91.304 Foundations of
(Theoretical) Computer Science

Chapter 4 Lecture Notes (Section 4.2: The “Halting” Problem)

David Martin
dm@cs.uml.edu

With modifications by Prof. Karen Daniels, Fall 2014

This work is licensed under the Creative Commons Attribution-ShareAlike License.

‘ @ \ To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,

California 94305, USA.

mailto:dm@cs.uml.edu
http://creativecommons.org/licenses/by-sa/2.0/

Back to X,

So the fact that X, Is not closed under
complement means that there exists
some language L that is not
recognizable by any TM

By Church-Turing thesis this means
that no imaginable finite computer,
even with infinite memory, could
recognize this language L!

Non-recognizable languages

We proceed to prove that non-Turing
recognizable languages exist, In two
ways:

B A nonconstructive proof using Georg

Cantor’s famous 1873 diagonalization
technique, and then

B An explicit construction of such a
language.

Learning how to count

Deflnltlon Let A and B be sets. Then we write
B and say that A iIs eqguinumerous to B If

there exists a one-to-one, onto function (a
“correspondence”, I.e. a palrmg)

f:A—> B

Note that this is a purely mathematical
definition: the function f does not have to be
expressible by a Turing machine or anything
like that.

Example: {1, 3, 2 } = { six, seven, BBCCD }

Example: N = Q (textbook example 4.15)

B See next slide... 4

Learning hOW tO COunt (continued)

Example: N =~ Q (textbook example 4.15)

AL n2/ A3/ pA) 4B
.',f'_"\-\-\ 2 “ f_‘ __\.’ i ./ 5
i AR 2
l-f‘____l__,’ =5 1,'#_&/' Ak 5
'/-'E--{". I_: ’E—"‘{I ';5 . E E

gl S a2 3 4 5
(AN 4 4

T AR 3 4 5

\.
fFEN B
.1/ 2
FIGURE 4.16 5

A correspondence of A" and Q Source: Sipser textbook

Countability

Definition A set S is countable if
S iIs finite or S = N.

B Saying that S is countable means that
you can line up all of its elements, one
after another, and cover them all

B Note that R is not countable (Theorem
4.17), basically because choosing a
single real number requires making

Infinitely many choices of what each digit
In it Is (see next slide).

Countability (continued)

Theorem 4.17: R 1s not countable.

Proof Sketch: By way of contradiction,
suppose R =~ N using correspondence f,

Construct X € R such that x is not paired with
anything in N, providing a contradiction.

nl f) xe(01) . .
1 3 14159 x is not f (n) for any n because it
5 55_55555_“ differs from f gn) _ltn nth fractional
3| “0.10345 5= 0.464% ... igit.
& 2500005 -
Caveat: How to circumvent
0.1999...= 0.2000... problem?

=
Source: Sipser textbook

Le ALL - =,

A non-X, language /

ALL

Each point is
a language in
this Venn

diagram

Strategy

We’ll show that there are more (a lot more)
languages in ALL than there are in %,

B Namely, that Z, is countable but ALL isn’t
countable

B Which implies that X; # ALL

B Which implies that there exists some L that is
not in X,

For simplicity and concreteness, we’ll work
In the universe of strings over the alphabet

£0,1}.

Countability of %,

[heorem X, is countable

Proof The strategy is simple. %, Is
the class of all languages that are
Turing-recognizable. So each one
has (at least) one TM that recognizes
it. We’ll concentrate on listing those

TMs.

10

Countability of TM

O

Let TM = { <M> | M is a Turing Machine with 2={0,1} }

Notation: <M> means the string encoding of the object M

Previously, we thought of our TMs as abstract mathematical
things: drawings on the board, or 7-tuples: (Q,%,I',5,94,9,.9,)
But just as we can encode every C++ program as an ASCII
string, surely we can also encode every TM as a string

It’s not hard to specify precisely how to do it—but it doesn’t
help us much either, so we won’t bother

Just note that in our full specification of a TM
(Q,%,I,0,94,9,,9,), €each element in the list is finite by
definition

So writing down the sequence of 7 things can be done in a
finite amount of text

[0 In other words, each <M= is a string

11

Countability of TM

Now we make a list of all possible strings In
lexicographical (string) order,

Cross out the ones that are not valid
encodings of Turing Machines,
And we have a mapping f :N —» TM

m f(1) = first (smallest) TM encoding on list
B f(2) = second TM encoding on list
" ...

