)])

(+ z (- y))))))))

After instruction selection:
(program (v w x y z t.1 t.2)
(movq (int 1) (var v))
(movq (int 46) (var w))
(movq (var v) (var x))
(addq (int 7) (var x))
(movq (var x) (var y))
(addq (int 4) (var y))
(movq (var x) (var z))
(addq (var w) (var z))
(movq (var y) (var t.1))
(negq (var t.1))
(movq (var z) (var t.2))
(addq (var t.1) (var t.2))
(movq (var t.2) (reg rax)))

Figure 3.1: An example program for register allocation.

it has been spilled. The process of spilling variables is handled as part of
the graph coloring process described in 3.3.

3.1 Liveness Analysis

A variable is live if the variable is used at some later point in the program
and there is not an intervening assignment to the variable. To understand
the latter condition, consider the following code fragment in which there are
two writes to b. Are a and b both live at the same time?

1 (movq (int 5) (var a))
2 (movq (int 30) (var b))
3 (movq (var a) (var c))
4 (movq (int 10) (var b))
5 (addq (var b) (var c))

The answer is no because the value 30 written to b on line 2 is never used.
The variable b is read on line 5 and there is an intervening write to b on
line 4, so the read on line 5 receives the value written on line 4, not line 2.

The live variables can be computed by traversing the instruction se-
quence back to front (i.e., backwards in execution order). Let I1, . . . , In be
the instruction sequence. We write Lafter(k) for the set of live variables after
instruction Ik and Lbefore(k) for the set of live variables before instruction
Ik. The live variables after an instruction are always the same as the live

3.1. LIVENESS ANALYSIS 31

1 (program (v w x y z t.1 t.2)
2 (movq (int 1) (var v))
3 (movq (int 46) (var w))
4 (movq (var v) (var x))
5 (addq (int 7) (var x))
6 (movq (var x) (var y))
7 (addq (int 4) (var y))
8 (movq (var x) (var z))
9 (addq (var w) (var z))
10 (movq (var y) (var t.1))
11 (negq (var t.1))
12 (movq (var z) (var t.2))
13 (addq (var t.1) (var t.2))
14 (movq (var t.2) (reg rax)))

{v}
{v, w}
{w, x}
{w, x}
{w, x, y}
{w, x, y}
{w, y, z}
{y, z}
{t.1, z}
{t.1, z}
{t.1, t.2}
{t.2}
{}

Figure 3.2: An example program annotated with live-after sets.

variables before the next instruction.

Lafter(k) = Lbefore(k + 1)

To start things off, there are no live variables after the last instruction, so

Lafter(n) = ∅

We then apply the following rule repeatedly, traversing the instruction se-
quence back to front.

Lbefore(k) = (Lafter(k)−W (k)) ∪R(k),

where W (k) are the variables written to by instruction Ik and R(k) are
the variables read by instruction Ik. Figure 3.2 shows the results of live
variables analysis for the running example, with each instruction aligned
with its Lafter set to make the figure easy to read.

Exercise 9. Implement the compiler pass named uncover-live that com-
putes the live-after sets. We recommend storing the live-after sets (a list of
lists of variables) in the info field of the program node alongside the list of
variables as follows.

(program (var∗ live−afters) instr+)

I recommend organizing your code to use a helper function that takes a list
of statements and an initial live-after set (typically empty) and returns the

32 3. REGISTER ALLOCATION

list of statements and the list of live-after sets. For this chapter, returning
the list of statements is unnecessary, as they will be unchanged, but in
Chapter 4 we introduce if statements and will need to annotate them with
the live-after sets of the two branches.

I recommend creating helper functions to 1) compute the set of variables
that appear in an argument (of an instruction), 2) compute the variables
read by an instruction which corresponds to the R function discussed above,
and 3) the variables written by an instruction which corresponds to W .

3.2 Building the Interference Graph

Based on the liveness analysis, we know where each variable is needed. How-
ever, during register allocation, we need to answer questions of the specific
form: are variables u and v live at the same time? (And therefore cannot
be assigned to the same register.) To make this question easier to answer,
we create an explicit data structure, an interference graph. An interference
graph is an undirected graph that has an edge between two variables if they
are live at the same time, that is, if they interfere with each other.

The most obvious way to compute the interference graph is to look at
the set of live variables between each statement in the program, and add an
edge to the graph for every pair of variables in the same set. This approach
is less than ideal for two reasons. First, it can be rather expensive because
it takes O(n2) time to look at every pair in a set of n live variables. Second,
there is a special case in which two variables that are live at the same time
do not actually interfere with each other: when they both contain the same
value because we have assigned one to the other.

A better way to compute the interference graph is given by the following.

• If instruction Ik is a move: (movq s d), then add the edge (d, v) for
every v ∈ Lafter(k) unless v = d or v = s.

• If instruction Ik is not a move but some other arithmetic instruction
such as (addq s d), then add the edge (d, v) for every v ∈ Lafter(k)
unless v = d.

• If instruction Ik is of the form (callq label), then add an edge (r, v)
for every caller-save register r and every variable v ∈ Lafter(k).

Working from the top to bottom of Figure 3.2, we obtain the following
interference for the instruction at the specified line number.

3.2. BUILDING THE INTERFERENCE GRAPH 33

v w x t.1

y z t.2

Figure 3.3: The interference graph of the example program.

Line 2: no interference,
Line 3: w interferes with v,
Line 4: x interferes with w,
Line 5: x interferes with w,
Line 6: y interferes with w,
Line 7: y interferes with w and x,
Line 8: z interferes with w and y,
Line 9: z interferes with y,
Line 10: t.1 interferes with z,
Line 11: t.1 interferes with z,
Line 12: t.2 interferes with t.1,
Line 13: no interference.
Line 14: no interference.

The resulting interference graph is shown in Figure 3.3.
Our next concern is to choose a data structure for representing the in-

terference graph. There are many standard choices for how to represent a
graph: adjacency matrix, adjacency list, and edge set [?]. The right way to
choose a data structure is to study the algorithm that uses the data struc-
ture, determine what operations need to be performed, and then choose
the data structure that provide the most efficient implementations of those
operations. Often times the choice of data structure can have an effect on
the time complexity of the algorithm, as it does here. If you skim the next
section, you will see that the register allocation algorithm needs to ask the
graph for all of its vertices and, given a vertex, it needs to known all of
the adjacent vertices. Thus, the correct choice of graph representation is
that of an adjacency list. There are helper functions in utilities.rkt for
representing graphs using the adjacency list representation: make-graph,
add-edge, and adjacent (Appendix 12.2). In particular, those functions
use a hash table to map each vertex to the set of adjacent vertices, and the
sets are represented using Racket’s set, which is also a hash table.

34 3. REGISTER ALLOCATION

Exercise 10. Implement the compiler pass named build-interference
according to the algorithm suggested above. The output of this pass should
replace the live-after sets with the interference graph as follows.

(program (var∗ graph) instr+)

3.3 Graph Coloring via Sudoku

We now come to the main event, mapping variables to registers (or to stack
locations in the event that we run out of registers). We need to make sure
not to map two variables to the same register if the two variables interfere
with each other. In terms of the interference graph, this means we cannot
map adjacent nodes to the same register. If we think of registers as colors,
the register allocation problem becomes the widely-studied graph coloring
problem [??].

The reader may be more familiar with the graph coloring problem then
he or she realizes; the popular game of Sudoku is an instance of the graph
coloring problem. The following describes how to build a graph out of an
initial Sudoku board.

• There is one node in the graph for each Sudoku square.

• There is an edge between two nodes if the corresponding squares are
in the same row, in the same column, or if the squares are in the same
3× 3 region.

• Choose nine colors to correspond to the numbers 1 to 9.

• Based on the initial assignment of numbers to squares in the Sudoku
board, assign the corresponding colors to the corresponding nodes in
the graph.

If you can color the remaining nodes in the graph with the nine colors, then
you have also solved the corresponding game of Sudoku. Figure 3.4 shows
an initial Sudoku game board and the corresponding graph with colored
vertices. We map the Sudoku number 1 to blue, 2 to yellow, and 3 to
red. We only show edges for a sampling of the vertices (those that are
colored) because showing edges for all of the vertices would make the graph
unreadable.

Given that Sudoku is graph coloring, one can use Sudoku strategies to
come up with an algorithm for allocating registers. For example, one of

3.3. GRAPH COLORING VIA SUDOKU 35

1

1

1

2 3

2

2

3

3

3

2

Figure 3.4: A Sudoku game board and the corresponding colored graph.

the basic techniques for Sudoku is called Pencil Marks. The idea is that
you use a process of elimination to determine what numbers no longer make
sense for a square, and write down those numbers in the square (writing
very small). For example, if the number 1 is assigned to a square, then by
process of elimination, you can write the pencil mark 1 in all the squares in
the same row, column, and region. Many Sudoku computer games provide
automatic support for Pencil Marks. This heuristic also reduces the degree
of branching in the search tree.

The Pencil Marks technique corresponds to the notion of color saturation
due to ?. The saturation of a node, in Sudoku terms, is the set of colors
that are no longer available. In graph terminology, we have the following
definition:

saturation(u) = {c | ∃v.v ∈ adjacent(u) and color(v) = c}

where adjacent(u) is the set of nodes adjacent to u.
Using the Pencil Marks technique leads to a simple strategy for filling

in numbers: if there is a square with only one possible number left, then
write down that number! But what if there are no squares with only one
possibility left? One brute-force approach is to just make a guess. If that
guess ultimately leads to a solution, great. If not, backtrack to the guess
and make a different guess. Of course, backtracking can be horribly time
consuming. One standard way to reduce the amount of backtracking is to use
the most-constrained-first heuristic. That is, when making a guess, always
choose a square with the fewest possibilities left (the node with the highest

36 3. REGISTER ALLOCATION

Algorithm: DSATUR
Input: a graph G
Output: an assignment color[v] for each node v ∈ G

W ← vertices(G)
while W 6= ∅ do

pick a node u from W with the highest saturation,
breaking ties randomly

find the lowest color c that is not in {color[v] : v ∈ adjacent(u)}
color[u]← c
W ←W − {u}

Figure 3.5: The saturation-based greedy graph coloring algorithm.

saturation). The idea is that choosing highly constrained squares earlier
rather than later is better because later there may not be any possibilities.

In some sense, register allocation is easier than Sudoku because we can
always cheat and add more numbers by mapping variables to the stack. We
say that a variable is spilled when we decide to map it to a stack location. We
would like to minimize the time needed to color the graph, and backtracking
is expensive. Thus, it makes sense to keep the most-constrained-first heuris-
tic but drop the backtracking in favor of greedy search (guess and just keep
going). Figure 3.5 gives the pseudo-code for this simple greedy algorithm
for register allocation based on saturation and the most-constrained-first
heuristic, which is roughly equivalent to the DSATUR algorithm of ? (also
known as saturation degree ordering [??]). Just as in Sudoku, the algorithm
represents colors with integers, with the first k colors corresponding to the
k registers in a given machine and the rest of the integers corresponding to
stack locations.

With this algorithm in hand, let us return to the running example and
consider how to color the interference graph in Figure 3.3. We shall not use
register rax for register allocation because we use it to patch instructions,
so we remove that vertex from the graph. Initially, all of the nodes are not
yet colored and they are unsaturated, so we annotate each of them with a

3.3. GRAPH COLORING VIA SUDOKU 37

dash for their color and an empty set for the saturation.

v : −, {} w : −, {} x : −, {}

y : −, {} z : −, {}

t.1 : −, {}

t.2 : −, {}

We select a maximally saturated node and color it 0. In this case we have
a 7-way tie, so we arbitrarily pick y. The then mark color 0 as no longer
available for w, x, and z because they interfere with y.

v : −, {} w : −, {0} x : −, {0}

y : 0, {} z : −, {0}

t.1 : −, {}

t.2 : −, {}

Now we repeat the process, selecting another maximally saturated node.
This time there is a three-way tie between w, x, and z. We color w with 1.

v : −, {1} w : 1, {0} x : −, {0, 1}

y : 0, {1} z : −, {0, 1}

t.1 : −, {}

t.2 : −, {}

The most saturated nodes are now x and z. We color x with the next
available color which is 2.

v : −, {1} w : 1, {0, 2} x : 2, {0, 1}

y : 0, {1, 2} z : −, {0, 1}

t.1 : −, {}

t.2 : −, {}

Node z is the next most highly saturated, so we color z with 2.

v : −, {1} w : 1, {0, 2} x : 2, {0, 1}

y : 0, {1, 2} z : 2, {0, 1}

t.1 : −, {2}

t.2 : −, {}

We have a 2-way tie between v and t.1. We choose to color v with 0.

v : 0, {1} w : 1, {0, 2} x : 2, {0, 1}

y : 0, {1, 2} z : 2, {0, 1}

t.1 : −, {2}

t.2 : −, {}

38 3. REGISTER ALLOCATION

In the last two steps of the algorithm, we color t.1 with 0 then t.2 with 1.

v : 0, {1} w : 1, {0, 2} x : 2, {0, 1}

y : 0, {1, 2} z : 2, {0, 1}

t.1 : 0, {2, 1}

t.2 : 1, {0}

With the coloring complete, we can finalize the assignment of variables
to registers and stack locations. Recall that if we have k registers, we map
the first k colors to registers and the rest to stack locations. Suppose for the
moment that we just have one extra register to use for register allocation,
just rbx. Then the following is the mapping of colors to registers and stack
allocations.

{0 7→ %rbx, 1 7→ -8(%rbp), 2 7→ -16(%rbp), . . .}

Putting this mapping together with the above coloring of the variables, we
arrive at the assignment:

{v 7→ %rbx, w 7→ -8(%rbp), x 7→ -16(%rbp), y 7→ %rbx, z 7→ -16(%rbp),

t.1 7→ %rbx, t.2 7→ -8(%rbp)}

Applying this assignment to our running example (Figure 3.1) yields the
program on the right.
(program (v w x y z)
(movq (int 1) (var v))
(movq (int 46) (var w))
(movq (var v) (var x))
(addq (int 7) (var x))
(movq (var x) (var y))
(addq (int 4) (var y))
(movq (var x) (var z))
(addq (var w) (var z))
(movq (var y) (var t.1))
(negq (var t.1))
(movq (var z) (var t.2))
(addq (var t.1) (var t.2))
(movq (var t.2) (reg rax)))

⇒

(program 16
(movq (int 1) (reg rbx))
(movq (int 46) (deref rbp -8))
(movq (reg rbx) (deref rbp -16))
(addq (int 7) (deref rbp -16))
(movq (deref rbp -16) (reg rbx))
(addq (int 4) (reg rbx))
(movq (deref rbp -16) (deref rbp -16))
(addq (deref rbp -8) (deref rbp -16))
(movq (reg rbx) (reg rbx))
(negq (reg rbx))
(movq (deref rbp -16) (deref rbp -8))
(addq (reg rbx) (deref rbp -8))
(movq (deref rbp -8) (reg rax)))

The resulting program is almost an x86 program. The remaining step
is to apply the patch instructions pass. In this example, the trivial move of
-16(%rbp) to itself is deleted and the addition of -8(%rbp) to -16(%rbp) is
fixed by going through rax. The following shows the portion of the program
that changed.

3.4. PRINT X86 AND CONVENTIONS FOR REGISTERS 39

(addq (int 4) (reg rbx))
(movq (deref rbp -8) (reg rax)
(addq (reg rax) (deref rbp -16))

An overview of all of the passes involved in register allocation is shown in
Figure 3.6.

Exercise 11. Implement the pass allocate-registers and test it by cre-
ating new example programs that exercise all of the register allocation al-
gorithm, such as forcing variables to be spilled to the stack.

I recommend organizing our code by creating a helper function named
color-graph that takes an interference graph and a list of all the variables
in the program. This function should return a mapping of variables to
their colors. By creating this helper function, we will be able to reuse it
in Chapter 6 when we add support for functions. Once you have obtained
the coloring from color-graph, you can assign the variables to registers or
stack locations based on their color and then use the assign-homes function
from Section 2.7 to replace the variables with their assigned location.

