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Back to Σ1

So the fact that Σ1 is not closed under 
complement means that there exists 
some language L that is not 
recognizable by any TM
By Church-Turing thesis this means 
that no imaginable finite computer, 
even with infinite memory, could 
recognize this language L!
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Non-recognizable languages

We proceed to prove that non-Turing 
recognizable languages exist, in two 
ways:

A nonconstructive proof using Georg 
Cantor’s famous 1873 diagonalization 
technique, and then
An explicit construction of such a 
language.
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Learning how to count
Definition Let A and B be sets.  Then we write 
A ≈ B and say that A is equinumerous to B if 
there exists a one-to-one, onto function (a 
“correspondence”, i.e. a pairing) 

f :A → B  

Note that this is a purely mathematical 
definition: the function f does not have to be 
expressible by a Turing machine or anything 
like that.
Example: { 1, 3, 2 } ≈ { six, seven, BBCCD }
Example: N ≈ Q  (textbook example 4.15)

See next slide…
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Learning how to count (continued)

Example: N ≈ Q  (textbook example 4.15)

Source: Sipser textbook
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Countability

Definition A set S is countable if 
S is finite or S ≈ N.

Saying that S is countable means that 
you can line up all of its elements, one 
after another, and cover them all
Note that R is not countable (Theorem 
4.17), basically because choosing a 
single real number requires making 
infinitely many choices of what each digit 
in it is (see next slide).
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Countability (continued)

Theorem 4.17: R is not countable.
Proof Sketch: By way of contradiction, 
suppose R ≈ N using correspondence f.  
Construct       R such that x is not paired with 
anything in N, providing a contradiction. 

∈x

Source: Sipser textbook

)1,0(∈x
x is not f (n) for any n because it 
differs from f (n) in nth fractional 

digit.

Caveat: How to circumvent 
0.1999…= 0.2000… problem?
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A non-Σ1 language
ALL

FINEach point is 
a language in 
this Venn 
diagram

REG

RPP

CFL

CFPP

Σ0

Σ1

L ∈ ALL - Σ1
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Strategy

We’ll show that there are more (a lot more) 
languages in ALL than there are in Σ1

Namely, that Σ1 is countable but ALL isn’t 
countable
Which implies that Σ1 ≠ ALL
Which implies that there exists some L that is 
not in Σ1

For simplicity and concreteness, we’ll work 
in the universe of strings over the alphabet 
{0,1}.
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Countability of Σ1

Theorem Σ1 is countable
Proof The strategy is simple.  Σ1 is 
the class of all languages that are 
Turing-recognizable.  So each one 
has (at least) one TM that recognizes 
it.  We’ll concentrate on listing those 
TMs.  
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Countability of TM
Let TM = { <M> | M is a Turing Machine with Σ={0,1} }

Notation: <M> means the string encoding of the object M 
Previously, we thought of our TMs as abstract mathematical 
things: drawings on the board, or 7-tuples: (Q,Σ,Γ,δ,q0,qa,qr)
But just as we can encode every C++ program as an ASCII 
string, surely we can also encode every TM as a string
It’s not hard to specify precisely how to do it—but it doesn’t 
help us much either, so we won’t bother
Just note that in our full specification of a TM 
(Q,Σ,Γ,δ,q0,qa,qr), each element in the list is finite by 
definition
So writing down the sequence of 7 things can be done in a 
finite amount of text

In other words, each <M> is a string



12

Countability of TM
Now we make a list of all possible strings in 
lexicographical (string) order,
Cross out the ones that are not valid 
encodings of Turing Machines,
And we have a mapping f :N → TM

f (1) = first (smallest) TM encoding on list
f (2) = second TM encoding on list 
...

This is part of textbook’s proof of Corollary 
4.18 (Some languages are not Turing-
recognizable).
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Back to countability of Σ1

Now consider the list
L(f (1)), L(f (2)), L

Turns each TM enumerated by f into a 
language
So we can define a function g : N →  Σ1 by 
g(i) = L(f (i)), where f (i) returns the ith
Turing machine
Now: is this a correspondence?  Namely,

Is it onto?
Is it one-to-one?
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Fixing g : N →  Σ1

Go ahead and make the list 
g(1),g(2),L
But cross out each element that is a 
repeat, removing it from the list

Subtlety regarding EQTM undecidability (Ch 5)

Then let h : N → Σ1 be defined by
h(i) = the ith element on the 

reduced list
Then h is both one-to-one and onto
Thus Σ1 is countable
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What about ALL?
Theorem (Cantor, 1873) For every set A, A     P(A) 

See next several slides for proof.
See textbook for a different way to show ALL is uncountable 
using characteristic sequence associated with (uncountable) set 
of all infinite binary sequences. 