This Is part of textbook’s proof of Corollary

4.18 (Some languages are not Turing-
recognizable).

12

Back to countability of %,

Now consider the Iist

L(f (1)), L((2)), -
B Turns each TM enumerated by f Into a
language

B So we can define a function g : N —X; by
g(i) = L (i), where f (i) returns the it
Turing machine

B Now: Is this a correspondence? Namely,
] Is it onto?
1 Is it one-to-one?

13

Fixing g : N =X,

Go ahead and make the list
g9(1),9(2), -

But cross out each element that is a

repeat, removing it from the list
B Subtlety regarding EQq,, undecidability (Ch 5)

Then let h : N — %, be defined by

h(i) = the it" element on the
reduced list

Then h Is both one-to-one and onto
[hus %, IS countable

14

What about ALL?

[l

Theorem (Cantor, 1873) For every set A, A 5,3 P(A)

B See next several slides for proof.

B See textbook for a different way to show ALL is uncountable
using characteristic sequence associated with (uncountable) set
of all infinite binary sequences.

Remember ALL = P({0,1}") if alphabet ¥ ={0,1}
] set of all (languages)

= set of all (subsets of {0,1}")
Note that {0,1}" is countable

B Just list all of the strings in lexicographical order
Corollary to Theorem ALL = P({0,1}") is

uncountable
B So %, is countable but ALL isn’t
B So they're not equal

15

Cantor’s Theorem

Theorem For every set A, A;QP(A)

Proof We’ll show by contradiction that no function
f:A—P(A) is onto. So suppose f:A—»P(A) is onto. We

define a set KCA in terms of it:

K={ x e A | ng(x) }
Since KCA, KeP(A) as well (by definition of P). Since f is
onto, there exists some z€A such that f(z) = K. Looking

closer,
Case 1: If ZEK = Z % f(z) = Z% K

! R

by definition of K by definition of z
so zeK certainly can’t be true...

16

Cantor’s Theorem

K={ x e A ng(x) }
unchanged KEP(A)
zeA and f(z) = K

On the other hand
Case 2: If Z€K=> Z € f(Z) =z € K

! /

by definition of K by definition of z

so z € K can’t be true either!

QED

17

Cantor’s Theorem: Example

For every proposed f : A—-P(A), the
theorem constructs a set KeP(A) that

IS not f(x) for any X

Let A = a} 1, 2,3
P(A)=10, 11y 12 314

{1,2}, {2,3}, {1,3}, {1,2,3} }
Propose f : A—P(A), show K

18

Diagonalization

1 All we’re really doing is
identifying the squares
on the diagonal and
making them different
than what’s in our set K

[l So that we’re

guaranteed K = (1),
K= f1(2), -

[l The construction works
for infinite sets too

X | T(X)

1 {N _ . _3}
2 {_ .0, _7
3

{_._ . B}

19

Non-recognizable languages

So we conclude that there exists
some L € ALL - ¥; (many such

languages)

But we don’t know what any L looks
like exactly

Turing constructed such an L also

using diagonalization (but not the#
relation)

We now turn our attention to it

20

Programs that process programs

In 84.1, we considered languages such as

Aceg = 1 <G,w= | G is a CFG and weL(G) }

Each element of A 5 IS a coded pair

B Meaning that the grammar G is encoded as a
string and

® w is an arbitrary string and
B <G,w=> contains both pieces, in order, in such a
way that the two pieces can be easily extracted

The question “does grammar G, generate
the string 000107?” can then be phrased

equivalently as:
B Is <G,,00010> € A ?

21

Programs that process programs

[l Prelude to introducing Universal TM that can
“process” programs.

U A = { <G,w=> | Gis a CFG and welL(G) }

The language A r; somehow represents the
question “does this grammar accept
string?”

Additionally we can ask: Is A Itself a

regular language? context free? decidable?
recognizable?