3.4 Print x86 and Conventions for Registers

Recall the the print-x86 pass generates the prelude and conclusion instruc-
tions for the main function. The prelude saved the values in rbp and rsp
and the conclusion returned those values to rbp and rsp. The reason for
this is that there are agreed-upon conventions for how different functions
share the same fixed set of registers. There is a function inside the operat-
ing system (OS) that calls our main function, and that OS function uses the
same registers that we use in main. The convention for x86 is that the caller
is responsible for freeing up some registers, the caller save registers, prior to
the function call, and the callee is responsible for saving and restoring some
other registers, the callee save registers, before and after using them. The
caller save registers are
rax rdx rcx rsi rdi r8 r9 r10 r11

while the callee save registers are
rsp rbp rbx r12 r13 r14 r15

Another way to think about this caller/callee convention is the following.
The caller should assume that all the caller save registers get overwritten
with arbitrary values by the callee. On the other hand, the caller can safely
assume that all the callee save registers contain the same values after the call

40 3. REGISTER ALLOCATION

that they did before the call. The callee can freely use any of the caller save
registers. However, if the callee wants to use a callee save register, the callee
must arrange to put the original value back in the register prior to returning
to the caller, which is usually accomplished by saving and restoring the value
from the stack.

The upshot of these conventions is that the main function needs to save
(in the prelude) and restore (in the conclusion) any callee save registers that
get used during register allocation. The simplest approach is to save and
restore all the callee save registers. The more efficient approach is to keep
track of which callee save registers were used and only save and restore them.
Either way, make sure to take this use of stack space into account when you
round up the size of the frame to make sure it is a multiple of 16 bytes.

3.5 Challenge: Move Biasing∗

This section describes an optional enhancement to register allocation for
those students who are looking for an extra challenge or who have a deeper
interest in register allocation.

We return to the running example, but we remove the supposition that
we only have one register to use. So we have the following mapping of color
numbers to registers.

{0 7→ %rbx, 1 7→ %rcx, 2 7→ %rdx, . . .}

Using the same assignment that was produced by register allocator described
in the last section, we get the following program.

(program (v w x y z)
(movq (int 1) (var v))
(movq (int 46) (var w))
(movq (var v) (var x))
(addq (int 7) (var x))
(movq (var x) (var y))
(addq (int 4) (var y))
(movq (var x) (var z))
(addq (var w) (var z))
(movq (var y) (var t.1))
(negq (var t.1))
(movq (var z) (var t.2))
(addq (var t.1) (var t.2))
(movq (var t.2) (reg rax)))

⇒

(program 0
(movq (int 1) (reg rbx))
(movq (int 46) (reg rcx))
(movq (reg rbx) (reg rdx))
(addq (int 7) (reg rdx))
(movq (reg rdx) (reg rbx))
(addq (int 4) (reg rbx))
(movq (reg rdx) (reg rdx))
(addq (reg rcx) (reg rdx))
(movq (reg rbx) (reg rbx))
(negq (reg rbx))
(movq (reg rdx) (reg rcx))
(addq (reg rbx) (reg rcx))
(movq (reg rcx) (reg rax)))

3.5. CHALLENGE: MOVE BIASING∗ 41

While this allocation is quite good, we could do better. For example,
the variables v and x ended up in different registers, but if they had been
placed in the same register, then the move from v to x could be removed.

We say that two variables p and q are move related if they participate
together in a movq instruction, that is, movq p, q or movq q, p. When the
register allocator chooses a color for a variable, it should prefer a color that
has already been used for a move-related variable (assuming that they do
not interfere). Of course, this preference should not override the preference
for registers over stack locations, but should only be used as a tie breaker
when choosing between registers or when choosing between stack locations.

We recommend that you represent the move relationships in a graph,
similar to how we represented interference. The following is the move graph
for our running example.

v w x

y z

t.1

t.2

Now we replay the graph coloring, pausing to see the coloring of z and
v. So we have the following coloring so far and the most saturated vertex is
z.

v : −, {1} w : 1, {0, 2} x : 2, {0, 1}

y : 0, {1, 2} z : −, {0, 1}

t.1 : −, {}

t.2 : −, {}

Last time we chose to color z with 2, which so happens to be the color of
x, and z is move related to x. This was rather lucky, and if the program
had been a little different, and say x had been already assigned to 3, then z
would still get 2 and our luck would have run out. With move biasing, we
use the fact that z and x are move related to influence the choice of color
for z, in this case choosing 2 because that’s the color of x.

v : −, {1} w : 1, {0, 2} x : 2, {0, 1}

y : 0, {1, 2} z : 2, {0, 1}

t.1 : −, {2}

t.2 : −, {}

42 3. REGISTER ALLOCATION

Next we consider coloring the variable v, and we just need to avoid
choosing 1 because of the interference with w. Last time we choose the
color 0, simply because it was the lowest, but this time we know that v is
move related to x, so we choose the color 2.

v : 2, {1} w : 1, {0, 2} x : 2, {0, 1}

y : 0, {1, 2} z : 2, {0, 1}

t.1 : −, {2}

t.2 : −, {}

We apply this register assignment to the running example, on the left,
to obtain the code on right.

(program (v w x y z)
(movq (int 1) (var v))
(movq (int 46) (var w))
(movq (var v) (var x))
(addq (int 7) (var x))
(movq (var x) (var y))
(addq (int 4) (var y))
(movq (var x) (var z))
(addq (var w) (var z))
(movq (var y) (var t.1))
(negq (var t.1))
(movq (var z) (var t.2))
(addq (var t.1) (var t.2))
(movq (var t.2) (reg rax)))

⇒

(program 0
(movq (int 1) (reg rdx))
(movq (int 46) (reg rcx))
(movq (reg rdx) (reg rdx))
(addq (int 7) (reg rdx))
(movq (reg rdx) (reg rbx))
(addq (int 4) (reg rbx))
(movq (reg rdx) (reg rdx))
(addq (reg rcx) (reg rdx))
(movq (reg rbx) (reg rbx))
(negq (reg rbx))
(movq (reg rdx) (reg rcx))
(addq (reg rbx) (reg rcx))
(movq (reg rcx) (reg rax)))

The patch-instructions then removes the trivial moves from v to x,
from x to z, and from y to t.1, to obtain the following result.
(program 0
(movq (int 1) (reg rdx))
(movq (int 46) (reg rcx))
(addq (int 7) (reg rdx))
(movq (reg rdx) (reg rbx))
(addq (int 4) (reg rbx))
(addq (reg rcx) (reg rdx))
(negq (reg rbx))
(movq (reg rdx) (reg rcx))
(addq (reg rbx) (reg rcx))
(movq (reg rcx) (reg rax)))

Exercise 12. Change your implementation of allocate-registers to take
move biasing into account. Make sure that your compiler still passes all of

3.5. CHALLENGE: MOVE BIASING∗ 43

the previous tests. Create two new tests that include at least one opportu-
nity for move biasing and visually inspect the output x86 programs to make
sure that your move biasing is working properly.

44 3. REGISTER ALLOCATION

R1 R1

C0

x86∗ x86∗ x86 x86†

x86∗ x86∗

uniquify

flatten

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr. print-x86

Figure 3.6: Diagram of the passes for R1 with register allocation.

4

Booleans, Control Flow, and
Type Checking

The R0 and R1 languages only had a single kind of value, the integers. In
this Chapter we add a second kind of value, the Booleans, to create the
R2 language. The Boolean values true and false are written #t and #f
respectively in Racket. We also introduce several operations that involve
Booleans (and, not, eq?, <, etc.) and the conditional if expression. With
the addition of if expressions, programs can have non-trivial control flow
which has an impact on several parts of the compiler. Also, because we now
have two kinds of values, we need to worry about programs that apply an
operation to the wrong kind of value, such as (not 1).

There are two language design options for such situations. One option
is to signal an error and the other is to provide a wider interpretation of
the operation. The Racket language uses a mixture of these two options,
depending on the operation and the kind of value. For example, the result
of (not 1) in Racket is #f because Racket treats non-zero integers like #t.
On the other hand, (car 1) results in a run-time error in Racket stating
that car expects a pair.

The Typed Racket language makes similar design choices as Racket,
except much of the error detection happens at compile time instead of run
time. Like Racket, Typed Racket accepts and runs (not 1), producing #f.
But in the case of (car 1), Typed Racket reports a compile-time error
because the type of the argument is expected to be of the form (Listof T)
or (Pairof T1 T2).

For the R2 language we choose to be more like Typed Racket in that
we shall perform type checking during compilation. In Chapter 8 we study

45

46 4. BOOLEANS, CONTROL FLOW, AND TYPE CHECKING

cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)

R2 ::= (program exp)

Figure 4.1: The syntax of R2, extending R1 with Booleans and conditionals.

the alternative choice, that is, how to compile a dynamically typed language
like Racket. The R2 language is a subset of Typed Racket but by no means
includes all of Typed Racket. Furthermore, for many of the operations
we shall take a narrower interpretation than Typed Racket, for example,
rejecting (not 1).

This chapter is organized as follows. We begin by defining the syntax
and interpreter for the R2 language (Section 4.1). We then introduce the
idea of type checking and build a type checker for R2 (Section 4.2). To
compile R2 we need to enlarge the intermediate language C0 into C1, which
we do in Section 4.3. The remaining sections of this Chapter discuss how our
compiler passes need to change to accommodate Booleans and conditional
control flow.

4.1 The R2 Language

The syntax of the R2 language is defined in Figure 4.1. It includes all of
R1 (shown in gray) , the Boolean literals #t and #f, and the conditional if
expression. Also, we expand the operators to include the and and not on
Booleans, the eq? operations for comparing two integers or two Booleans,
and the <, <=, >, and >= operations for comparing integers.

Figure 4.2 defines the interpreter for R2, omitting the parts that are
the same as the interpreter for R1 (Figure 2.2). The literals #t and #f
simply evaluate to themselves. The conditional expression (if cnd thn els)
evaluates the Boolean expression cnd and then either evaluates thn or els
depending on whether cnd produced #t or #f. The logical operations not
and and behave as you might expect, but note that the and operation is
short-circuiting. That is, given the expression (and e1 e2), the expression e2
is not evaluated if e1 evaluates to #f.

With the addition of the comparison operations, there are quite a few
primitive operations and the interpreter code for them is somewhat repet-

4.2. TYPE CHECKING R2 PROGRAMS 47

itive. In Figure 4.2 we factor out the different parts into the interp-op
function and the similar parts into the one match clause shown in Figure 4.2.
It is important for that match clause to come last because it matches any
compound S-expression. We do not use interp-op for the and operation
because of the short-circuiting behavior in the order of evaluation of its
arguments.

4.2 Type Checking R2 Programs

It is helpful to think about type checking into two complementary ways.
A type checker predicts the type of value that will be produced by each
expression in the program. For R2, we have just two types, Integer and
Boolean. So a type checker should predict that

(+ 10 (- (+ 12 20)))

produces an Integer while

(and (not #f) #t)

produces a Boolean.
As mentioned at the beginning of this chapter, a type checker also rejects

programs that apply operators to the wrong type of value. Our type checker
for R2 will signal an error for the following expression because, as we have
seen above, the expression (+ 10 ...) has type Integer, and we require
the argument of a not to have type Boolean.

(not (+ 10 (- (+ 12 20))))

The type checker for R2 is best implemented as a structurally recur-
sive function over the AST. Figure 4.3 shows many of the clauses for the
typecheck-R2 function. Given an input expression e, the type checker ei-
ther returns the type (Integer or Boolean) or it signals an error. Of course,
the type of an integer literal is Integer and the type of a Boolean literal
is Boolean. To handle variables, the type checker, like the interpreter, uses
an association list. However, in this case the association list maps variables
to types instead of values. Consider the clause for let. We type check the
initializing expression to obtain its type T and then associate type T with
the variable x. When the type checker encounters the use of a variable, it
can lookup its type in the association list.

To print the resulting value correctly, the overall type of the program
must be threaded through the remainder of the passes. We can store the

48 4. BOOLEANS, CONTROL FLOW, AND TYPE CHECKING

(define primitives (set ’+ ’- ’eq? ’< ’<= ’> ’>= ’not ’read))

(define (interp-op op)
(match op

[’+ fx+]
[’- (lambda (n) (fx- 0 n))]
[’not (lambda (v) (match v [#t #f] [#f #t]))]
[’read read-fixnum]
[’eq? (lambda (v1 v2)

(cond [(or (and (fixnum? v1) (fixnum? v2))
(and (boolean? v1) (boolean? v2))
(and (vector? v1) (vector? v2)))

(eq? v1 v2)]))]
[’< (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2))
(< v1 v2)]))]

[’<= (lambda (v1 v2)
(cond [(and (fixnum? v1) (fixnum? v2))

(<= v1 v2)]))]
[’> (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2))
(<= v1 v2)]))]

[’>= (lambda (v1 v2)
(cond [(and (fixnum? v1) (fixnum? v2))

(<= v1 v2)]))]
[else (error ’interp-op "unknown␣operator")]))

(define (interp-R2 env)
(lambda (e)
(define recur (interp-R2 env))
(match e
...
[(? boolean?) e]
[‘(if ,(app recur cnd) ,thn ,els)
(match cnd
[#t (recur thn)]
[#f (recur els)])]

[‘(not ,(app recur v))
(match v [#t #f] [#f #t])]
[‘(and ,(app recur v1) ,e2)
(match v1
[#t (match (recur e2) [#t #t] [#f #f])]
[#f #f])]

[‘(,op ,(app recur args) ...)
#:when (set-member? primitives op)
(apply (interp-op op) args)]

)))

Figure 4.2: Interpreter for the R2 language.

4.2. TYPE CHECKING R2 PROGRAMS 49

(define (typecheck-R2 env)
(lambda (e)
(define recur (typecheck-R2 env e))
(match e
[(? fixnum?) ’Integer]
[(? boolean?) ’Boolean]
[(? symbol?) (lookup e env)]
[‘(read) ’Integer]
[‘(let ([,x ,(app recur T)]) ,body)
(define new-env (cons (cons x T) env))
(typecheck-R2 new-env body)]
...
[‘(not ,(app (typecheck-R2 env) T))
(match T
[’Boolean ’Boolean]
[else (error ’typecheck-R2 "’not’␣expects␣a␣Boolean" e)])]

...
[‘(program ,body)
(define ty ((typecheck-R2 ’()) body))
‘(program (type ,ty) ,body)]
)))

Figure 4.3: Skeleton of a type checker for the R2 language.

50 4. BOOLEANS, CONTROL FLOW, AND TYPE CHECKING

arg ::= int | var | #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= arg | (read) | (- arg) | (+ arg arg) | (not arg) | (cmp arg arg)
stmt ::= (assign var exp) | (return arg)

| (if (cmp arg arg) stmt∗ stmt∗)
C1 ::= (program (var∗) (type type) stmt+)

Figure 4.4: The C1 language, extending C0 with Booleans and conditionals.

type within the program form as shown in Figure 4.3. The syntax for post-
typechecking R2 programs as follows:

R2 ::= (program (type type) exp)

Exercise 13. Complete the implementation of typecheck-R2 and test it on
10 new example programs in R2 that you choose based on how thoroughly
they test the type checking algorithm. Half of the example programs should
have a type error, to make sure that your type checker properly rejects
them. The other half of the example programs should not have type errors.
Your testing should check that the result of the type checker agrees with
the value returned by the interpreter, that is, if the type checker returns
Integer, then the interpreter should return an integer. Likewise, if the
type checker returns Boolean, then the interpreter should return #t or #f.
Note that if your type checker does not signal an error for a program, then
interpreting that program should not encounter an error. If it does, there is
something wrong with your type checker.