Remember ALL = P({0,1}*) if alphabet 

set of all     (  languages  ) 
= set of all (subsets of {0,1}* )

Note that {0,1}* is countable
Just list all of the strings in lexicographical order

Corollary to Theorem  ALL = P({0,1}*) is 
uncountable

So Σ1 is countable but ALL isn’t
So they're not equal

}1,0{=Σ
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Cantor’s Theorem
Theorem For every set A,     A    P(A)

Proof We’ll show by contradiction that no function 
f:A→P(A) is onto.  So suppose f:A→P(A) is onto.  We 
define a set K⊆A in terms of it:

K={ x ∈ A | x   f(x) }
Since K⊆A, K∈P(A) as well (by definition of P).  Since f is 
onto, there exists some z∈A such that f(z) = K.  Looking 
closer,

z∈K ⇒ z    f(z) ⇒ z   K

so z∈K certainly can’t be true...
by definition of K by definition of z

Case 1: If
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Cantor’s Theorem
K={ x ∈ A | x   f(x) }
K∈P(A) 
z∈A and f(z) = K

On the other hand,
z   K ⇒ z ∈ f(z) ⇒ z ∈ K

so z   K can’t be true either!              QED

by definition of K by definition of z

unchanged

Case 2: If



18

Cantor’s Theorem: Example
For every proposed f : A→P(A), the 
theorem constructs a set K∈P(A) that 
is not f(x) for any x
Let A = { 1, 2, 3 }
P(A)={ ∅,       {1},    {2},   {3},

{1,2}, {2,3}, {1,3}, {1,2,3} }
Propose f : A→P(A), show K
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Diagonalization
All we’re really doing is 
identifying the squares 
on the diagonal and 
making them different 
than what’s in our set K
So that we’re 
guaranteed K ≠ f(1), 
K ≠ f(2), L
The construction works 
for infinite sets too

x f(x)

1 { ,  _  ,   _  }

2 { _  ,  � ,   _  }

3 { _  ,  _  ,  � }
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Non-recognizable languages

So we conclude that there exists 
some L ∈ ALL - Σ1 (many such 
languages)
But we don’t know what any L looks 
like exactly
Turing constructed such an L also 
using diagonalization (but not the 
relation)
We now turn our attention to it
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Programs that process programs

In §4.1, we considered languages such as 
ACFG = { <G,w> | G is a CFG and w∈L(G) }

Each element of ACFG is a coded pair
Meaning that the grammar G is encoded as a 
string and
w is an arbitrary string and
<G,w> contains both pieces, in order, in such a 
way that the two pieces can be easily extracted

The question “does grammar G1 generate 
the string 00010?” can then be phrased 
equivalently as:

Is <G1,00010> ∈ ACFG ?
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Programs that process programs

Prelude to introducing Universal TM that can 
“process” programs.
ACFG = { <G,w> | G is a CFG and w∈L(G) }

The language ACFG somehow represents the 
question “does this grammar accept that
string?” 
Additionally we can ask: is ACFG itself a 
regular language? context free? decidable? 
recognizable?

We showed previously that ACFG is decidable (as 
is almost everything similar in §4.1)
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ATM and the Universal TM
ATM = { <M,w> | M is a TM and w∈L(M) }
We will show that ATM ∈ Σ1 - Σ0

(It’s recognizable but not decidable)
Theorem ATM is Turing-recognized 
by a fixed TM called U (the Universal 
TM)

This is not stated as a theorem in the 
textbook (it does appear as part of proof 
of Theorem 4.11: ATM is undecidable), 
but should be: it’s really important
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ATM = L (U) 
ATM = { <M,w> | M is a TM and w∈L(M) }

U is a 3-tape TM that keeps data like this:

