
matteocimini
Sticky Note
A few pages have been scanned weirdly...

matteocimini
Sticky Note
Students really did not grasp evaluation contexts. So they have asked a load of questions here. It's where I spent a lot of time, and ended up not covering all I needed to cover.

66 Chapter 6: Machines

program. Consequently the next state of the machine must have (K L) as the control string
component and must refine the current context E to a context of the shape E[([] N)]. In other
words, the CC machine must have a state transition of the form

h(M N), Ei 7�!v hM,E[([] N)]i if M 62 V

Search rules for other shapes of applications are needed, too.
After the control string becomes a redex, the CC machine must simulate the actions of the

textual machine on a redex. Thus it must have the following two instructions:

h(om b1 . . . b
m

), Ei 7�!v hV,Ei where V = �(om, b1, . . . , bm

) [cc�]

h((�X.M)V), Ei 7�!v hM [X V], Ei [cc�v]

The result of such a transition can be a state that pairs a value with an evaluation contexts.
In the textual machine, this corresponds to a step of the form E[L] 7�!v E[V]. The textual
machine would actually divide E[V] into a new redex L0 and a new evaluation context E0

that is distinct from E. But the textual machine clearly does not pick random pieces from
the evaluation context to form the next redex. If E = E⇤[((�X.M) [])], then E0 = E⇤ and
L0 = ((�X.M) V). That is, the new redex is formed of the innermost application in E, and E0

is the rest of E.
Thus, for a faithful simulation of the textual machine, the CC machine needs a set of

instructions that exploit the information surrounding the hole of the context when the control
string is a value. In the running example, the CC machine would have to make a transition
from

hV,E⇤[((�X.M) [])]i

to
h((�X.M) V), E⇤

i

At this point, the control string is an application again, and the search process can start over.
Putting it all together, the evaluation process on a CC machine consists of shifting pieces

of the control string into the evaluation context such that the control string becomes a redex.
Once the control string has turned into a redex, an ordinary contraction occurs. If the result is
a value, the machine must shift pieces of the evaluation context back to the control string.

The 7�!cc reduction relation on CC machine states is defined as follows:

h(M N), Ei 7�!cc hM,E[([] N)]i [cc1]

if M 62 V
h(V1 M), Ei 7�!cc hM,E[(V1 [])]i [cc2]

if M 62 V
h(on V1 . . . V

i

M N . . .), Ei 7�!cc hM,E[(on V1 . . . V
i

[] N . . .)]i [cc3]

if M 62 V
h((�X.M) V), Ei 7�!cc hM [X V], Ei [cc�v]

h(om b1 . . . b
m

), Ei 7�!cc hV,Ei [cc�]

where V = �(om, b1, . . . bm

)
hV,E[(U [])]i 7�!cc h(U V), Ei [cc4]

hV,E[([] N)]i 7�!cc h(V N), Ei [cc5]

hV,E[(on V1 . . . V
i

[] N . . .)]i 7�!cc h(on V1 . . . V
i

V N . . .), Ei [cc6]

evalcc(M) =
⇢

b if hM, []i 7�!!cc hb, []i
function if hM, []i 7�!!cc h�X.N, []i

By the derivation of the CC machine, it is almost obvious that it faithfully implements the
textual machine. Since evaluation on both machines is defined as a partial function from

matteocimini
Sticky Note
Here I went over the formal rules below.
And that's where I ended the lecture.

The following pages are the notes I had, and that I didn't cover.

matteocimini
Sticky Note
Here I have omitted the last steps

matteocimini
Sticky Note
Here, my plan was to go over the formal rules of SCC from the book.