4.3 The C1 Language

The R2 language adds Booleans and conditional expressions to R1. As with
R1, we shall compile to a C-like intermediate language, but we need to grow
that intermediate language to handle the new features in R2. Figure 4.4
shows the new features of C1; we add logic and comparison operators to the
exp non-terminal, the literals #t and #f to the arg non-terminal, and we
add an if statement. The if statement of C1 includes an eq? test, which
is needed for improving code generation in Section 4.11. We do not include
and in C1 because it is not needed in the translation of the and of R2.

4.4. FLATTEN EXPRESSIONS 51

4.4 Flatten Expressions

We expand the flatten pass to handle the Boolean literals #t and #f, the
new logic and comparison operations, and if expressions. We shall start
with a simple example of translating a if expression, shown below on the
left.

(program (if #f 0 42)) ⇒

(program (if.1)
(if (eq? #t #f)
((assign if.1 0))
((assign if.1 42)))

(return if.1))

The value of the if expression is the value of the branch that is selected.
Recall that in the flatten pass we need to replace arbitrary expressions
with arg’s (variables or literals). In the translation above, on the right, we
have replaced the if expression with a new variable if.1, inside (return
if.1), and we have produced code that will assign the appropriate value to
if.1 using an if statement prior to the return. For R1, the flatten pass
returned a list of assignment statements. Here, for R2, we return a list of
statements that can include both if statements and assignment statements.

The next example is a bit more involved, showing what happens when
there are complex expressions (not variables or literals) in the condition and
branch expressions of an if, including nested if expressions.

(program
(if (eq? (read) 0)

777
(+ 2 (if (eq? (read) 0)

40
444))))

⇒

(program (t.1 t.2 if.1 t.3 t.4
if.2 t.5)

(assign t.1 (read))
(assign t.2 (eq? t.1 0))
(if (eq? #t t.2)
((assign if.1 777))
((assign t.3 (read))
(assign t.4 (eq? t.3 0))
(if (eq? #t t.4)
((assign if.2 40))
((assign if.2 444)))

(assign t.5 (+ 2 if.2))
(assign if.1 t.5)))

(return if.1))

The flatten clauses for the Boolean literals and the operations not
and eq? are straightforward. However, the flatten clause for and requires
some care to properly imitate the order of evaluation of the interpreter for
R2 (Figure 4.2). We recommend using an if statement in the code you

52 4. BOOLEANS, CONTROL FLOW, AND TYPE CHECKING

generate for and.
The flatten clause for if also requires some care because the condition

of the if can be an arbitrary expression in R2, but in C1 the condition must
be an equality predicate. For now we recommend flattening the condition
into an arg and then comparing it with #t. We discuss a more efficient
approach in Section 4.11.

Exercise 14. Expand your flatten pass to handle R2, that is, handle
the Boolean literals, the new logic and comparison operations, and the if
expressions. Create 4 more test cases that expose whether your flattening
code is correct. Test your flatten pass by running the output programs
with interp-C (Appendix 12.1).

4.5 XOR, Comparisons, and Control Flow in x86
To implement the new logical operations, the comparison operations, and
the if statement, we need to delve further into the x86 language. Fig-
ure 5.13 defines the abstract syntax for a larger subset of x86 that includes
instructions for logical operations, comparisons, and jumps.

One small challenge is that x86 does not provide an instruction that
directly implements logical negation (not in R2 and C1). However, the
xorq instruction can be used to encode not. The xorq instruction takes
two arguments, performs a pairwise exclusive-or operation on each bit of its
arguments, and writes the results into its second argument. Recall the truth
table for exclusive-or:

0 1
0 0 1
1 1 0

For example, 0011 XOR 0101 = 0110. Notice that in row of the table for the
bit 1, the result is the opposite of the second bit. Thus, the not operation
can be implemented by xorq with 1 as the first argument: 0001 XOR 0000 =
0001 and 0001 XOR 0001 = 0000.

Next we consider the x86 instructions that are relevant for compiling the
comparison operations. The cmpq instruction compares its two arguments
to determine whether one argument is less than, equal, or greater than the
other argument. The cmpq instruction is unusual regarding the order of its
arguments and where the result is placed. The argument order is backwards:
if you want to test whether x < y, then write cmpq y, x. The result of cmpq
is placed in the special EFLAGS register. This register cannot be accessed

4.6. SELECT INSTRUCTIONS 53

arg ::= (int int) | (reg register) | (deref register int)
| (byte-reg register)

cc ::= e | l | le | g | ge
instr ::= (addq arg arg) | (subq arg arg) | (negq arg) | (movq arg arg)

| (callq label) | (pushq arg) | (popq arg) | (retq)
| (xorq arg arg) | (cmpq arg arg) | (set cc arg)
| (movzbq arg arg) | (jmp label) | (jmp-if cc label)
| (label label)

x861 ::= (program info (type type) instr+)

Figure 4.5: The x861 language (extends x860 of Figure 2.7).

directly but it can be queried by a number of instructions, including the set
instruction. The set instruction puts a 1 or 0 into its destination depending
on whether the comparison came out according to the condition code cc (e
for equal, l for less, le for less-or-equal, g for greater, ge for greater-or-
equal). The set instruction has an annoying quirk in that its destination
argument must be single byte register, such as al, which is part of the rax
register. Thankfully, the movzbq instruction can then be used to move from
a single byte register to a normal 64-bit register.

For compiling the if expression, the x86 instructions for jumping are
relevant. The jmp instruction updates the program counter to point to
the instruction after the indicated label. The jmp-if instruction updates
the program counter to point to the instruction after the indicated label
depending on whether the result in the EFLAGS register matches the con-
dition code cc, otherwise the jmp-if instruction falls through to the next
instruction. Our abstract syntax for jmp-if differs from the concrete syn-
tax for x86 to separate the instruction name from the condition code. For
example, (jmp-if le foo) corresponds to jle foo.

4.6 Select Instructions

The select-instructions pass lowers from C1 to another intermediate
representation suitable for conducting register allocation, that is, a language
close to x861.

We can take the usual approach of encoding Booleans as integers, with

54 4. BOOLEANS, CONTROL FLOW, AND TYPE CHECKING

true as 1 and false as 0.

#t⇒ 1 #f⇒ 0

The not operation can be implemented in terms of xorq as we discussed at
the beginning of this section.

Translating the eq? and the other comparison operations to x86 is
slightly involved due to the unusual nature of the cmpq instruction discussed
above. We recommend translating an assignment from eq? into the follow-
ing sequence of three instructions.

(assign lhs (eq? arg1 arg2)) ⇒
(cmpq arg2 arg1)
(set e (byte-reg al))
(movzbq (byte-reg al) lhs)

Regarding if statements, we recommend delaying when they are lowered
until the patch-instructions pass. The reason is that for purposes of live-
ness analysis, if statements are easier to deal with than jump instructions.

Exercise 15. Expand your select-instructions pass to handle the new
features of the R2 language. Test the pass on all the examples you have cre-
ated and make sure that you have some test programs that use the eq? oper-
ator, creating some if necessary. Test the output of select-instructions
using the interp-x86 interpreter (Appendix 12.1).

4.7 Register Allocation
The changes required for R2 affect the liveness analysis, building the inter-
ference graph, and assigning homes, but the graph coloring algorithm itself
does not need to change.

4.7.1 Liveness Analysis

The addition of if statements brings up an interesting issue in liveness anal-
ysis. Recall that liveness analysis works backwards through the program, for
each instruction it computes the variables that are live before the instruc-
tion based on which variables are live after the instruction. Now consider
the situation for (if (eq? e1 e2) thns elss), where we know the Lafter set
and we need to produce the Lbefore set. We can recursively perform liveness
analysis on the thns and elss branches, using Lafter as the starting point,
to obtain Lthns

before and Lelss
before respectively. However, we do not know, during

compilation, which way the branch will go, so we do not know whether to

4.7. REGISTER ALLOCATION 55

use Lthns
before or Lelss

before as the Lbefore for the entire if statement. The solution
comes from the observation that there is no harm in identifying more vari-
ables as live than absolutely necessary. Thus, we can take the union of the
live variables from the two branches to be the live set for the whole if, as
shown below. Of course, we also need to include the variables that are read
in e1 and e2.

Lbefore = Lthns
before ∪ Lelss

before ∪Vars(e1) ∪Vars(e2)

We need the live-after sets for all the instructions in both branches of the
if when we build the interference graph, so I recommend storing that data
in the if statement AST as follows:

(if (eq? e1 e2) thns thn−lives elss els−lives)

If you wrote helper functions for computing the variables in an instruc-
tion’s argument and for computing the variables read-from (R) or written-to
(W) by an instruction, you need to be update them to handle the new kinds
of arguments and instructions in x861.

4.7.2 Build Interference

Many of the new instructions, such as the logical operations, can be handled
in the same way as the arithmetic instructions. Thus, if your code was
already quite general, it will not need to be changed to handle the logical
operations. If not, I recommend that you change your code to be more
general. The movzbq instruction should be handled like the movq instruction.
The if statement is straightforward to handle because we stored the live-
after sets for the two branches in the AST node as described above. Here
we just need to recursively process the two branches. The output of this
pass can discard the live after sets, as they are no longer needed.

4.7.3 Assign Homes

The assign-homes function (Section 2.7) needs to be updated to handle the
if statement, simply by recursively processing the child nodes. Hopefully
your code already handles the other new instructions, but if not, you can
generalize your code.

Exercise 16. Implement the additions to the register-allocation pass
so that it works for R2 and test your compiler using your previously created
programs on the interp-x86 interpreter (Appendix 12.1).

56 4. BOOLEANS, CONTROL FLOW, AND TYPE CHECKING

4.8 Lower Conditionals (New Pass)
In the select-instructions pass we decided to procrastinate in the low-
ering of the if statement, thereby making liveness analysis easier. Now we
need to make up for that and turn the if statement into the appropriate
instruction sequence. The following translation gives the general idea. If
the condition is true, we need to execute the thns branch and otherwise we
need to execute the elss branch. So we use cmpq and do a conditional jump
to the thenlabel, choosing the condition code cc that is appropriate for the
comparison operator cmp. If the condition is false, we fall through to the
elss branch. At the end of the elss branch we need to take care to not fall
through to the thns branch. So we jump to the endlabel. All of the labels
in the generated code should be created with gensym.

(if (cmp arg1 arg2) thns elss) ⇒

(cmpq arg2 arg1)
(jmp-if cc thenlabel)
elss
(jmp endlabel)
(label thenlabel)
thns
(label endlabel)

Exercise 17. Implement the lower-conditionals pass. Test your com-
piler using your previously created programs on the interp-x86 interpreter
(Appendix 12.1).

4.9 Patch Instructions
There are no special restrictions on the instructions jmp-if, jmp, and label,
but there is an unusual restriction on cmpq. The second argument is not
allowed to be an immediate value (such as a literal integer). If you are
comparing two immediates, you must insert another movq instruction to put
the second argument in rax.
Exercise 18. Update patch-instructions to handle the new x86 instruc-
tions. Test your compiler using your previously created programs on the
interp-x86 interpreter (Appendix 12.1).

4.10 An Example Translation
Figure 4.6 shows a simple example program in R2 translated to x86, showing
the results of flatten, select-instructions, and the final x86 assembly.

4.10. AN EXAMPLE TRANSLATION 57

(program
(if (eq? (read) 1) 42 0))

⇓
(program (t.1 t.2 if.1)
(assign t.1 (read))
(assign t.2 (eq? t.1 1))
(if (eq? #t t.2)
((assign if.1 42))
((assign if.1 0)))

(return if.1))

⇓
(program (t.1 t.2 if.1)
(callq read_int)
(movq (reg rax) (var t.1))
(cmpq (int 1) (var t.1))
(set e (byte-reg al))
(movzbq (byte-reg al) (var t.2))
(if (eq? (int 1) (var t.2))
((movq (int 42) (var if.1)))
((movq (int 0) (var if.1))))

(movq (var if.1) (reg rax)))

⇒

.globl _main
_main:

pushq %rbp
movq %rsp, %rbp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbx
subq $8, %rsp
callq _read_int
movq %rax, %rcx
cmpq $1, %rcx
sete %al
movzbq %al, %rcx
cmpq $1, %rcx
je then21288
movq $0, %rbx
jmp if_end21289

then21288:
movq $42, %rbx

if_end21289:
movq %rbx, %rax
movq %rax, %rdi
callq _print_int
movq $0, %rax
addq $8, %rsp
popq %rbx
popq %r12
popq %r13
popq %r14
popq %r15
popq %rbp
retq

Figure 4.6: Example compilation of an if expression to x86.

58 4. BOOLEANS, CONTROL FLOW, AND TYPE CHECKING

Figure 4.7 gives an overview of all the passes needed for the compilation
of R2.

4.11 Challenge: Optimizing Conditions∗

A close inspection of the x86 code generated in Figure 4.6 reveals some
redundant computation regarding the condition of the if. We compare rcx
to 1 twice using cmpq as follows.

cmpq $1, %rcx
sete %al
movzbq %al, %rcx
cmpq $1, %rcx
je then21288

The reason for this non-optimal code has to do with the flatten pass
earlier in this Chapter. We recommended flattening the condition to an arg
and then comparing with #t. But if the condition is already an eq? test,
then we would like to use that directly. In fact, for many of the expressions
of Boolean type, we can generate more optimized code. For example, if
the condition is #t or #f, we do not need to generate an if at all. If the
condition is a let, we can optimize based on the form of its body. If the
condition is a not, then we can flip the two branches. On the other hand,
if the condition is a and or another if, we should flatten them into an arg
to avoid code duplication.

Figure 4.8 shows an example program and the result of applying the
above suggested optimizations.

Exercise 19. Change the flatten pass to improve the code that gets gen-
erated for if expressions. We recommend writing a helper function that
recursively traverses the condition of the if.

4.11. CHALLENGE: OPTIMIZING CONDITIONS∗ 59

R2 R2 R2

C1

x86∗ x86∗ x86∗ x86

x86†x86∗ x86∗

typecheck uniquify

flatten

select-instr.

uncover-live

build-inter.

allocate-reg.

lower-cond. patch-instr.

print-x86

Figure 4.7: Diagram of the passes for R2, a language with conditionals.

60 4. BOOLEANS, CONTROL FLOW, AND TYPE CHECKING

(program
(if (let ([x 1])

(not (eq? 2 x)))
42
777))

⇓
(program (x.1 t.1 if.1)
(assign x.1 1)
(assign t.1 (read))
(if (eq? x.1 t.1)
((assign if.1 42))
((assign if.1 777)))

(return if.1))

⇓
(program (x.1 t.1 if.1)
(movq (int 1) (var x.1))
(callq read_int)
(movq (reg rax) (var t.1))
(if (eq? (var x.1) (var t.1))
((movq (int 42) (var if.1)))
((movq (int 777) (var if.1))))

(movq (var if.1) (reg rax)))

⇒

.globl _main
_main:

pushq %rbp
movq %rsp, %rbp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbx
subq $8, %rsp
movq $1, %rbx
callq _read_int
movq %rax, %rcx
cmpq %rbx, %rcx
je then21288
movq $777, %r12
jmp if_end21289

then21288:
movq $42, %r12

if_end21289:
movq %r12, %rax
movq %rax, %rdi
callq _print_int
movq $0, %rax
addq $8, %rsp
popq %rbx
popq %r12
popq %r13
popq %r14
popq %r15
popq %rbp
retq

Figure 4.8: Example program with optimized conditionals.

5

Tuples and Garbage
Collection

In this chapter we study the implementation of mutable tuples (called “vec-
tors” in Racket). This language feature is the first to use the computer’s
heap because the lifetime of a Racket tuple is indefinite, that is, a tuple
does not follow a stack (FIFO) discipline but instead lives forever from the
programmer’s viewpoint. Of course, from an implementor’s viewpoint, it
is important to reclaim the space associated with tuples when they are no
longer needed, which is why we also study garbage collection techniques in
this chapter.

