
91.304 Foundations of
(Th ti l) C t S i(Theoretical) Computer Science

Chapter 3 Lecture Notes (Section 3.3: Definition of Algorithm)

David Martin
dm@cs.uml.edu

With modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-

1

sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

Overview

AlgorithmAlgorithm
Intuitive definition

Hilbert’s ProblemsHilbert s Problems
Show how definition of algorithm was
crucial to one mathematical problemp
Introduce Church-Turing Thesis

Terminology for Describing Turing
Machines

Levels of description

2

What’s It All About?

Algorithm:
steps for the computer to follow to solve a

blproblem
well-defined computational procedure that
transforms input into outputtransforms input into output
(analysis of algorithms is studied in 91.404)

3

Hilbert’s Problems

Show how definition of algorithm was crucial Show how definition of algorithm was crucial
to one mathematical problem.

Mathematician David Hilbert (in 1900) posed his at e at c a a d be t (900) posed s
famous grand-challenge list of 23 problems to the
mathematical community.

10th problem: devise a “process” that tests 10 problem: devise a process that tests
whether a given polynomial has an integral root.

Root is assignment of values to variables such that
result = 0.result 0.

Example (single variable with integer coefficients):

What are the root(s)? Are they integers?
44)(2 +−= xxxf

4

What are the root(s)? Are they integers?

Hilbert’s Problems

10th problem asks if D is decidable
root} integralan with polynomial a is |{ ppD =

10th problem asks if D is decidable.

It is not decidable!

}i li hl i li|{D

It is not decidable!
It is Turing recognizable.

Motivate key idea using simpler problem:
root}integralan with over polynomialais|{1 xppD =

TM M1 recognizing D1:
M1=“The input is a polynomial p over variable x.

1. Evaluate p with x set successively to the values 0,
1, -1, 2, -2, … If at any point p evaluates to 0,
accept.”
If i t l t i t M ill fi d d t

5

If an integral root exists, M1 will find one and accept.
If no integral root exists, M1 runs forever…

Hilbert’s Problems

10th problem asks if D is decidable
root} integralan with polynomial a is |{ ppD =

10th problem asks if D is decidable.

It is not decidable! possibly multivariateIt is not decidable!
It is Turing recognizable.

TM M recognizing D:
Si il t M b t t i ll ibl tti f i bl

possibly multivariate

Similar to M1 but tries all possible settings of variables
to integral values.

M and M1 are recognizers, not deciders!
M1 (not M) can be converted to a decider via
clever bounds on roots:

k = number of terms ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±

1

max

c
ck

6

cmax = coefficient with largest absolute value
c1 = coefficient of highest order term
Matijasevic’s Theorem: such bounds don’t exist for M.

The Church-Turing Thesis
Any algorithmic-functional procedure that can Any algorithmic-functional procedure that can
be done at all can be done by a Turing machine
This isn't provable, because “algorithmic-functional
procedure” is vague. But this thesis (law) has not procedure is vague. But this thesis (law) has not
been in serious doubt for many decades now.
TMs are probably the most commonly used low-level
formalism for functional algorithms and computation g p

Commonly used high-level formalisms include
pseudocode and all actual programming languages.
By Church-Turing thesis, these are all equivalent in
t f h t th (t ll) dterms of what they can (eventually) do.
Of course they have different ease-of-programming
and time/memory efficiency characteristics.

7

Intuitive notion of algorithms “equals” Turing machine algorithms.

Terminology for Describing Turing
Machines

Some ways to describe Turing machine computation:Some ways to describe Turing machine computation:
Formal description (7-tuple)

M=(Q,Σ,Γ,δ,q0,qacc,qrej)
Detailed state diagram.
Implementation-level description

English prose describing way TM moves its head and
modifies its tape.

Instantaneous descriptions (IDs) specifying snapshots of

We have
used
these

already.

Instantaneous descriptions (IDs) specifying snapshots of
tape and read-write head position as computation
progresses on a specific input.
High-level English prose describing algorithm.

As in M (finding integral roots for polynomial over x)As in M1 (finding integral roots for polynomial over x)
Comfort with one level allows “transition” to less detailed
level of description…
See next slide for format and notation for high-level
d i ti

8

description.

Terminology for Describing Turing
Machines (continued)

I t t TM i t iInput to TM is a string.
Encoding an object O as a string: < O >
E di lti l bj t t iEncoding multiple objects as strings:

O1, O2 ,…, Ok is encoded as: < O1, O2 ,…, Ok >

Turing machine can translate one Turing machine can translate one
encoding into another, so just pick a
reasonable encoding.

9

Terminology for Describing Turing
Machines (continued)

Example: h}di t dt di|{ GGAExample:
M3=“On input <G>:

1 Select first node of G and mark it

graph}undirectedconnectedais|{ GGA ><=

1. Select first node of G and mark it.
2. Repeat step 3 until no new nodes are marked:
3. For each node in G, mark it if it is attached by

an edge to a node that is already marked.
4. Scan all nodes of G to check if they are all

marked. If so, accept; otherwise, reject.”a d o, a p ; o , j

10

Terminology for Describing Turing
Machines (continued)

P ti i l t ti l l d t il Practice implementation-level details
for M3:

Check if input encoding <G> represents Check if input encoding <G> represents
a legal instance of a graph.

No repetitions in node list.No repetitions in node list.
How to check?

Each node in edge list also appears in node
li tlist.

See next slide for detail on steps 1-4.

11

Terminology for Describing Turing Machines
(continued)

E lExample:
M3=“On input <G>:

1. Select first node of G and mark it.
1 D t l ft t “di it”

graph}undirectedconnectedais|{ GGA ><=

1. Dot leftmost “digit”
2. Repeat step 3 until no new nodes are marked:
3. For each node in G, mark it if it is attached by

an edge to a node that is already marked.an edge to a node that is already marked.
1. Find undotted node n1 (in node list); underline it.
2. Find dotted node n2 (in node list); underline it.
3. Check if underlined pair (n1, n2) appears in edge list.

1. If so, dot n1, remove underlines, restart step 2.
2. Otherwise, check more edge(s).

4. If (n1, n2) does not appear in edge list, try another n2 .
4. Scan all nodes of G to check if they are all marked. If

12

4. Scan all nodes of G to check if they are all marked. If
so, accept; otherwise, reject.”
1. Check if all nodes are dotted.