B \We showed previously that A..; is decidable (as
Is almost everything similar in 84.1)

22

Ay and the Universal TM

Ay ={ <Mw=> | MisaTM and weL(M) }
We will show that A, € X, - X,

B (It's recognizable but not decidable)

heorem A, Is Turing-recognized

by a fixed TM called U (the Universal
™)

B This i1s not stated as a theorem In the

textbook (it does appear as part of proof
of Theorem 4.11: A, IS undecidable),
but should be: it's really important

23

Ay = L (U)

Ay ={ <Mw=> | Mis aTM and weL(M) }

U is a 3-tape TM that keeps data like this:

1 <M> never changes
2 g a state name
3 C;C, Cg -+ tape contents & head pos

On startup, U receives input <M,w> and writes <M= onto
tape 1 and w onto tape 3. (If the input is not of the form
<M,w=>, then U rejects it.) From <M>, U can extract the
encoded pieces (Q,X,1,0,00,0,cc:e) at Will. 1t continues
by extracting and writing g, onto fape 2.

24

Ay = L (U)

= {<M,w>| Mis aTM and weL(M) }

1 <M> never changes
2 0| a state name
3 C;C, Cg -+ tape contents & head pos

To simulate a single computation step, U fetches the current
character c from tape 3, the current state q on tape 2, and
looks up the value of 6(g,c) on tape 1, obtaining a new state
name, a new character to write, and a direction to move. U
writes these on tapes 2 and 3 respectively.

If the new state Is g, Or q,,; then U accepts or rejects,
respectively. Otherwise it continues with the next computation

step.

25

The Universal TM U

This U is hugely important: it’s the
theoretical basis for programmable
computers.

It says that there is a fixed machine U that
can take computer programs as input and
behave just like each of those programs

B Note that U is not a decider

B See VMware

Since A, = L(U), we have shown that A},
IS Turing-recognizable (%,)

26

The “Halting” Problem

O Ay ={<Mw=>| Misa TM and w €L(M) }
[0 This appears in our textbook as:

B A,,={<Mw>| MisaTM and M accepts w }

B This emphasizes the fact that U might loop (i.e. might
not halt) on input <M,w=>.

B A, is therefore sometimes called the halting problem.
B We use “” here due to Chapter 5’s discussion...

0 Aqy, Is called the acceptance problem in Chapter 5

0 The “real” halting problem is defined there as:
B HALTyw={ <M,w> | Mis aTM and M halts on input w }

27

A1y 1S undecidable

Theorem 4.11 (Turing) Ay ¢ X

Proof Suppose that A;,=L(H) where H is a
decider. We’ll show that this leads to a

contradiction. H(<M,w>) :{ accept if M accepts w

reject if M does not accept w

Let D be a TM that behaves as follows:
1. Input X

2. If x i1s not of the form <M= for some TM M,
then D rejects put e

3. Simulate H on input <M, <M>>description!

O If H accepts <M, <M>>, then D rejects } —
1 If Hrejects <M, <M>>, then D accepts

opposite!

28

“Simulate H”

Steps 1 and 2 are not so hard to imagine

How does D “simulate H on (some other
Input)”?
B If someone creates an H, we follow this outline

to build D — which has the entire H program
built in as a subroutine

B Note we run H on a different input than the one
that D is given

Also, we didn’t say what D does if H goes
Into an infinite loop

B |t's OK because H does not do that, by the
assumption that H is a decider

29

Language accepted by D

(Repeat) D behaves as follows:

1. D: input x

2. If x 1s not of the form <M=> for some TM M,
then D rejects

3. simulate H on input <M, <M> >
0 If H accepts <M, <M>=>, then D rejects
0 If Hrejects <M, <M>>, then D accepts

So L(D)={ <M= | H rejects <M,<M>=> }

Now H is a recognizer (even a decider) for A;,, so if H

rejects <M,<M>=> then it means that the machine M does
not accept <M>=.

So L(D)={ <M> | <M> & L(M) }

30

Impossible machine

SoL(D)={ <M> | <M=>¢& L(M) }

What if we give a copy of D’s own

description <D= to itself as input? As in
Cantor’s theorem, we have trouble:

B <D>¢cl(D)=<D>¢ L(D) !

B <D>¢ L(D) = <D>=€L(D) !

So this D can’t exist. But it was defined as

a fairly straightforward wrapper around H:
so H must not exist either. That is, there iIs
no decider for Ap,. QED

31

To summarize...

H accepts <M,w> exactly when M accepts w.