Section 5.1 introduces the R3 language including its interpreter and type
checker. The R3 language extends the R2 language of Chapter 4 with vec-
tors and void values (because the vector-set! operation returns a void
value). Section 5.2 describes a garbage collection algorithm based on copy-
ing live objects back and forth between two halves of the heap. The garbage
collector requires coordination with the compiler so that it can see all of the
root pointers, that is, pointers in registers or on the procedure call stack.
Section 5.3 discusses all the necessary changes and additions to the compiler
passes, including type checking, instruction selection, register allocation, and
a new compiler pass named expose-allocation.

5.1 The R3 Language

Figure 5.2 defines the syntax for R3, which includes three new forms for
creating a tuple, reading an element of a tuple, and writing to an element
of a tuple. The program in Figure 5.1 shows the usage of tuples in Racket.

61

62 5. TUPLES AND GARBAGE COLLECTION

(let ([t (vector 40 #t (vector 2))])
(if (vector-ref t 1)

(+ (vector-ref t 0)
(vector-ref (vector-ref t 2) 0))

44))

Figure 5.1: Example program that creates tuples and reads from them.

type ::= Integer | Boolean | (Vector type+) | Void
cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp int)
| (vector-set! exp int exp)
| (void)

R3 ::= (program (type type) exp)

Figure 5.2: The syntax of R3, extending R2 with tuples.

We create a 3-tuple t and a 1-tuple. The 1-tuple is stored at index 2 of
the 3-tuple, demonstrating that tuples are first-class values. The element at
index 1 of t is #t, so the “then” branch is taken. The element at index 0 of
t is 40, to which we add the 2, the element at index 0 of the 1-tuple.

Tuples are our first encounter with heap-allocated data, which raises
several interesting issues. First, variable binding performs a shallow-copy
when dealing with tuples, which means that different variables can refer to
the same tuple, i.e., different variables can be aliases for the same thing.
Consider the following example in which both t1 and t2 refer to the same
tuple. Thus, the mutation through t2 is visible when referencing the tuple
from t1, so the result of this program is 42.
(let ([t1 (vector 3 7)])
(let ([t2 t1])
(let ([_ (vector-set! t2 0 42)])
(vector-ref t1 0))))

The next issue concerns the lifetime of tuples. Of course, they are created
by the vector form, but when does their lifetime end? Notice that the
grammar in Figure 5.2 does not include an operation for deleting tuples.

5.2. GARBAGE COLLECTION 63

Furthermore, the lifetime of a tuple is not tied to any notion of static scoping.
For example, the following program returns 3 even though the variable t goes
out of scope prior to accessing the vector.
(vector-ref
(let ([t (vector 3 7)])
t)

0)

From the perspective of programmer-observable behavior, tuples live forever.
Of course, if they really lived forever, then many programs would run out
of memory.1 A Racket implementation must therefore perform automatic
garbage collection.

Figure 5.3 shows the definitional interpreter for the R3 language and Fig-
ure 5.4 shows the type checker. The additions to the interpreter are straight-
forward but the updates to the type checker deserve some explanation. As
we shall see in Section 5.2, we need to know which variables are pointers
into the heap, that is, which variables are vectors. Also, when allocating
a vector, we shall need to know which elements of the vector are pointers.
We can obtain this information during type checking and flattening. The
type checker in Figure 5.4 not only computes the type of an expression, it
also wraps every sub-expression e with the form (has-type e T), where T is
e’s type. Subsequently, in the flatten pass (Section 5.3.2) this type informa-
tion is propagated to all variables (including temporaries generated during
flattening).

5.2 Garbage Collection

Here we study a relatively simple algorithm for garbage collection that is
the basis of state-of-the-art garbage collectors [??????]. In particular, we
describe a two-space copying collector [?] that uses Cheney’s algorithm to
perform the copy [?]. Figure 5.5 gives a coarse-grained depiction of what
happens in a two-space collector, showing two time steps, prior to garbage
collection on the top and after garbage collection on the bottom. In a two-
space collector, the heap is divided into two parts, the FromSpace and the
ToSpace. Initially, all allocations go to the FromSpace until there is not
enough room for the next allocation request. At that point, the garbage
collector goes to work to make more room.

1The R3 language does not have looping or recursive function, so it is nigh impossible
to write a program in R3 that will run out of memory. However, we add recursive functions
in the next Chapter!

64 5. TUPLES AND GARBAGE COLLECTION

(define primitives (set ... ’vector ’vector-ref ’vector-set!))

(define (interp-op op)
(match op

...
[’vector vector]
[’vector-ref vector-ref]
[’vector-set! vector-set!]
[else (error ’interp-op "unknown␣operator")]))

(define (interp-R3 env)
(lambda (e)
(match e
...
[else (error ’interp-R3 "unrecognized␣expression")]
)))

Figure 5.3: Interpreter for the R3 language.

The garbage collector must be careful not to reclaim tuples that will be
used by the program in the future. Of course, it is impossible in general to
predict what a program will do, but we can overapproximate the will-be-
used tuples by preserving all tuples that could be accessed by any program
given the current computer state. A program could access any tuple whose
address is in a register or on the procedure call stack. These addresses are
called the root set. In addition, a program could access any tuple that is
transitively reachable from the root set. Thus, it is safe for the garbage
collector to reclaim the tuples that are not reachable in this way. 2

So the goal of the garbage collector is twofold:

1. preserve all tuple that are reachable from the root set via a path of
pointers, that is, the live tuples, and

2. reclaim the memory of everything else, that is, the garbage.

A copying collector accomplishes this by copying all of the live objects into
the ToSpace and then performs a slight of hand, treating the ToSpace as
the new FromSpace and the old FromSpace as the new ToSpace. In the
example of Figure 5.5, there are three pointers in the root set, one in a

2The sitation in Figure 5.5, with a cycle, cannot be created by a well-typed program in
R3. However, creating cycles will be possible once we get to R6. We design the garbage
collector to deal with cycles to begin with, so we will not need to revisit this issue.

5.2. GARBAGE COLLECTION 65

(define (typecheck-R3 env)
(lambda (e)
(match e
...
[’(void) (values ’(has-type (void) Void) ’Void)]
[‘(vector ,(app (type-check env) e* t*) ...)
(let ([t ‘(Vector ,@t*)])
(values ‘(has-type (vector ,@e*) ,t) t))]

[‘(vector-ref ,(app (type-check env) e t) ,i)
(match t
[‘(Vector ,ts ...)
(unless (and (exact-nonnegative-integer? i)

(i . < . (length ts)))
(error ’type-check "invalid␣index␣~a" i))

(let ([t (list-ref ts i)])
(values ‘(has-type (vector-ref ,e (has-type ,i Integer)) ,t)

t))]
[else (error "expected␣a␣vector␣in␣vector-ref,␣not" t)])]

[‘(vector-set! ,(app (type-check env) e-vec^ t-vec) ,i
,(app (type-check env) e-arg^ t-arg))

(match t-vec
[‘(Vector ,ts ...)
(unless (and (exact-nonnegative-integer? i)

(i . < . (length ts)))
(error ’type-check "invalid␣index␣~a" i))

(unless (equal? (list-ref ts i) t-arg)
(error ’type-check "type␣mismatch␣in␣vector-set!␣~a␣~a"

(list-ref ts i) t-arg))
(values ‘(has-type (vector-set! ,e-vec^

(has-type ,i Integer)
,e-arg^) Void) ’Void)]

[else (error ’type-check
"expected␣a␣vector␣in␣vector-set!,␣not␣~a" t-vec)])]

[‘(eq? ,(app (type-check env) e1 t1)
,(app (type-check env) e2 t2))

(match* (t1 t2)
[(‘(Vector ,ts1 ...) ‘(Vector ,ts2 ...))
(values ‘(has-type (eq? ,e1 ,e2) Boolean) ’Boolean)]
[(other wise) ((super type-check env) e)])]

)))

Figure 5.4: Type checker for the R3 language.

66 5. TUPLES AND GARBAGE COLLECTION

7 5

#t 42

4

8

3

5

6

2

Stack

Registers

1 #f …

9

#t
0

…

Heap
FromSpace ToSpace

7 5

#t 42

4

8

3

5

6

2

Stack

Registers

1 #f …

9

#t
0

…

Heap
FromSpace ToSpace

7 5

#t 42

4

8

3

Figure 5.5: A copying collector in action.

register and two on the stack. All of the live objects have been copied to
the ToSpace (the right-hand side of Figure 5.5) in a way that preserves the
pointer relationships. For example, the pointer in the register still points to
a 2-tuple whose first element is a 3-tuple and second element is a 2-tuple.
There are four tuples that are not reachable from the root set and therefore
do not get copied into the ToSpace.

There are many alternatives to copying collectors (and their older sib-
lings, the generational collectors) when its comes to garbage collection, such
as mark-and-sweep and reference counting. The strengths of copying col-
lectors are that allocation is fast (just a test and pointer increment), there
is no fragmentation, cyclic garbage is collected, and the time complexity of

5.2. GARBAGE COLLECTION 67

collection only depends on the amount of live data, and not on the amount of
garbage [?]. The main disadvantage of two-space copying collectors is that
they use a lot of space, though that problem is ameliorated in generational
collectors. Racket and Scheme programs tend to allocate many small objects
and generate a lot of garbage, so copying and generational collectors are a
good fit. Of course, garbage collection is an active research topic, especially
concurrent garbage collection [?]. Researchers are continuously developing
new techniques and revisiting old trade-offs [?????].

5.2.1 Graph Copying via Cheney’s Algorithm

Let us take a closer look at how the copy works. The allocated objects and
pointers can be viewed as a graph and we need to copy the part of the graph
that is reachable from the root set. To make sure we copy all of the reachable
vertices in the graph, we need an exhaustive graph traversal algorithm, such
as depth-first search or breadth-first search [??]. Recall that such algorithms
take into account the possibility of cycles by marking which vertices have
already been visited, so as to ensure termination of the algorithm. These
search algorithms also use a data structure such as a stack or queue as a
to-do list to keep track of the vertices that need to be visited. We shall use
breadth-first search and a trick due to ? for simultaneously representing the
queue and copying tuples into the ToSpace.

Figure 5.6 shows several snapshots of the ToSpace as the copy progresses.
The queue is represented by a chunk of contiguous memory at the beginning
of the ToSpace, using two pointers to track the front and the back of the
queue. The algorithm starts by copying all tuples that are immediately
reachable from the root set into the ToSpace to form the initial queue.
When we copy a tuple, we mark the old tuple to indicate that it has been
visited. (We discuss the marking in Section 5.2.2.) Note that any pointers
inside the copied tuples in the queue still point back to the FromSpace. Once
the initial queue has been created, the algorithm enters a loop in which it
repeatedly processes the tuple at the front of the queue and pops it off
the queue. To process a tuple, the algorithm copies all the tuple that are
directly reachable from it to the ToSpace, placing them at the back of the
queue. The algorithm then updates the pointers in the popped tuple so
they point to the newly copied tuples. Getting back to Figure 5.6, in the
first step we copy the tuple whose second element is 42 to the back of the
queue. The other pointer goes to a tuple that has already been copied, so
we do not need to copy it again, but we do need to update the pointer to
the new location. This can be accomplished by storing a forwarding pointer

68 5. TUPLES AND GARBAGE COLLECTION

to the new location in the old tuple, back when we initially copied the tuple
into the ToSpace. This completes one step of the algorithm. The algorithm
continues in this way until the front of the queue is empty, that is, until the
front catches up with the back.

5.2.2 Data Representation

The garbage collector places some requirements on the data representations
used by our compiler. First, the garbage collector needs to distinguish be-
tween pointers and other kinds of data. There are several ways to accomplish
this.

1. Attached a tag to each object that identifies what type of object it
is [?].

2. Store different types of objects in different regions [?].

3. Use type information from the program to either generate type-specific
code for collecting or to generate tables that can guide the collec-
tor [???].

Dynamically typed languages, such as Lisp, need to tag objects anyways, so
option 1 is a natural choice for those languages. However, R3 is a statically
typed language, so it would be unfortunate to require tags on every object,
especially small and pervasive objects like integers and Booleans. Option
3 is the best-performing choice for statically typed languages, but comes
with a relatively high implementation complexity. To keep this chapter to a
2-week time budget, we recommend a combination of options 1 and 2, with
separate strategies used for the stack and the heap.

Regarding the stack, we recommend using a separate stack for point-
ers [???], which we call a root stack (a.k.a. “shadow stack”). That is, when
a local variable needs to be spilled and is of type (Vector type1 . . . typen),
then we put it on the root stack instead of the normal procedure call stack.
Furthermore, we always spill vector-typed variables if they are live during
a call to the collector, thereby ensuring that no pointers are in registers
during a collection. Figure 5.7 reproduces the example from Figure 5.5 and
contrasts it with the data layout using a root stack. The root stack contains
the two pointers from the regular stack and also the pointer in the second
register.

The problem of distinguishing between pointers and other kinds of data
also arises inside of each tuple. We solve this problem by attaching a tag,
an extra 64-bits, to each tuple. Figure 5.8 zooms in on the tags for two of

5.2. GARBAGE COLLECTION 69

7 5 4

scan
pointer

free
pointer

7 5 4

scan
pointer

free
pointer

#t 42

7 5 4

scan
pointer

free
pointer

#t 42 3

7 5 4

scan
pointer

free
pointer

#t 42 3 8

7 5 4

scan
pointer

free
pointer

#t 42 3 8

Figure 5.6: Depiction of the Cheney algorithm copying the live tuples.

70 5. TUPLES AND GARBAGE COLLECTION

Stack

Registers

1 #f …

9
#t
0
…

Root Stack
7 5

4

Heap

Figure 5.7: Maintaining a root stack to facilitate garbage collection.

the tuples in the example from Figure 5.5. Note that we have drawn the
bits in a big-endian way, from right-to-left, with bit location 0 (the least
significant bit) on the far right, which corresponds to the directionality of
the x86 shifting instructions salq (shift left) and sarq (shift right). Part of
each tag is dedicated to specifying which elements of the tuple are pointers,
the part labeled “pointer mask”. Within the pointer mask, a 1 bit indicates
there is a pointer and a 0 bit indicates some other kind of data. The pointer
mask starts at bit location 7. We have limited tuples to a maximum size
of 50 elements, so we just need 50 bits for the pointer mask. The tag also
contains two other pieces of information. The length of the tuple (number of
elements) is stored in bits location 1 through 6. Finally, the bit at location
0 indicates whether the tuple has yet to be copied to the ToSpace. If the
bit has value 1, then this tuple has not yet been copied. If the bit has value
0 then the entire tag is in fact a forwarding pointer. (The lower 3 bits of an
pointer are always zero anyways because our tuples are 8-byte aligned.)

5.2.3 Implementation of the Garbage Collector

The implementation of the garbage collector needs to do a lot of bit-level
data manipulation and we need to link it with our compiler-generated x86
code. Thus, we recommend implementing the garbage collector in C [?]
and putting the code in the runtime.c file. Figure 5.9 shows the interface
to the garbage collector. The initialize function creates the FromSpace,
ToSpace, and root stack. The initialize function is meant to be called

5.2. GARBAGE COLLECTION 71

unused pointer mask vector length

forwarding

101000011…

7 5

111000000… 1

Figure 5.8: Representation for tuples in the heap.

void initialize(uint64_t rootstack_size, uint64_t heap_size);
void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
int64_t* free_ptr;
int64_t* fromspace_begin;
int64_t* fromspace_end;
int64_t** rootstack_begin;

Figure 5.9: The compiler’s interface to the garbage collector.

near the beginning of main, before the rest of the program executes. The
initialize function puts the address of the beginning of the FromSpace
into the global variable free_ptr. The global fromspace_end points to the
address that is 1-past the last element of the FromSpace. (We use half-open
intervals to represent chunks of memory [?].) The rootstack_begin global
points to the first element of the root stack.