1 < M >     never changes
2 q  a state name
3 c1 c2 c3 L tape contents & head pos

On startup, U receives input <M,w> and writes <M> onto 
tape 1 and w onto tape 3.  (If the input is not of the form 
<M,w>, then U rejects it.)  From <M>, U can extract the 
encoded pieces (Q,Σ,Γ,δ,q0,qacc,qrej) at will.  It continues 
by extracting and writing q0 onto tape 2.
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ATM = L (U) 
ATM = { <M,w> | M is a TM and w∈L(M) }

1 < M >     never changes
2 q  a state name
3 c1 c2 c3 L tape contents & head pos

To simulate a single computation step, U fetches the current 
character c from tape 3, the current state q on tape 2, and 
looks up the value of δ(q,c) on tape 1, obtaining a new state 
name, a new character to write, and a direction to move.  U 
writes these on tapes 2 and 3 respectively.

If the new state is qacc or qrej then U accepts or rejects, 
respectively.  Otherwise it continues with the next computation 
step.
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The Universal TM U

This U is hugely important: it’s the 
theoretical basis for programmable 
computers.  
It says that there is a fixed machine U that 
can take computer programs as input and 
behave just like each of those programs

Note that U is not a decider
See VMware

Since ATM = L(U), we have shown that ATM
is Turing-recognizable (Σ1)
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The “Halting” Problem
ATM = {<M,w> | M is a TM and w   L(M)}
This appears in our textbook as:  

ATM = { <M,w> | M is a TM and M accepts w }
This emphasizes the fact that U might loop (i.e. might 
not halt) on input <M,w>.
ATM is therefore sometimes called the halting problem.
We use “” here due to Chapter 5’s discussion…

ATM is called the acceptance problem in Chapter 5
The “real” halting problem is defined there as:

HALTTM = { <M,w> | M is a TM and M halts on input w }

∈
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ATM is undecidable
Theorem 4.11 (Turing)   ATM Σ0
Proof Suppose that ATM=L(H) where H is a 
decider.  We’ll show that this leads to a 
contradiction.  

Let D be a TM that behaves as follows:
1. Input x
2. If x is not of the form <M> for some TM M, 

then D rejects
3. Simulate H on input <M, <M> >

If H accepts <M, <M>>, then D rejects
If H rejects <M, <M>>, then D accepts

Input M’s 
description!

Do the 
opposite!

H(<M,w>) =   accept if M accepts w
reject if M does not accept w
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“Simulate H”
Steps 1 and 2 are not so hard to imagine
How does D “simulate H on (some other 
input)”?

If someone creates an H, we follow this outline 
to build D — which has the entire H program 
built in as a subroutine
Note we run H on a different input than the one 
that D is given

Also, we didn’t say what D does if H goes 
into an infinite loop

It’s OK because H does not do that, by the 
assumption that H is a decider
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Language accepted by D

(Repeat) D behaves as follows:
1. D: input x
2. if x is not of the form <M> for some TM M, 

then D rejects
3. simulate H on input <M, <M> >

If H accepts <M, <M>>, then D rejects
If H rejects  <M, <M>>, then D accepts

So L(D)={ <M> | H rejects <M,<M>> }
Now H is a recognizer (even a decider) for ATM, so if H 
rejects <M,<M>> then it means that the machine M does 
not accept <M>.
So L(D)={ <M> | <M>    L(M)   }
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Impossible machine

So L(D)={ <M> | <M>    L(M)   }
What if we give a copy of D’s own 
description <D> to itself as input?  As in 
Cantor’s theorem, we have trouble:

<D> ∈ L(D) ⇒ <D>     L(D)   !!
<D> L(D) ⇒ <D> ∈ L(D)   !!

So this D can’t exist.  But it was defined as 
a fairly straightforward wrapper around H: 
so H must not exist either.  That is, there is 
no decider for ATM. QED
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To summarize… 

H accepts <M,w> exactly when M accepts w.

D rejects <M> exactly when M accepts <M>.

D rejects <D> exactly when D accepts <D>.
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Diagonalization in this proof? 

Source: Sipser textbook

Mi is a TM.

Blank entry implies 
either loop or reject.

Now consider 
H, which is a 

decider.
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Diagonalization in this proof? (cont.)