U

D rejects <M> exactly when M accepts <M=>=.

|

D rejects <D> exactly when D accepts <D=>.

contr: iction!

32

Diagonalization in this proof?

M, is a TM.

Blank entry implies
either loop or reject.

FIGURE #4.19
I I 1 j
Now consider
H, which is a
decider.
FIGURE 4.20

33

Source: Sipser textbook

Diagonalization in this proof? (cont.)

D computes the
opposite of each
diagonal entry
because its behavior
IS opposite H’s
behavior on input
<M, <M>=.

FIGURE #&4.21
I i | | '._". ERINVEFS IR O Gl

Cannot compute opposite of this entry itself!

34

Source: Sipser textbook

Current landscape

ATM 6 21 = ZO

T

Each point is
a language in
this Venn

ALL

diagram

35

Decidability versus recognizability

Theorem 4.22 For every language L, LeZ; &
(Lex; and L¢eX,)

Recall that complement of a language is the language
consisting of all strings that are not in that language.

Proof The = direction is easy, because ~,C%,
and X, is closed under complement.

For the < direction, suppose that LeX; and
L°eX;, Then there exist TMs so that L(M 1)=L
and L(MZ) L. To show that LeX,, we need to

produce a decider M5 such that L=L(M,).

36

Theorem 4.22 continued

L(M,)=L, L(M,)=L¢, and we want a decider M5 such
that L=L(M5)

Strategy: given an input x, we know that either xe L or
xe L¢. So M, does this:

1. Mz input X
2. set up tape #1 to simulate M; on input X
and tape #2 to simulate M, on input X

3. compute one transition step of M, on tape 1 This is like

running both

and one transition step of M, on tape 2 M. and M. in
= I 2 =
O if M; accepts, then M5 accepts parallel.

O if M, accepts, then M rejects
[0 else goto 3

37

Theorem 4.22 conclusion

For each string x, either M, accepts X
or M, accepts X, but never both

B So the machine M; will always halt
eventually in step 3

B Therefore, M; Is a decider

M5 accepts those strings in L and
rejects those strings in L

B SolL(My) =L QED

38

Getting a non-recognizable
language from A4,

€2, & (Lex; and LX)
Z3, < (L¢Z,or L°¢x)

Now since we know that A, & 3., and we
<now that A,€x,, it must Be trde that

ATMC % 21. i
B A, ={<M,w>| MisaTM and weL(M) }
B A, ={x] xis not of the form <M,w=

or (x=<M,w=and w¢L(M)) }
If we narrow this down to strings of the
form <M,w=>, then the language is still
unrecognizable:

B NA, ={<Mw>]| MisaTMand w ¢L(M) }

39

Unrecognizability

NAy = {<M,w>] MisaTM and w¢ L(M) }

What does it mean that NA, IS
unrecognizable?

B Every TM recognizes a language that’s different
than NA,,

B Either it accepts strings that are not in NA,, or
It fails to accept some strings that actually are In
NA7y

Analogy to C programs:

B Write a C program that takes another C program
as input and prints out “loop” if the other C
program goes into an infinite loop.

40

Current landscape /
/

s ALL
Arm € 21 - 2o

T

Each point is
a language in
this Venn

diagram

	91.304 Foundations of (Theoretical) Computer Science
	Back to 1
	Non-recognizable languages
	Learning how to count
	Learning how to count (continued)
	Countability
	Countability (continued)
	A non-1 language
	Strategy
	Countability of 1
	Countability of TM
	Countability of TM
	Back to countability of 1
	Fixing g : N ! 1
	What about ALL?
	Cantor’s Theorem
	Cantor’s Theorem
	Cantor’s Theorem: Example
	Diagonalization
	Non-recognizable languages
	Programs that process programs
	Programs that process programs
	ATM and the Universal TM
	ATM = L (U)
	ATM = L (U)
	The Universal TM U
	The “Halting” Problem
	ATM is undecidable
	“Simulate H”
	Language accepted by D
	Impossible machine
	To summarize…
	Diagonalization in this proof?
	Diagonalization in this proof? (cont.)
	Current landscape
	Decidability versus recognizability
	�Theorem 4.22 continued
	Theorem 4.22 conclusion
	Getting a non-recognizable language from ATM
	Unrecognizability
	Current landscape