As long as there is room left in the FromSpace, your generated code can
allocate tuples simply by moving the free_ptr forward. The amount of
room left in FromSpace is the difference between the fromspace_end and
the free_ptr. The collect function should be called when there is not
enough room left in the FromSpace for the next allocation. The collect
function takes a pointer to the current top of the root stack (one past the last
item that was pushed) and the number of bytes that need to be allocated.
The collect function performs the copying collection and leaves the heap
in a state such that the next allocation will succeed.

Exercise 20. In the file runtime.c you will find the implementation of
initialize and a partial implementation of collect. The collect func-

72 5. TUPLES AND GARBAGE COLLECTION

tion calls another function, cheney, to perform the actual copy, and that
function is left to the reader to implement. The following is the prototype
for cheney.

static void cheney(int64_t** rootstack_ptr);

The parameter rootstack_ptr is a pointer to the top of the rootstack (which
is an array of pointers). The cheney function also communicates with
collect through several global variables, the fromspace_begin and fromspace_end
mentioned in Figure 5.9 as well as the pointers for the ToSpace:

static int64_t* tospace_begin;
static int64_t* tospace_end;

The job of the cheney function is to copy all the live objects (reachable from
the root stack) into the ToSpace, update free_ptr to point to the next unused
spot in the ToSpace, update the root stack so that it points to the objects in
the ToSpace, and finally to swap the global pointers for the FromSpace and
ToSpace.

5.3 Compiler Passes
The introduction of garbage collection has a non-trivial impact on our com-
piler passes. We introduce one new compiler pass called expose-allocation
and make non-trivial changes to type-check, flatten, select-instructions,
allocate-registers, and print-x86. The following program will serve as
our running example. It creates two tuples, one nested inside the other.
Both tuples have length one. The example then accesses the element in the
inner tuple tuple via two vector references.

(vector-ref (vector-ref (vector (vector 42)) 0) 0))

We already discuss the changes to type-check in Section 5.1, including
the addition of has-type, so we proceed to discuss the new expose-allocation
pass.

5.3.1 Expose Allocation (New)

The pass expose-allocation lowers the vector creation form into a con-
ditional call to the collector followed by the allocation. We choose to place
the expose-allocation pass before flatten because expose-allocation
introduces new variables, which can be done locally with let, but let is
gone after flatten. In the following, we show the transformation for the
vector form into let-bindings for the intializing expressions, by a conditional

5.3. COMPILER PASSES 73

collect, an allocate, and the initialization of the vector. (The len is the
length of the vector and bytes is how many total bytes need to be allocated
for the vector, which is 8 for the tag plus len times 8.)
(has-type (vector e0 . . . en−1) type)

=⇒
(let ([x0 e0]) ... (let ([xn−1 en−1])
(let ([_ (if (< (+ (global-value free_ptr) bytes)

(global-value fromspace_end))
(void)
(collect bytes))])

(let ([v (allocate len type)])
(let ([_ (vector-set! v 0 x0)]) ...
(let ([_ (vector-set! v n− 1 xn−1)])

v) ...)))) ...)

(In the above, we suppressed all of the has-type forms in the output
for the sake of readability.) The ordering of the initializing expressions
(e0, . . . , en−1) prior to the allocate is important, as those expressions may
trigger garbage collection and we do not want an allocated but uninitialized
tuple to be present during a garbage collection.

The output of expose-allocation is a language that extends R3 with
the three new forms that we use above in the translation of vector.

exp ::= · · · | (collect int) | (allocate int type) | (global-valuename)

Figure 5.10 shows the output of the expose-allocation pass on our
running example.

74 5. TUPLES AND GARBAGE COLLECTION

(program (type Integer)
(vector-ref
(vector-ref
(let ((vecinit32990

(let ([vecinit32986 42])
(let ((collectret32988

(if (< (+ (global-value free_ptr) 16)
(global-value fromspace_end))

(void)
(collect 16))))

(let ([alloc32985
(allocate 1 (Vector Integer))])

(let ([initret32987
(vector-set! alloc32985 0 vecinit32986)])

alloc32985))))))
(let ([collectret32992

(if (< (+ (global-value free_ptr) 16)
(global-value fromspace_end))

(void)
(collect 16))])

(let ([alloc32989 (allocate 1 (Vector (Vector Integer)))])
(let ([initret32991 (vector-set! alloc32989 0 vecinit32990)])
alloc32989))))

0)
0))

Figure 5.10: Output of the expose-allocation pass, minus all of the
has-type forms.

5.3. COMPILER PASSES 75

arg ::= int | var | #t | #f
cmp ::= eq? | < | <= | > | >=
exp ::= arg | (read) | (- arg) | (+ arg arg) | (not arg) | (cmp arg arg)

| (allocate int type) | (vector-ref arg int)
| (vector-set! arg int arg) | (global-valuename) | (void)

stmt ::= (assign var exp) | (return arg)
| (if (cmp arg arg) stmt∗ stmt∗)
| (collect int)

C2 ::= (program (var∗) (type type) stmt+)

Figure 5.11: The C2 language, extending C1 with support for tuples.

5.3.2 Flatten and the C2 intermediate language

The output of flatten is a program in the intermediate language C2, whose
syntax is defined in Figure 5.11. The new forms of C2 include the expres-
sions allocate, vector-ref, and vector-set!, and global-value and the
statement collect. The flatten pass can treat these new forms much like
the other forms.

Recall that the flatten function collects all of the local variables so that
it can decorate the program form with them. Also recall that we need to
know the types of all the local variables for purposes of identifying the root
set for the garbage collector. Thus, we change flatten to collect not just
the variables, but the variables and their types in the form of an association
list. Thanks to the has-type forms, the types are readily available. For
example, consider the translation of the let form.
(let ([x (has-type rhs type)]) body)

=⇒
(values body′

(ss1 (assign x rhs′) ss2)
((x . type) xt1 xt2))

where rhs′, ss1 , and xs1 are the results of recursively flattening rhs and
body′, ss2 , and xs2 are the results of recursively flattening body. The output
on our running example is shown in Figure 5.12.

76 5. TUPLES AND GARBAGE COLLECTION

’(program
((tmp02 . Integer) (tmp01 Vector Integer) (tmp90 Vector Integer)
(tmp86 . Integer) (tmp88 . Void) (tmp96 . Void)
(tmp94 . Integer) (tmp93 . Integer) (tmp95 . Integer)
(tmp85 Vector Integer) (tmp87 . Void) (tmp92 . Void)
(tmp00 . Void) (tmp98 . Integer) (tmp97 . Integer)
(tmp99 . Integer) (tmp89 Vector (Vector Integer))
(tmp91 . Void))
(type Integer)
(assign tmp86 42)
(assign tmp93 (global-value free_ptr))
(assign tmp94 (+ tmp93 16))
(assign tmp95 (global-value fromspace_end))
(if (< tmp94 tmp95)
((assign tmp96 (void)))
((collect 16) (assign tmp96 (void))))

(assign tmp88 tmp96)
(assign tmp85 (allocate 1 (Vector Integer)))
(assign tmp87 (vector-set! tmp85 0 tmp86))
(assign tmp90 tmp85)
(assign tmp97 (global-value free_ptr))
(assign tmp98 (+ tmp97 16))
(assign tmp99 (global-value fromspace_end))
(if (< tmp98 tmp99)
((assign tmp00 (void)))
((collect 16) (assign tmp00 (void))))

(assign tmp92 tmp00)
(assign tmp89 (allocate 1 (Vector (Vector Integer))))
(assign tmp91 (vector-set! tmp89 0 tmp90))
(assign tmp01 (vector-ref tmp89 0))
(assign tmp02 (vector-ref tmp01 0))
(return tmp02))

Figure 5.12: Output of flatten for the running example.

5.3. COMPILER PASSES 77

5.3.3 Select Instructions

In this pass we generate x86 code for most of the new operations that
were needed to compile tuples, including allocate, collect, vector-ref,
vector-set!, and (void). We postpone global-value to print-x86.

The vector-ref and vector-set! forms translate into movq instruc-
tions with the appropriate deref. (The plus one is to get past the tag at
the beginning of the tuple representation.)

(assign lhs (vector-ref vec n))
=⇒
(movq vec′ (reg r11))
(movq (deref r11 8(n + 1)) lhs)

(assign lhs (vector-set! vec n arg))
=⇒
(movq vec′ (reg r11))
(movq arg′ (deref r11 8(n + 1)))
(movq (int 0) lhs)

The vec′ and arg′ are obtained by recursively processing vec and arg. The
move of vec′ to register r11 ensures that offsets are only performed with
register operands. This requires removing r11 from consideration by the
register allocating.

We compile the allocate form to operations on the free_ptr, as shown
below. The address in the free_ptr is the next free address in the FromSpace,
so we move it into the lhs and then move it forward by enough space for the
tuple being allocated, which is 8(len + 1) bytes because each element is 8
bytes (64 bits) and we use 8 bytes for the tag. Last but not least, we initialize
the tag. Refer to Figure 5.8 to see how the tag is organized. We recommend
using the Racket operations bitwise-ior and arithmetic-shift to com-
pute the tag. The type annoation in the vector form is used to determine
the pointer mask region of the tag.

(assign lhs (allocate len (Vector type . . .)))
=⇒
(movq (global-value free_ptr) lhs′)
(addq (int 8(len + 1)) (global-value free_ptr))
(movq lhs′ (reg r11))
(movq (int tag) (deref r11 0))

The collect form is compiled to a call to the collect function in the
runtime. The arguments to collect are the top of the root stack and the
number of bytes that need to be allocated. We shall use a dedicated register,

78 5. TUPLES AND GARBAGE COLLECTION

arg ::= (int int) | (reg register) | (deref register int)
| (byte-reg register) | (global-value name)

cc ::= e | l | le | g | ge
instr ::= (addq arg arg) | (subq arg arg) | (negq arg) | (movq arg arg)

| (callq label) | (pushq arg) | (popq arg) | (retq)
| (xorq arg arg) | (cmpq arg arg) | (setcc arg)
| (movzbq arg arg) | (jmp label) | (jcc label) | (label label)

x862 ::= (program info (type type) instr+)

Figure 5.13: The x862 language (extends x861 of Figure 4.5).

r15, to store the pointer to the top of the root stack. So r15 is not available
for use by the register allocator.

(collect bytes)
=⇒
(movq (reg 15) (reg rdi))
(movq bytes (reg rsi))
(callq collect)

The syntax of the x862 language is defined in Figure 5.13. It differs from
x861 just in the addition of the form for global variables. Figure 5.14 shows
the output of the select-instructions pass on the running example.

5.3. COMPILER PASSES 79

(program
((tmp02 . Integer) (tmp01 Vector Integer) (tmp90 Vector Integer)
(tmp86 . Integer) (tmp88 . Void) (tmp96 . Void) (tmp94 . Integer)
(tmp93 . Integer) (tmp95 . Integer) (tmp85 Vector Integer)
(tmp87 . Void) (tmp92 . Void) (tmp00 . Void) (tmp98 . Integer)
(tmp97 . Integer) (tmp99 . Integer) (tmp89 Vector (Vector Integer))
(tmp91 . Void)) (type Integer)
(movq (int 42) (var tmp86))
(movq (global-value free_ptr) (var tmp93))
(movq (var tmp93) (var tmp94))
(addq (int 16) (var tmp94))
(movq (global-value fromspace_end) (var tmp95))
(if (< (var tmp94) (var tmp95))
((movq (int 0) (var tmp96)))
((movq (reg r15) (reg rdi))
(movq (int 16) (reg rsi))
(callq collect)
(movq (int 0) (var tmp96))))

(movq (var tmp96) (var tmp88))
(movq (global-value free_ptr) (var tmp85))
(addq (int 16) (global-value free_ptr))
(movq (var tmp85) (reg r11))
(movq (int 3) (deref r11 0))
(movq (var tmp85) (reg r11))
(movq (var tmp86) (deref r11 8))
(movq (int 0) (var tmp87))
(movq (var tmp85) (var tmp90))
(movq (global-value free_ptr) (var tmp97))
(movq (var tmp97) (var tmp98))
(addq (int 16) (var tmp98))
(movq (global-value fromspace_end) (var tmp99))
(if (< (var tmp98) (var tmp99))
((movq (int 0) (var tmp00)))
((movq (reg r15) (reg rdi))
(movq (int 16) (reg rsi))
(callq collect)
(movq (int 0) (var tmp00))))

(movq (var tmp00) (var tmp92))
(movq (global-value free_ptr) (var tmp89))
(addq (int 16) (global-value free_ptr))
(movq (var tmp89) (reg r11))
(movq (int 131) (deref r11 0))
(movq (var tmp89) (reg r11))
(movq (var tmp90) (deref r11 8))
(movq (int 0) (var tmp91))
(movq (var tmp89) (reg r11))
(movq (deref r11 8) (var tmp01))
(movq (var tmp01) (reg r11))
(movq (deref r11 8) (var tmp02))
(movq (var tmp02) (reg rax)))

Figure 5.14: Output of the select-instructions pass.

80 5. TUPLES AND GARBAGE COLLECTION

5.3.4 Register Allocation

As discussed earlier in this chapter, the garbage collector needs to access all
the pointers in the root set, that is, all variables that are vectors. It will be
the responsibility of the register allocator to make sure that:

1. the root stack is used for spilling vector-typed variables, and

2. if a vector-typed variable is live during a call to the collector, it must
be spilled to ensure it is visible to the collector.

The later responsibility can be handled during construction of the in-
ference graph, by adding interference edges between the call-live vector-
typed variables and all the callee-save registers. (They already interfere
with the caller-save registers.) The type information for variables is in
the program form, so we recommend adding another parameter to the
build-interference function to communicate this association list.

The spilling of vector-typed variables to the root stack can be handled
after graph coloring, when choosing how to assign the colors (integers) to
registers and stack locations. The program output of this pass changes to
also record the number of spills to the root stack.

x862 ::= (program (stackSpills rootstackSpills) (type type) instr+)

5.3.5 Print x86

Figure 5.15 shows the output of the print-x86 pass on the running example.
In the prelude and conclusion of the main function, we treat the root stack
very much like the regular stack in that we move the root stack pointer (r15)
to make room for all of the spills to the root stack, except that the root stack
grows up instead of down. For the running example, there was just one spill
so we increment r15 by 8 bytes. In the conclusion we decrement r15 by 8
bytes.

One issue that deserves special care is that there may be a call to collect
prior to the initializing assignments for all the variables in the root stack.
We do not want the garbage collector to accidentaly think that some unini-
tialized variable is a pointer that needs to be followed. Thus, we zero-out
all locations on the root stack in the prelude of main. In Figure 5.15, the
instruction movq $0, (%r15) accomplishes this task. The garbage collector
tests each root to see if it is null prior to dereferencing it.

Figure 5.16 gives an overview of all the passes needed for the compilation
of R3.