Source: Sipser textbook

D computes the 
opposite of each 
diagonal entry 
because its behavior 
is opposite H’s 
behavior on input 
<Mi,<Mi>>.

Cannot compute opposite of this entry itself!
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Current landscape
ALL

FINEach point is 
a language in 
this Venn 
diagram

REG

RPP

CFL

CFPP

Σ0

Σ1

ATM ∈ Σ
1

- Σ0
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Decidability versus recognizability
Theorem 4.22 For every language L, L∈Σ0 ⇔
(L∈Σ1 and Lc∈Σ1)

Proof  The ⇒ direction is easy, because Σ0⊆Σ1
and Σ0 is closed under complement.  

For the ⇐ direction, suppose that L∈Σ1 and 
Lc∈Σ1. Then there exist TMs so that L(M1)=L 
and L(M2)=Lc.  To show that L∈Σ0, we need to 
produce a decider M3 such that L=L(M3).

Recall that complement of a language is the language 
consisting of all strings that are not in that language.
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Theorem 4.22 continued
L(M1)=L, L(M2)=Lc, and we want a decider M3 such 
that L=L(M3)
Strategy: given an input x, we know that either x∈ L or 
x∈ Lc.  So M3 does this:

1. M3: input x
2. set up tape #1 to simulate M1 on input x

and tape #2 to simulate M2 on input x
3. compute one transition step of M1 on tape 1 

and one transition step of M2 on tape 2
if M1 accepts, then M3 accepts
if M2 accepts, then M3 rejects
else goto 3

This is like 
running both 

M1 and M2    in 
parallel.
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Theorem 4.22 conclusion

For each string x, either M1 accepts x 
or M2 accepts x, but never both

So the machine M3 will always halt 
eventually in step 3
Therefore, M3 is a decider

M3 accepts those strings in L and 
rejects those strings in Lc

So L(M3) = L QED
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Getting a non-recognizable 
language from ATM

L∈Σ0 ⇔ (L∈Σ1 and Lc∈Σ1)
LΣ Σ0 ⇔ (L Σ1 or Lc Σ1)
Now since we know that ATM Σ0, and we 
know that ATM∈Σ1, it must be true that 
ATM

c Σ1.
ATM = {<M,w> | M is a TM and w∈L(M) }
ATM

c = { x | x is not of the form <M,w> 
or (x=<M,w> and w   L(M) ) }

If we narrow this down to strings of the 
form <M,w>, then the language is still 
unrecognizable:

NATM = { <M,w> |  M is a TM and w   L(M) }
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Unrecognizability
NATM = {<M,w> |  M is a TM and w   L(M) }

What does it mean that NATM is 
unrecognizable?

Every TM recognizes a language that’s different 
than NATM
Either it accepts strings that are not in NATM, or 
it fails to accept some strings that actually are in 
NATM

Analogy to C programs:
Write a C program that takes another C program 
as input and prints out “loop” if the other C 
program goes into an infinite loop.
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Current landscape
ALL

FINEach point is 
a language in 
this Venn 
diagram

REG

RPP

CFL

CFPP

Σ0

Σ1

ATM ∈ Σ1 - Σ0

NATM ∈ ALL - Σ1


	91.304 Foundations of (Theoretical) Computer Science
	Back to 1
	Non-recognizable languages
	Learning how to count
	Learning how to count (continued)
	Countability
	Countability (continued)
	A non-1 language
	Strategy
	Countability of 1
	Countability of TM
	Countability of TM
	Back to countability of 1
	Fixing g : N ! 1 
	What about ALL?
	Cantor’s Theorem
	Cantor’s Theorem
	Cantor’s Theorem: Example
	Diagonalization
	Non-recognizable languages
	Programs that process programs
	Programs that process programs
	ATM and the Universal TM
	ATM = L (U) 
	ATM = L (U) 
	The Universal TM U
	The “Halting” Problem
	ATM is undecidable
	“Simulate H”
	Language accepted by D
	Impossible machine
	To summarize… 
	Diagonalization in this proof? 
	Diagonalization in this proof? (cont.)
	Current landscape
	Decidability versus recognizability
	�Theorem 4.22 continued
	Theorem 4.22 conclusion
	Getting a non-recognizable language from ATM
	Unrecognizability
	Current landscape

