91.304 Foundations of
(Theoretical) Computer Science

Chapter 3 Lecture Notes (Section 3.3: Definition of Algorithm)

David Martin
dm@cs.uml.edu

With modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.

‘ @ \ To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,

California 94305, USA.

Overview

Algorithm
B |ntuitive definition

Hilbert’s Problems

B Show how definition of algorithm was
crucial to one mathematical problem

B Introduce Church-Turing Thesis

Terminology for Describing Turing
Machines

B [evels of description

What’s It All About?

Algorithm:

B steps for the computer to follow to solve a
problem

B well-defined computational procedure that
transforms input into output

B (analysis of algorithms is studied in 91.404)

Hilbert’s Problems

Show how definition of algorithm was crucial
to one mathematical problem.

B Mathematician David Hilbert (in 1900) posed his
famous grand-challenge list of 23 problems to the
mathematical community.

[0 10™ problem: devise a “process” that tests

whether a given polynomial has an integral root.

B Root is assignment of values to variables such that
result = 0.

= Example (single variable with integer coefficients):
f(X)=x"—4x+4
What are the root(s)? Are they integers?

Hilbert’s Problems

10t problem asks if D is decidable.

D ={p| pisapolynomial with an integral root}
B Itis not decidable!
B Itis Turing recognizable.

[0 Motivate key idea using simpler problem:

D, ={p| pisa polynomial over x with an integral root}
B TM M, recognizing D;:

= M;=“The input is a polynomial p over variable x.

1. Evaluate p with x set successively to the values O,

1, -1, 2, -2, ... If at any point p evaluates to O,
accept.”

= |f an integral root exists, M; will find one and accept.

= If no integral root exists, M, runs forever... c

Hilbert’s Problems

10 problem asks if D is decidable.
D ={p| pisapolynomial with an integral root}
B |t is not decidable! \ possibly multivariate

B Itis Turing recognizable.

[0 TM M recognizing D:

B Similar to M, but tries all possible settings of variables
to integral values.

M and M, are recognizers, not deciders!
B M; (not M) can be converted to a decider via

clever bounds on roots: (¢,
B k=numberofterms | ¢

C... = coefficient with largest absolute value

L]
B ¢, = coefficient of highest order term
B Matijasevic’s Theorem: such bounds don’t exist for M.

The Church-Turing Thesis

0 Any algorithmic-functional procedure that can
be done at all can be done by a Turing machine

1 This isn't provable, because “algorithmic-functional
procedure” is vague. But this thesis (law) has not
been in serious doubt for many decades now.

[0 TMs are probably the most commonly used low-level
formalism for functional algorithms and computation

B Commonly used high-level formalisms include
pseudocode and all actual programming languages.
By Church-Turing thesis, these are all equivalent in
terms of what they can (eventually) do.

B Of course they have different ease-of-programming
and time/memory efficiency characteristics.

Intuitive notion of algorithms *“equals” Turing machine algorithms.

~

Terminology for Describing Turing

Machines
[0 Some ways to describe Turing machine computation:
B Formal description (7-tuple)
0 M:(Q;Z,F;B;qo’qacmqrej)
B Detaliled state diagram.
wenave M Implementation-level description
Jeed = 0 English prose describing way TM moves its head and
already. modifies its tape.

B Instantaneous descriptions (IDs) specifying snapshots of
tape and read-write head position as computation
progresses on a specific input.

B High-level English prose describing algorithm.

O As in M; (finding integral roots for polynomial over x)

B Comfort with one level allows “transition” to less detailed
level of description...

B See next slide for format and notation for high-level

description.

Terminology for Describing Turing
Machines (continued)

Input to TM Is a string.
B Encoding an object O as a string: < O >
B Encoding multiple objects as strings:

0 O,4,0,,...,0Ols encoded as: < 0,0,,...,0,>

B Turing machine can translate one
encoding into another, so just pick a
reasonable encoding.

Terminology for Describing Turing
Machines (continued)

Example: A={<G >|Gisaconnected undirected graph}

M,="“On input <G=:
1. Select first node of G and mark it.
2. Repeat step 3 until no new nodes are marked:

3. For each node in G, mark it if it is attached by
an edge to a node that is already marked.

4. Scan all nodes of G to check if they are all
marked. If so, accept; otherwise, reject.”

10

Terminology for Describing Turing
Machines (continued)

Practice implementation-level details
for M,:

B Check If input encoding <G> represents
a legal instance of a graph.

G= O (G) =
1 No repetitions in node list. a (1,258,802, 2,9, 6,1, 1,6
B How to check? e‘e
[1 Each node in edge list also appears in node

list.
B See next slide for detail on steps 1-4.

11

Terminology for Describing Turing Machines
(continued)

0 Example: A={<G >|Gisaconnectedundirected graph}
LI M,;="0On input <G>=:
1. Select first node of G and mark it.
1. Dot leftmost “digit”
Repeat step 3 until no new nodes are marked:

2.

3. For each node in G, mark it if it is attached by
an edge to a node that is already marked.
1. Find undotted node n; (in node list); underline it.
2. Find dotted node n, (in node list); underline it.

3. Check if underlined pair (n,, n,) appears in edge list.
1. If so, dot n; remove underlines, restart step 2.
2. Otherwise, check more edge(s).

4. If (n;, n,) does not appear in edge list, try another n, .

4. Scan all nodes of G to check if they are all marked. If
SO, accept; otherwise, reject.”

1. Check if all nodes are dotted. 12