5.3. COMPILER PASSES 81

.globl _main
_main:

pushq %rbp
movq %rsp, %rbp
pushq %r14
pushq %r13
pushq %r12
pushq %rbx
subq $0, %rsp
movq $16384, %rdi
movq $16, %rsi
callq _initialize
movq _rootstack_begin(%rip), %r15
movq $0, (%r15)
addq $8, %r15

movq $42, %rbx
movq _free_ptr(%rip), %rcx
addq $16, %rcx
movq _fromspace_end(%rip), %rdx
cmpq %rdx, %rcx
jl then33131
movq %r15, %rdi
movq $16, %rsi
callq _collect
movq $0, %rcx
jmp if_end33132

then33131:
movq $0, %rcx

if_end33132:
movq _free_ptr(%rip), %rcx
addq $16, _free_ptr(%rip)
movq %rcx, %r11
movq $3, 0(%r11)
movq %rcx, %r11
movq %rbx, 8(%r11)
movq $0, %rbx
movq %rcx, -8(%r15)
movq _free_ptr(%rip), %rbx
movq %rbx, %rcx
addq $16, %rcx
movq _fromspace_end(%rip), %rbx
cmpq %rbx, %rcx
jl then33133
movq %r15, %rdi
movq $16, %rsi
callq _collect
movq $0, %rbx
jmp if_end33134

then33133:
movq $0, %rbx

if_end33134:
movq _free_ptr(%rip), %rbx
addq $16, _free_ptr(%rip)
movq %rbx, %r11
movq $131, 0(%r11)
movq %rbx, %r11
movq -8(%r15), %rax
movq %rax, 8(%r11)
movq $0, %rcx
movq %rbx, %r11
movq 8(%r11), %rbx
movq %rbx, %r11
movq 8(%r11), %rbx
movq %rbx, %rax

movq %rax, %rdi
callq _print_int
movq $0, %rax
subq $8, %r15
addq $0, %rsp
popq %rbx
popq %r12
popq %r13
popq %r14
popq %rbp
retq

Figure 5.15: Output of the print-x86 pass.

82 5. TUPLES AND GARBAGE COLLECTION

R3 R3 R3

C2C2

x86∗ x86∗ x86∗ x86

x86†x86∗ x86∗

typecheck uniquify

flatten
expose-alloc.

select-instr.

uncover-live

build-inter.

allocate-reg.

lower-cond. patch-instr.

print-x86

Figure 5.16: Diagram of the passes for R3, a language with tuples.

6

Functions

This chapter studies the compilation of functions (aka. procedures) at the
level of abstraction of the C language. This corresponds to a subset of
Typed Racket in which only top-level function definitions are allowed. This
abstraction level is an important stepping stone to implementing lexically-
scoped functions in the form of lambda abstractions (Chapter 7).

6.1 The R4 Language
The syntax for function definitions and function application (aka. function
call) is shown in Figure 6.1, where we define the R4 language. Programs
in R4 start with zero or more function definitions. The function names
from these definitions are in-scope for the entire program, including all other
function definitions (so the ordering of function definitions does not matter).

Functions are first-class in the sense that a function pointer is data and
can be stored in memory or passed as a parameter to another function.
Thus, we introduce a function type, written

(type1 · · · typen -> typer)

for a function whose n parameters have the types type1 through typen and
whose return type is typer. The main limitation of these functions (with
respect to Racket functions) is that they are not lexically scoped. That is,
the only external entities that can be referenced from inside a function body
are other globally-defined functions. The syntax of R4 prevents functions
from being nested inside each other; they can only be defined at the top
level.

The program in Figure 6.2 is a representative example of defining and
using functions in R4. We define a function map-vec that applies some other

83

84 6. FUNCTIONS

type ::= Integer | Boolean | (Vector type+) | Void | (type∗ -> type)
cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp int)
| (vector-set! exp int exp) | (void)
| (exp exp∗)

def ::= (define (var [var:type]∗):type exp)
R4 ::= (program def ∗ exp)

Figure 6.1: Syntax of R4, extending R3 with functions.

(program
(define (map-vec [f : (Integer -> Integer)]

[v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))
(define (add1 [x : Integer]) : Integer
(+ x 1))

(vector-ref (map-vec add1 (vector 0 41)) 1)
)

Figure 6.2: Example of using functions in R4.

function f to both elements of a vector (a 2-tuple) and returns a new vector
containing the results. We also define a function add1 that does what its
name suggests. The program then applies map-vec to add1 and (vector 0
41). The result is (vector 1 42), from which we return the 42.

The definitional interpreter for R4 is in Figure 6.3.

6.2 Functions in x86
The x86 architecture provides a few features to support the implementation
of functions. We have already seen that x86 provides labels so that one can
refer to the location of an instruction, as is needed for jump instructions.
Labels can also be used to mark the beginning of the instructions for a
function. Going further, we can obtain the address of a label by using the

6.2. FUNCTIONS IN X86 85

(define (interp-R4 env)
(lambda (e)
(match e

....
[‘(define (,f [,xs : ,ps] ...) : ,rt ,body)
(cons f ‘(lambda ,xs ,body))]
[‘(program ,ds ... ,body)
(let ([top-level (map (interp-R4 ’()) ds)])

((interp-R4 top-level) body))]
[‘(,fun ,args ...)
(define arg-vals (map (interp-R4 env) args))
(define fun-val ((interp-R4 env) fun))
(match fun-val

[‘(lambda (,xs ...) ,body)
(define new-env (append (map cons xs arg-vals) env))
((interp-R4 new-env) body)]

[else (error "interp-R4,␣expected␣function,␣not" fun-val)]))]
[else (error ’interp-R4 "unrecognized␣expression")]
)))

Figure 6.3: Interpreter for the R4 language.

leaq instruction and rip-relative addressing. For example, the following
puts the address of the add1 label into the rbx register.

leaq add1(%rip), %rbx

In Sections 2.2 and 2.6 we saw the use of the callq instruction for
jumping to a function as specified by a label. The use of the instruction
changes slightly if the function is specified by an address in a register, that
is, an indirect function call. The x86 syntax is to give the register name
prefixed with an asterisk.

callq *%rbx

The x86 architecture does not directly support passing arguments to
functions; instead we use a combination of registers and stack locations for
passing arguments, following the conventions used by gcc as described by ?.
Up to six arguments may be passed in registers, using the registers rdi, rsi,
rdx, rcx, r8, and r9, in that order. If there are more than six arguments,
then the rest must be placed on the stack, which we call stack arguments,
which we discuss in later paragraphs. The register rax is for the return
value of the function.

86 6. FUNCTIONS

Recall from Section 2.2 that the stack is also used for local variables and
for storing the values of callee-save registers (we shall refer to all of these
collectively as “locals”), and that at the beginning of a function we move the
stack pointer rsp down to make room for them. To make additional room
for passing arguments, we shall move the stack pointer even further down.
We count how many stack arguments are needed for each function call that
occurs inside the body of the function and find their maximum. Adding this
number to the number of locals gives us how much the rsp should be moved
at the beginning of the function. In preparation for a function call, we offset
from rsp to set up the stack arguments. We put the first stack argument in
0(%rsp), the second in 8(%rsp), and so on.

Upon calling the function, the stack arguments are retrieved by the callee
using the base pointer rbp. The address 16(%rbp) is the location of the first
stack argument, 24(%rbp) is the address of the second, and so on. Figure 6.4
shows the layout of the caller and callee frames. Notice how important it
is that we correctly compute the maximum number of arguments needed
for function calls; if that number is too small then the arguments and local
variables will smash into each other!

As discussed in Section 3.4, an x86 function is responsible for following
conventions regarding the use of registers: the caller should assume that all
the caller save registers get overwritten with arbitrary values by the callee.
Thus, the caller should either 1) not put values that are live across a call in
caller save registers, or 2) save and restore values that are live across calls.
We shall recommend option 1). On the flip side, if the callee wants to use
a callee save register, the callee must arrange to put the original value back
in the register prior to returning to the caller.

6.3 The compilation of functions

Now that we have a good understanding of functions as they appear in R4
and the support for functions in x86, we need to plan the changes to our
compiler, that is, do we need any new passes and/or do we need to change
any existing passes? Also, do we need to add new kinds of AST nodes to
any of the intermediate languages?

To begin with, the syntax of R4 is inconvenient for purposes of compila-
tion because it conflates the use of function names and local variables and
it conflates the application of primitive operations and the application of
functions. This is a problem because we need to compile the use of a func-
tion name differently than the use of a local variable; we need to use leaq to

6.3. THE COMPILATION OF FUNCTIONS 87

Caller View Callee View Contents Frame
8(%rbp) return address

Caller
0(%rbp) old rbp
-8(%rbp) local 1

.
−8k(%rbp) local k

8n− 8(%rsp) 8n + 8(%rbp) argument n
.

0(%rsp) 16(%rbp) argument 1
8(%rbp) return address

Callee
0(%rbp) old rbp
-8(%rbp) local 1

.
−8m(%rsp) local m

Figure 6.4: Memory layout of caller and callee frames.

type ::= Integer | Boolean | (Vector type+) | Void | (type∗ -> type)
exp ::= int | (read) | (- exp) | (+ exp exp)

| (function-ref label) | var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp int)
| (vector-set! exp int exp) | (void)
| (app exp exp∗)

def ::= (define (label [var:type]∗):type exp)
F1 ::= (program def ∗ exp)

Figure 6.5: The F1 language, an extension of R3 (Figure 5.2).

88 6. FUNCTIONS

arg ::= int | var | #t | #f | (function-ref label)
cmp ::= eq? | < | <= | > | >=
exp ::= arg | (read) | (- arg) | (+ arg arg) | (not arg) | (cmp arg arg)

| (vector arg+) | (vector-ref arg int)
| (vector-set! arg int arg)
| (app arg arg∗)

stmt ::= (assign var exp) | (return arg)
| (if (cmp arg arg) stmt∗ stmt∗)
| (initialize int int)
| (if (collection-needed? int) stmt∗ stmt∗)
| (collect int) | (allocate int)
| (call-live-roots (var∗) stmt∗)

def ::= (define (label [var:type]∗):type stmt+)
C3 ::= (program (var∗) (type type) (defines def ∗) stmt+)

Figure 6.6: The C3 language, extending C2 with functions.

move the function name to a register. Similarly, the application of a function
is going to require a complex sequence of instructions, unlike the primitive
operations. Thus, it is a good idea to create a new pass that changes func-
tion references from just a symbol f to (function-ref f) and that changes
function application from (e0 e1 . . . en) to the explicitly tagged AST (app
e0 e1 . . . en). A good name for this pass is reveal-functions and the out-
put language, F1, is defined in Figure 6.5. Placing this pass after uniquify
is a good idea, because it will make sure that there are no local variables and
functions that share the same name. On the other hand, reveal-functions
needs to come before the flatten pass because flatten will help us compile
function-ref. Figure 6.6 defines the syntax for C3, the output of flatten.

Because each function-ref needs to eventually become an leaq in-
struction, it first needs to become an assignment statement so there is a
left-hand side in which to put the result. This can be handled easily in
the flatten pass by categorizing function-ref as a complex expression.
Then, in the select-instructions pass, an assignment of function-ref
becomes a leaq instruction as follows:

(assign lhs (function-ref f)) ⇒ (leaq (function-ref f) lhs)

The output of select instructions is a program in the x863 language, whose
syntax is defined in Figure 6.7.

6.3. THE COMPILATION OF FUNCTIONS 89

arg ::= (int int) | (reg register) | (deref register int) | (byte-reg register)
| (global-value name)

cc ::= e | l | le | g | ge
instr ::= (addq arg arg) | (subq arg arg) | (negq arg) | (movq arg arg)

| (callq label) | (pushq arg) | (popq arg) | (retq)
| (xorq arg arg) | (cmpq arg arg) | (setcc arg)
| (movzbq arg arg) | (jmp label) | (jcc label) | (label label)
| (indirect-callq arg) | (leaq arg arg)

def ::= (define (label) int info stmt+)
x863 ::= (program info (type type) (defines def ∗) instr+)

Figure 6.7: The x863 language (extends x862 of Figure 5.13).

Next we consider compiling function definitions. The flatten pass
should handle function definitions a lot like a program node; after all, the
program node represents the main function. So the flatten pass, in addi-
tion to flattening the body of the function into a sequence of statements,
should record the local variables in the var∗ field as shown below.

(define (f [xs : ts]∗) : rt (var∗) stmt+)

In the select-instructions pass, we need to encode the parameter pass-
ing in terms of the conventions discussed in Section 6.2. So depending on
the length of the parameter list xs, some of them may be in registers and
some of them may be on the stack. I recommend generating movq instruc-
tions to move the parameters from their registers and stack locations into
the variables xs, then let register allocation handle the assignment of those
variables to homes. After this pass, the xs can be added to the list of local
variables. As mentioned in Section 6.2, we need to find out how far to move
the stack pointer to ensure we have enough space for stack arguments in all
the calls inside the body of this function. This pass is a good place to do
this and store the result in the maxStack field of the output define shown
below.
(define (f) numParams (var∗ maxStack) instr+)

Next, consider the compilation of function applications, which have the
following form at the start of select-instructions.
(assign lhs (app fun args . . .))

In the mirror image of handling the parameters of function definitions, some
of the arguments args need to be moved to the argument passing registers

90 6. FUNCTIONS

and the rest should be moved to the appropriate stack locations, as discussed
in Section 6.2. As you’re generating the code for parameter passing, take
note of how many stack arguments are needed for purposes of computing
the maxStack discussed above.

Once the instructions for parameter passing have been generated, the
function call itself can be performed with an indirect function call, for which
I recommend creating the new instruction indirect-callq. Of course, the
return value from the function is stored in rax, so it needs to be moved into
the lhs.
(indirect-callq fun)
(movq (reg rax) lhs)

The rest of the passes need only minor modifications to handle the
new kinds of AST nodes: function-ref, indirect-callq, and leaq. In-
side uncover-live, when computing the W set (written variables) for an
indirect-callq instruction, I recommend including all the caller save reg-
isters, which will have the affect of making sure that no caller save register
actually needs to be saved. In patch-instructions, you should deal with
the x86 idiosyncrasy that the destination argument of leaq must be a reg-
ister.

For the print-x86 pass, I recommend the following translations:
(function-ref label) ⇒ label(%rip)
(indirect-callq arg) ⇒ callq *arg

For function definitions, the print-x86 pass should add the code for saving
and restoring the callee save registers, if you haven’t already done that.

6.4 An Example Translation
Figure 6.8 shows an example translation of a simple function in R4 to x86.
The figure includes the results of the flatten and select-instructions
passes. Can you see any ways to improve the translation?

Exercise 21. Expand your compiler to handle R4 as outlined in this section.
Create 5 new programs that use functions, including examples that pass
functions and return functions from other functions, and test your compiler
on these new programs and all of your previously created test programs.

6.4. AN EXAMPLE TRANSLATION 91

(program
(define (add [x : Integer]

[y : Integer])
: Integer (+ x y))

(add 40 2))

⇓
(program (t.1 t.2)
(defines
(define (add.1 [x.1 : Integer]

[y.1 : Integer])
: Integer (t.3)
(assign t.3 (+ x.1 y.1))
(return t.3)))

(assign t.1 (function-ref add.1))
(assign t.2 (app t.1 40 2))
(return t.2))

⇓
(program ((rs.1 t.1 t.2) 0)
(type Integer)
(defines
(define (add28545) 3

((rs.2 x.2 y.3 t.4) 0)
(movq (reg rdi) (var rs.2))
(movq (reg rsi) (var x.2))
(movq (reg rdx) (var y.3))
(movq (var x.2) (var t.4))
(addq (var y.3) (var t.4))
(movq (var t.4) (reg rax))))

(movq (int 16384) (reg rdi))
(movq (int 16) (reg rsi))
(callq initialize)
(movq (global-value rootstack_begin)

(var rs.1))
(leaq (function-ref add28545) (var t.1))
(movq (var rs.1) (reg rdi))
(movq (int 40) (reg rsi))
(movq (int 2) (reg rdx))
(indirect-callq (var t.1))
(movq (reg rax) (var t.2))
(movq (var t.2) (reg rax)))

⇓
.globl add28545

add28545:
pushq %rbp
movq %rsp, %rbp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbx
subq $8, %rsp
movq %rdi, %rbx
movq %rsi, %rbx
movq %rdx, %rcx
addq %rcx, %rbx
movq %rbx, %rax
addq $8, %rsp
popq %rbx
popq %r12
popq %r13
popq %r14
popq %r15
popq %rbp
retq

.globl _main
_main:

pushq %rbp
movq %rsp, %rbp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbx
subq $8, %rsp
movq $16384, %rdi
movq $16, %rsi
callq _initialize
movq _rootstack_begin(%rip), %rcx
leaq add28545(%rip), %rbx
movq %rcx, %rdi
movq $40, %rsi
movq $2, %rdx
callq *%rbx
movq %rax, %rbx
movq %rbx, %rax
movq %rax, %rdi
callq _print_int
movq $0, %rax
addq $8, %rsp
popq %rbx
popq %r12
popq %r13
popq %r14
popq %r15
popq %rbp
retq

Figure 6.8: Example compilation of a simple function to x86.

92 6. FUNCTIONS

7

Lexically Scoped Functions

This chapter studies lexically scoped functions as they appear in functional
languages such as Racket. By lexical scoping we mean that a function’s body
may refer to variables whose binding site is outside of the function, in an
enclosing scope. Consider the example in Figure 7.1 featuring an anonymous
function defined using the lambda form. The body of the lambda, refers to
three variables: x, y, and z. The binding sites for x and y are outside of the
lambda. Variable y is bound by the enclosing let and x is a parameter of
f. The lambda is returned from the function f. Below the definition of f,
we have two calls to f with different arguments for x, first 5 then 3. The
functions returned from f are bound to variables g and h. Even though these
two functions were created by the same lambda, they are really different
functions because they use different values for x. Finally, we apply g to
11 (producing 20) and apply h to 15 (producing 22) so the result of this
program is 42.

(define (f [x : Integer]) : (Integer -> Integer)
(let ([y 4])

(lambda: ([z : Integer]) : Integer
(+ x (+ y z)))))

(let ([g (f 5)])
(let ([h (f 3)])
(+ (g 11) (h 15))))

Figure 7.1: Example of a lexically scoped function.

93

94 7. LEXICALLY SCOPED FUNCTIONS

type ::= Integer | Boolean | (Vector type+) | Void | (type∗ -> type)
exp ::= int | (read) | (- exp) | (+ exp exp)

| var | (let ([var exp]) exp) | #t | #f | (and exp exp) | (not exp)
| (eq? exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp int)
| (vector-set! exp int exp) | (void)
| (exp exp∗)
| (lambda: ([var:type]∗):type exp)

def ::= (define (var [var:type]∗):type exp)
R5 ::= (program def ∗ exp)

Figure 7.2: Syntax of R5, extending R4 with lambda.

7.1 The R5 Language
The syntax for this language with anonymous functions and lexical scoping,
R5, is defined in Figure 7.2. It adds the lambda form to the grammar for
R4, which already has syntax for function application. In this chapter we
shall descibe how to compile R5 back into R4, compiling lexically-scoped
functions into a combination of functions (as in R4) and tuples (as in R3).

We shall describe how to compile R5 to R4, replacing anonymous func-
tions with top-level function definitions. However, our compiler must provide
special treatment to variable occurences such as x and y in the body of the
lambda of Figure 7.1, for the functions of R4 may not refer to variables de-
fined outside the function. To identify such variable occurences, we review
the standard notion of free variable.

Definition 22. A variable is free with respect to an expression e if the
variable occurs inside e but does not have an enclosing binding in e.

For example, the variables x, y, and z are all free with respect to the
expression (+ x (+ y z)). On the other hand, only x and y are free with
respect to the following expression becuase z is bound by the lambda.

(lambda: ([z : Integer]) : Integer
(+ x (+ y z)))

Once we have identified the free variables of a lambda, we need to arrange
for some way to transport, at runtime, the values of those variables from
the point where the lambda was created to the point where the lambda is
applied. Referring again to Figure 7.1, the binding of x to 5 needs to be

7.2. INTERPRETING R5 95

5 4

x y
g

code

3 4

x y
h

Figure 7.3: Example closure representation for the lambda’s in Figure 7.1.

used in the application of g to 11, but the binding of x to 3 needs to be used
in the application of h to 15. The solution is to bundle the values of the
free variables together with the function pointer for the lambda’s code into a
data structure called a closure. Fortunately, we already have the appropriate
ingredients to make closures, Chapter 5 gave us tuples and Chapter 6 gave
us function pointers. The function pointer shall reside at index 0 and the
values for free variables will fill in the rest of the tuple. Figure 7.3 depicts
the two closures created by the two calls to f in Figure 7.1. Because the two
closures came from the same lambda, they share the same code but differ in
the values for free variable x.

7.2 Interpreting R5

Figure 7.4 shows the definitional interpreter for R5. There are several things
to worth noting. First, and most importantly, the match clause for lambda
saves the current environment inside the returned lambda. Then the clause
for app uses the environment from the lambda, the lam-env, when inter-
preting the body of the lambda. Of course, the lam-env environment is
extending with the mapping parameters to argument values. To enable mu-
tual recursion and allow a unified handling of functions created with lambda
and with define, the match clause for program includes a second pass over
the top-level functions to set their environments to be the top-level environ-
ment.

96 7. LEXICALLY SCOPED FUNCTIONS

(define (interp-R5 env)
(lambda (ast)
(match ast

...
[‘(lambda: ([,xs : ,Ts] ...) : ,rT ,body)
‘(lambda ,xs ,body ,env)]
[‘(define (,f [,xs : ,ps] ...) : ,rt ,body)
(mcons f ‘(lambda ,xs ,body))]
[‘(program ,defs ... ,body)
(let ([top-level (map (interp-R5 ’()) defs)])
(for/list ([b top-level])

(set-mcdr! b (match (mcdr b)
[‘(lambda ,xs ,body)
‘(lambda ,xs ,body ,top-level)])))

((interp-R5 top-level) body))]
[‘(,fun ,args ...)
(define arg-vals (map (interp-R5 env) args))
(define fun-val ((interp-R5 env) fun))
(match fun-val

[‘(lambda (,xs ...) ,body ,lam-env)
(define new-env (append (map cons xs arg-vals) lam-env))
((interp-R5 new-env) body)]
[else (error "interp-R5,␣expected␣function,␣not" fun-val)])]

)))

Figure 7.4: Interpreter for R5.

7.3. TYPE CHECKING R5 97

(define (typecheck-R5 env)
(lambda (e)
(match e
[‘(lambda: ([,xs : ,Ts] ...) : ,rT ,body)
(define new-env (append (map cons xs Ts) env))
(define bodyT ((typecheck-R5 new-env) body))
(cond [(equal? rT bodyT)

‘(,@Ts -> ,rT)]
[else
(error "mismatch␣in␣return␣type" bodyT rT)])]

...
)))

Figure 7.5: Type checking the lambda’s in R5.

7.3 Type Checking R5

Figure 7.5 shows how to type check the new lambda form. The body of the
lambda is checked in an environment that includes the current environment
(because it is lexically scoped) and also includes the lambda’s parameters.
We require the body’s type to match the declared return type.

7.4 Closure Conversion

The compiling of lexically-scoped functions into C-style functions is accom-
plished in the pass convert-to-closures that comes after reveal-functions
and before flatten. This pass needs to treat regular function calls differ-
ently from applying primitive operators, and reveal-functions differenti-
ates those two cases for us.

As usual, we shall implement the pass as a recursive function over the
AST. All of the action is in the clauses for lambda and app (function appli-
cation). We transform a lambda expression into an expression that creates
a closure, that is, creates a vector whose first element is a function pointer
and the rest of the elements are the free variables of the lambda. The name
is a unique symbol generated to identify the function.

(lambda: (ps ...) : rt body) ⇒ (vector name fvs ...)

In addition to transforming each lambda into a vector, we must create a
top-level function definition for each lambda, as shown below.

(define (name [clos : _] ps ...)

98 7. LEXICALLY SCOPED FUNCTIONS

(let ([fvs1 (vector-ref clos 1)])
...
(let ([fvsn (vector-ref clos n)])

body′)...))

The clos parameter refers to the closure whereas ps are the normal param-
eters of the lambda. The sequence of let forms being the free variables to
their values obtained from the closure.

We transform function application into code that retreives the function
pointer from the closure and then calls the function, passing in the closure
as the first argument. We bind e′ to a temporary variable to avoid code
duplication.

(app e es ...) ⇒ (let ([tmp e′])
(app (vector-ref tmp 0) tmp es′))

There is also the question of what to do with top-level function defini-
tions. To maintain a uniform translation of function application, we turn
function references into closures.

(function-ref f) ⇒ (vector (function-ref f))

The top-level function definitions need to be updated as well to take an
extra closure parameter.

7.5 An Example Translation
Figure 7.6 shows the result of closure conversion for the example program
demonstrating lexical scoping that we discussed at the beginning of this
chapter.

7.5. AN EXAMPLE TRANSLATION 99

(define (f [x : Integer]) : (Integer -> Integer)
(let ([y 4])

(lambda: ([z : Integer]) : Integer
(+ x (+ y z)))))

(let ([g (f 5)])
(let ([h (f 3)])
(+ (g 11) (h 15)))))

⇓
(define (f (x : Integer)) : (Integer -> Integer)
(let ((y 4))

(lambda: ((z : Integer)) : Integer
(+ x (+ y z)))))

(let ((g (app (function-ref f) 5)))
(let ((h (app (function-ref f) 3)))

(+ (app g 11) (app h 15)))))

⇓
(define (f (clos.1 : _) (x : Integer)) : (Integer -> Integer)

(let ((y 4))
(vector (function-ref lam.1) x y)))

(define (lam.1 (clos.2 : _) (z : Integer)) : Integer
(let ((x (vector-ref clos.2 1)))

(let ((y (vector-ref clos.2 2)))
(+ x (+ y z)))))

(let ((g (let ((t.1 (vector (function-ref f))))
(app (vector-ref t.1 0) t.1 5))))

(let ((h (let ((t.2 (vector (function-ref f))))
(app (vector-ref t.2 0) t.2 3))))

(+ (let ((t.3 g)) (app (vector-ref t.3 0) t.3 11))
(let ((t.4 h)) (app (vector-ref t.4 0) t.4 15))))))

Figure 7.6: Example of closure conversion.

100 7. LEXICALLY SCOPED FUNCTIONS

8

Dynamic Typing

In this chapter we discuss the compilation of a dynamically typed language,
named R7, that is a subset of the Racket language. (In the previous chap-
ters we have studied subsets of the Typed Racket language.) In dynamically
typed languages, an expression may produce values of differing type. Con-
sider the following example with a conditional expression that may return
a Boolean or an integer depending on the input to the program.

(not (if (eq? (read) 1) #f 0))

Languages that allow expressions to produce different kinds of values are
called polymorphic, and there are many kinds of polymorphism, such as
subtype polymorphism [?] and parametric polymorphism (Chapter 10).

Another characteristic of dynamically typed languages is that primitive
operations, such as not, are often defined to operate on many different
types of values. In fact, in Racket, the not operator produces a result for
any kind of value: given #f it returns #t and given anything else it returns
#f. Furthermore, even when primitive operations restrict their inputs to
values of a certain type, this restriction is enforced at runtime instead of
during compilation. For example, the following vector reference results in a
run-time contract violation.

(vector-ref (vector 42) #t)

Let us consider how we might compile untyped Racket to x86, thinking
about the first example above. Our bit-level representation of the Boolean #f
is zero and similarly for the integer 0. However, (not #f) should produce #t
whereas (not 0) should produce #f. Furthermore, the behavior of not, in
general, cannot be determined at compile time, but depends on the runtime
type of its input, as in the example above that depends on the result of

101

102 8. DYNAMIC TYPING

(read).
The way around this problem is to include information about a value’s

runtime type in the value itself, so that this information can be inspected
by operators such as not. In particular, we shall steal the 3 right-most bits
from our 64-bit values to encode the runtime type. We shall use 001 to
identify integers, 100 for Booleans, 010 for vectors, 011 for procedures, and
101 for the void value. We shall refer to these 3 bits as the tag and we define
the following auxilliary function.

tagof (Integer) = 001
tagof (Boolean) = 100

tagof ((Vector . . .)) = 010
tagof ((Vectorof . . .)) = 010

tagof ((. . . -> . . .)) = 011
tagof (Void) = 101

(We shall say more about the new Vectorof type shortly.) This stealing
of 3 bits comes at some price: our integers are reduced to ranging from
−260 to 260. The stealing does not adversely affect vectors and procedures
because those values are addresses, and our addresses are 8-byte aligned so
the rightmost 3 bits are unused, they are always 000. Thus, we do not lose
information by overwriting the rightmost 3 bits with the tag and we can
simply zero-out the tag to recover the original address.

In some sense, these tagged values are a new kind of value. Indeed, we
can extend our typed language with tagged values by adding a new type to
classify them, called Any, and with operations for creating and using tagged
values, creating the R6 language defined in Section 8.1. Thus, R6 provides
the fundamental support for polymorphism and runtime types that we need
to support dynamic typing.

We shall implement our untyped language R7 by compiling it to R6. We
define R7 in Section 8.2 and describe the compilation of R6 and R7 in the
remainder of this chapter.

8.1 The R6 Language: Typed Racket + Any

The syntax of R6 is defined in Figure 8.1. The (inject e T) form converts
the value produced by expression e of type T into a tagged value. The
(project e T) form converts the tagged value produced by expression e into
a value of type T or else halts the program if the type tag does not match T .

8.2. THE R7 LANGUAGE: UNTYPED RACKET 103

type ::= Integer | Boolean | (Vector type+) | (Vectorof type) | Void
| (type∗ -> type) | Any

ftype ::= Integer | Boolean | (Vectorof Any) | (Any∗ -> Any)
cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp int)
| (vector-set! exp int exp) | (void)
| (exp exp∗) | (lambda: ([var:type]∗):type exp)
| (inject exp ftype) | (project exp ftype)
| (boolean? exp) | (integer? exp)
| (vector? exp) | (procedure? exp) | (void? exp)

def ::= (define (var [var:type]∗):type exp)
R6 ::= (program def ∗ exp)

Figure 8.1: Syntax of R6, extending R5 with Any.

Note that in both inject and project, the type T is restricted to the flat
types ftype, which simplifies the implementation and corresponds with what
is needed for compiling untyped Racket. The type predicates, (boolean? e)
etc., expect a tagged value and return #t if the tag corresponds to the
predicate, and return #t otherwise. The type checker for R6 is given in
Figure 8.2.

Figure 8.3 shows the definitional interpreter for R6.

8.2 The R7 Language: Untyped Racket

The syntax of R7, our subset of Racket, is defined in Figure 8.4. The defi-
nitional interpreter for R7 is given in Figure 8.5.

8.3 Compiling R6

Most of the compiler passes only require straightforward changes. The in-
teresting part is in instruction selection.

104 8. DYNAMIC TYPING

(define type-predicates
(set ’boolean? ’integer? ’vector? ’procedure?))

(define (typecheck-R6 env)
(lambda (e)
(define recur (typecheck-R6 env))
(match e

[‘(inject ,(app recur new-e e-ty) ,ty)
(cond
[(equal? e-ty ty)
(values ‘(inject ,new-e ,ty) ’Any)]
[else
(error "inject␣expected␣~a␣to␣have␣type␣~a" e ty)])]

[‘(project ,(app recur new-e e-ty) ,ty)
(cond
[(equal? e-ty ’Any)
(values ‘(project ,new-e ,ty) ty)]
[else
(error "project␣expected␣~a␣to␣have␣type␣Any" e)])]

[‘(,pred ,e) #:when (set-member? type-predicates pred)
(define-values (new-e e-ty) (recur e))
(cond
[(equal? e-ty ’Any)
(values ‘(,pred ,new-e) ’Boolean)]
[else
(error "predicate␣expected␣arg␣of␣type␣Any,␣not" e-ty)])]

[‘(vector-ref ,(app recur e t) ,i)
(match t
[‘(Vector ,ts ...) ...]
[‘(Vectorof ,t)
(unless (exact-nonnegative-integer? i)
(error ’type-check "invalid␣index␣~a" i))

(values ‘(vector-ref ,e ,i) t)]
[else (error "expected␣a␣vector␣in␣vector-ref,␣not" t)])]

[‘(vector-set! ,(app recur e-vec^ t-vec) ,i
,(app recur e-arg^ t-arg))

(match t-vec
[‘(Vector ,ts ...) ...]
[‘(Vectorof ,t)
(unless (exact-nonnegative-integer? i)
(error ’type-check "invalid␣index␣~a" i))

(unless (equal? t t-arg)
(error ’type-check "type␣mismatch␣in␣vector-set!␣~a␣~a"

t t-arg))
(values ‘(vector-set! ,e-vec^

,i
,e-arg^) ’Void)]

[else (error ’type-check
"expected␣a␣vector␣in␣vector-set!,␣not␣~a"
t-vec)])]

...
)))

Figure 8.2: Type checker for the R6 language.

8.3. COMPILING R6 105

(define primitives (set ’boolean? ...))

(define (interp-op op)
(match op

[’boolean? (lambda (v)
(match v

[‘(tagged ,v1 Boolean) #t]
[else #f]))]

...))

(define (interp-R6 env)
(lambda (ast)
(match ast

[‘(inject ,e ,t)
‘(tagged ,((interp-R6 env) e) ,t)]
[‘(project ,e ,t2)
(define v ((interp-R6 env) e))
(match v

[‘(tagged ,v1 ,t1)
(cond [(equal? t1 t2)

v1]
[else
(error "in␣project,␣type␣mismatch" t1 t2)])]

[else
(error "in␣project,␣expected␣tagged␣value" v)])]

...)))

Figure 8.3: Interpreter for R6.

cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp exp)
| (vector-set! exp exp exp) | (void)
| (exp exp∗) | (lambda (var∗) exp)

def ::= (define (var var∗) exp)
R7 ::= (program def ∗ exp)

Figure 8.4: Syntax of R7, an untyped language (a subset of Racket).

106 8. DYNAMIC TYPING

(define (get-tagged-type v) (match v [‘(tagged ,v1 ,ty) ty]))

(define (valid-op? op) (member op ’(+ - and or not)))

(define (interp-r7 env)
(lambda (ast)
(define recur (interp-r7 env))
(match ast
[(? symbol?) (lookup ast env)]
[(? integer?) ‘(inject ,ast Integer)]
[#t ‘(inject #t Boolean)]
[#f ‘(inject #f Boolean)]
[‘(read) ‘(inject ,(read-fixnum) Integer)]
[‘(lambda (,xs ...) ,body)
‘(inject (lambda ,xs ,body ,env) (,@(map (lambda (x) ’Any) xs) -> Any))]
[‘(define (,f ,xs ...) ,body)
(mcons f ‘(lambda ,xs ,body))]
[‘(program ,ds ... ,body)
(let ([top-level (map (interp-r7 ’()) ds)])
(for/list ([b top-level])
(set-mcdr! b (match (mcdr b)

[‘(lambda ,xs ,body)
‘(inject (lambda ,xs ,body ,top-level)

(,@(map (lambda (x) ’Any) xs) -> Any))])))
((interp-r7 top-level) body))]

[‘(vector ,(app recur elts) ...)
(define tys (map get-tagged-type elts))
‘(inject ,(apply vector elts) (Vector ,@tys))]
[‘(vector-set! ,(app recur v1) ,n ,(app recur v2))

(match v1
[‘(inject ,vec ,ty)
(vector-set! vec n v2)
‘(inject (void) Void)])]

[‘(vector-ref ,(app recur v) ,n)
(match v [‘(inject ,vec ,ty) (vector-ref vec n)])]
[‘(let ([,x ,(app recur v)]) ,body)
((interp-r7 (cons (cons x v) env)) body)]
[‘(,op ,es ...) #:when (valid-op? op)
(interp-r7-op op (map recur es))]
[‘(eq? ,(app recur l) ,(app recur r))
‘(inject ,(equal? l r) Boolean)]
[‘(if ,(app recur q) ,t ,f)
(match q
[‘(inject #f Boolean) (recur f)]
[else (recur t)])]

[‘(,(app recur f-val) ,(app recur vs) ...)
(match f-val
[‘(inject (lambda (,xs ...) ,body ,lam-env) ,ty)
(define new-env (append (map cons xs vs) lam-env))
((interp-r7 new-env) body)]
[else (error "interp-r7,␣expected␣function,␣not" f-val)])])))

Figure 8.5: Interpreter for the R7 language.

8.3. COMPILING R6 107

Inject We recommend compiling an inject as follows if the type is Integer
or Boolean. The salq instruction shifts the destination to the left by the
number of bits specified by the source (2) and it preserves the sign of the
integer. We use the orq instruction to combine the tag and the value to
form the tagged value.

(assign lhs (inject e T)) ⇒
(movq e′ lhs’)
(salq (int 2) lhs’)
(orq (int tagof (T)) lhs’)

The instruction selection for vectors and procedures is different because their
is no need to shift them to the left. The rightmost 3 bits are already zeros
as described above. So we combine the value and the tag using orq.

(assign lhs (inject e T)) ⇒ (movq e′ lhs’)
(orq (int tagof (T)) lhs’)

Project The instruction selection for project is a bit more involved. Like
inject, the instructions are different depending on whether the type T is
a pointer (vector or procedure) or not (Integer or Boolean). The following
shows the instruction selection for Integer and Boolean. We first check to
see if the tag on the tagged value matches the tag of the target type T . If
not, we halt the program by calling the exit function. If we have a match,
we need to produce an untagged value by shifting it to the right by 2 bits.

(assign lhs (project e T)) ⇒

(movq e′ lhs’)
(andq (int 3) lhs’)
(if (eq? lhs’ (int tagof (T)))

((movq e′ lhs’)
(sarq (int 2) lhs’))
((callq exit)))

The case for vectors and procedures begins in a similar way, checking that
the runtime tag matches the target type T and exiting if there is a mis-
match. However, the way in which we convert the tagged value to a value
is different, as there is no need to shift. Instead we need to zero-out the
rightmost 2 bits. We accomplish this by creating the bit pattern . . . 0011,
applying notq to obtain . . . 1100, and then applying andq with the tagged
value get the desired result.

108 8. DYNAMIC TYPING

(assign lhs (project e T)) ⇒

(movq e′ lhs’)
(andq (int 3) lhs’)
(if (eq? lhs’ (int tagof (T)))

((movq (int 3) lhs’)
(notq lhs’)
(andq e′ lhs’))
((callq exit)))

Type Predicates We leave it to the reader to devise a sequence of in-
structions to implement the type predicates boolean?, integer?, vector?,
and procedure?.

8.4 Compiling R7 to R6

Figure 8.6 shows the compilation of many of the R7 forms into R6. An
important invariant of this pass is that given a subexpression e of R7, the
pass will produce an expression e′ of R6 that has type Any. For example,
the first row in Figure 8.6 shows the compilation of the Boolean #t, which
must be injected to produce an expression of type Any. The second row of
Figure 8.6, the compilation of addition, is representative of compilation for
many operations: the arguments have type Any and must be projected to
Integer before the addition can be performed. The compilation of lambda
(third row of Figure 8.6) shows what happens when we need to produce type
annotations, we simply use Any. The compilation of if, eq?, and and all
demonstrate how this pass has to account for some differences in behavior
between R7 and R6. The R7 language is more permissive than R6 regarding
what kind of values can be used in various places. For example, the condition
of an if does not have to be a Boolean. Similarly, the arguments of and do
not need to be Boolean. For eq?, the arguments need not be of the same
type.

8.4. COMPILING R7 TO R6 109

#t ⇒ (inject #t Boolean)

(+ e1 e2) ⇒
(inject

(+ (project e′1 Integer)
(project e′2 Integer))

Integer)

(lambda (x1 . . .) e) ⇒ (inject (lambda: ([x1:Any]. . .):Any e′)
(Any. . .Any -> Any))

(app e0 e1 . . . en) ⇒ (app (project e′0 (Any. . .Any -> Any))
e′1 . . . e′n)

(vector-ref e1 e2) ⇒
(let ([tmp1 (project e′1 (Vectorof Any))])
(let ([tmp2 (project e′2 Integer)])

(vector-ref tmp1 tmp2)))

(if e1 e2 e3) ⇒
(if (eq? e′1 (inject #f Boolean))

e′3
e′2)

(eq? e1 e2) ⇒ (inject (eq? e′1 e′2) Boolean)

(and e1 e2) ⇒
(let ([tmp e′1])

(if (eq? tmp (inject #f Boolean))
tmp
e′2))

Figure 8.6: Compiling R7 to R6.

110 8. DYNAMIC TYPING

9

Gradual Typing

This chapter will be based on the ideas of ?.

111

112 9. GRADUAL TYPING

10

Parametric Polymorphism

This chapter may be based on ideas from ?, ?, ?, or ?.

113

114 10. PARAMETRIC POLYMORPHISM

11

High-level Optimization

This chapter will present a procedure inlining pass based on the algorithm
of Waddell and Dybvig [1997].

115

116 11. HIGH-LEVEL OPTIMIZATION

12

Appendix

12.1 Interpreters
We provide several interpreters in the interp.rkt file. The interp-scheme
function takes an AST in one of the Racket-like languages considered in this
book (R1, R2, . . .) and interprets the program, returning the result value.
The interp-C function interprets an AST for a program in one of the C-like
languages (C0, C1, . . .), and the interp-x86 function interprets an AST for
an x86 program.

12.2 Utility Functions
The utility function described in this section can be found in the utilities.rkt
file.

The read-program function takes a file path and parses that file (it must
be a Racket program) into an abstract syntax tree (as an S-expression) with
a program AST at the top.

The assert function displays the error message msg if the Boolean bool
is false.
(define (assert msg bool) ...)

The lookup function ...
The map2 function ...

12.2.1 Graphs

• The make-graph function takes a list of vertices (symbols) and returns
a graph.

117

118 12. APPENDIX

• The add-edge function takes a graph and two vertices and adds an
edge to the graph that connects the two vertices. The graph is updated
in-place. There is no return value for this function.

• The adjacent function takes a graph and a vertex and returns the set
of vertices that are adjacent to the given vertex. The return value is a
Racket hash-set so it can be used with functions from the racket/set
module.

• The vertices function takes a graph and returns the list of vertices
in the graph.

12.2.2 Testing

The interp-tests function takes a compiler name (a string), a description
of the passes, an interpreter for the source language, a test family name
(a string), and a list of test numbers, and runs the compiler passes and
the interpreters to check whether the passes correct. The description of
the passes is a list with one entry per pass. An entry is a list with three
things: a string giving the name of the pass, the function that implements
the pass (a translator from AST to AST), and a function that implements
the interpreter (a function from AST to result value) for the language of
the output of the pass. The interpreters from Appendix 12.1 make a good
choice. The interp-tests function assumes that the subdirectory tests
has a bunch of Scheme programs whose names all start with the family
name, followed by an underscore and then the test number, ending in .scm.
Also, for each Scheme program there is a file with the same number except
that it ends with .in that provides the input for the Scheme program.
(define (interp-tests name passes test-family test-nums) ...

The compiler-tests function takes a compiler name (a string) a descrip-
tion of the passes (see the comment for interp-tests) a test family name
(a string), and a list of test numbers (see the comment for interp-tests), and
runs the compiler to generate x86 (a .s file) and then runs gcc to generate
machine code. It runs the machine code and checks that the output is 42.
(define (compiler-tests name passes test-family test-nums) ...)

The compile-file function takes a description of the compiler passes (see
the comment for interp-tests) and returns a function that, given a pro-
gram file name (a string ending in .scm), applies all of the passes and writes
the output to a file whose name is the same as the program file name but
with .scm replaced with .s.

12.3. X86 INSTRUCTION SET QUICK-REFERENCE 119

(define (compile-file passes)
(lambda (prog-file-name) ...))

12.3 x86 Instruction Set Quick-Reference
Table 12.1 lists some x86 instructions and what they do. We write A → B
to mean that the value of A is written into location B. Address offsets are
given in bytes. The instruction arguments A, B, C can be immediate con-
stants (such as $4), registers (such as %rax), or memory references (such as
−4(%ebp)). Most x86 instructions only allow at most one memory reference
per instruction. Other operands must be immediates or registers.

120 12. APPENDIX

Instruction Operation
addq A, B A + B → B
negq A −A→ A
subq A, B B −A→ B
callq L Pushes the return address and jumps to label L
callq *A Calls the function at the address A.
retq Pops the return address and jumps to it
popq A ∗rsp→ A; rsp + 8→ rsp
pushq A rsp− 8→ rsp; A→ ∗rsp
leaq A,B A→ B (C must be a register)
cmpq A, B compare A and B and set flag
je L Jump to label L if the flag matches the condition code,

otherwise go to the next instructions. The condition
codes are e for “equal”, l for “less”, le for “less or
equal”, g for “greater”, and ge for “greater or equal”.

jl L
jle L
jg L
jge L
jmp L Jump to label L
movq A, B A→ B
movzbq A, B A→ B, where A is a single-byte register (e.g., al or

cl), B is a 8-byte register, and the extra bytes of B are
set to zero.

notq A ∼ A→ A (bitwise complement)
orq A, B A|B → B (bitwise-or)
andq A, B A&B → B (bitwise-and)
salq A, B B « A→ B (arithmetic shift left, where A is a constant)
sarq A, B B » A→ B (arithmetic shift right, where A is a constant)
sete A If the flag matches the condition code, then 1→ A, else

0→ A. Refer to je above for the description of the
condition codes. A must be a single byte register (e.g.,
al or cl).

setl A
setle A
setg A
setge A

Table 12.1: Quick-reference for the x86 instructions used in this book.

Bibliography

Oscar Waddell and R. Kent Dybvig. Fast and effective procedure in-
lining. In International Symposium on Static Analysis, pages 35–
52, september 1997. URL http://www.cs.indiana.edu/~dyb/pubs/
inlining-abstract.html.

121

http://www.cs.indiana.edu/~dyb/pubs/inlining-abstract.html
http://www.cs.indiana.edu/~dyb/pubs/inlining-abstract.html

	Preliminaries
	Abstract Syntax Trees
	Grammars
	S-Expressions
	Pattern Matching
	Recursion
	Interpreters
	Example Compiler: a Partial Evaluator

	Compiling Integers and Variables
	The R1 Language
	The x86 Assembly Language
	Planning the trip to x86 via the C0 language
	Uniquify Variables
	Flatten Expressions
	Select Instructions
	Assign Homes
	Patch Instructions
	Print x86

	Register Allocation
	Liveness Analysis
	Building the Interference Graph
	Graph Coloring via Sudoku
	Print x86 and Conventions for Registers
	Challenge: Move Biasing*

	Booleans, Control Flow, and Type Checking
	The R2 Language
	Type Checking R2 Programs
	The C1 Language
	Flatten Expressions
	XOR, Comparisons, and Control Flow in x86
	Select Instructions
	Register Allocation
	Liveness Analysis
	Build Interference
	Assign Homes

	Lower Conditionals (New Pass)
	Patch Instructions
	An Example Translation
	Challenge: Optimizing Conditions*

	Tuples and Garbage Collection
	The R3 Language
	Garbage Collection
	Graph Copying via Cheney's Algorithm
	Data Representation
	Implementation of the Garbage Collector

	Compiler Passes
	Expose Allocation (New)
	Flatten and the C2 intermediate language
	Select Instructions
	Register Allocation
	Print x86

	Functions
	The R4 Language
	Functions in x86
	The compilation of functions
	An Example Translation

	Lexically Scoped Functions
	The R5 Language
	Interpreting R5
	Type Checking R5
	Closure Conversion
	An Example Translation

	Dynamic Typing
	The R6 Language: Typed Racket + Any
	The R7 Language: Untyped Racket
	Compiling R6
	Compiling R7 to R6

	Gradual Typing
	Parametric Polymorphism
	High-level Optimization
	Appendix
	Interpreters
	Utility Functions
	Graphs
	Testing

	x86 Instruction Set Quick-Reference

