91.304 Foundations of (Theoretical) Computer Science

Chapter 2 Lecture Notes (Section 2.3: Non-Context-Free Languages)

David Martin
dm@cs.uml.edu
With some modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by$\mathrm{sa} / 2.0 /$ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Picture so far

Strategy for finding a non-CFL

\square Just as we produced non-regular languages with the assistance of RPP, we'll produce non-context-free languages with the assistance of the context-free pumping property - First we show that CFL \subseteq CFPP

- And then show that a particular language L is not in CFPP
- Hence L can not be in CFL either

The Context-Free Pumping Property, CFPP

Definition L is a member of CFPP if - There exists $p \geq 0$ such that

- For every $s \in L$ satisfying $|s| \geq p$,
\square There exist $\mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y}, \mathbf{z} \in \Sigma^{*}$ such that

1. $s=u v x y z$
2. $|v y|>0 \quad$ bold, red text shows
3. $|v x y| \leq p$ differences from RPP
4. For all $i \geq 0$,

$$
u v^{i} x y^{i} z \in L
$$

The non-CFPP

Rephrasing L is not in CFPP if
\square For every $p \geq 0$

- There exists some $s \in L$ satisfying $|s| \geq p$ such that
ㅁ For every $\mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y}, \mathbf{z} \in \Sigma^{*}$ satisfying 1-3:

1. $s=u v x y z$,
2. $|v y|>0$, and
3. $|v x y| \leq p$

- There exists some $i \geq 0$ for which
$u v^{i} x y^{i} z \notin \mathbf{L}$

Game theory formulation

\square The direct (non-contradiction) proof of non-context-freeness can be formulated as a two-player game

- You are the player who wants to establish that L is not CF-pumpable
- Your opponent wants to make it difficult for you to succeed
- Both of you have to play by the rules
- Same setup as with regular pumping (RPP)

Game theory continued

The game has just four steps.

1. Your opponent picks $\mathrm{p} \geq 0$
2. You pick $s \in L$ such that $|s| \geq p$
3. Your opponent chooses $u, v, x, y, z \in$
Σ^{*} such that $s=u v x y z,|v y|>0$, and $|v x y| \leq p$
4. You produce some $i \geq 0$ such that $u v^{i} x y^{i} z \notin L$

Game theory continued

- If you are able to succeed through step 4, then you have won only one round of the game
\square To show that a language is not in CFPP you must show that you can always win, regardless of your opponent's legal moves
- Realize that the opponent is free to choose the most inconvenient or difficult p and u, v, x, y, z imaginable that are consistent with the rules

Game theory continued

\square So you have to present a strategy for always winning - and convincingly argue that it will always win

- So your choices in steps $2 \& 4$ have to depend on the opponent's choices in steps 1 \& 3
- And you don't know what the opponent will choose
- So your choices need to be framed in terms of the variables p, u, v, x, y, z

Towards proving CFL \subseteq CFPP

\square To prove the claim that CFL \subseteq CFPP we'll simplify things by using Chomsky Normal Form (CNF)
\square Recall: a CFG $G=\left(V, \Sigma, R, S_{0}\right)$ is in Chomsky Normal Form if each rule is of one of these forms:

- $A \rightarrow B C$, where A, B and $C \in V$, and $B \neq S_{0}$ and $C \neq S_{0}$ (neither B nor C is the start symbol)
- $A \rightarrow C$, where $A \in V$ and $c \in \Sigma$
- $S_{0} \rightarrow \varepsilon$, where S_{0} is the grammar's start symbol (this is the only ε production allowed)
\square Recall: Every context-free language L has a grammar G that is in Chomsky Normal Form

Towards proving CFL \subseteq CFPP: Length constraints

We will use some handy facts about CNF grammars.
Definition. Suppose s is some string generated by a CNF grammar G. Then let minheight(s) be the height (number of levels - 1) in the shortest parse tree for s in the grammar G.
Example: minheight $(\varepsilon) \geq 1$ for every G

Towards proving CFL \subseteq CFPP: Length constraints

\square Lemma Suppose G is in Chomsky Normal Form. Then

1. For all $n \geq 1$, if minheight(s) $\leq n$ then
$|s| \leq 2^{n}$. In other words, constraining the height of a parse tree also constrains the length of the string.
2. Recall length of string $=$ \# terminals $=$ \# leaves of parse tree.
3. For all $n \geq 0$, if $|s|>2^{n}$, then minheight($\left.s\right)>n$. In other words, large strings come from tall trees.
$\square \quad$ (The 2 in 2^{x} comes from the fact that each node in a parse tree for s has at most two children, because the grammar is in CNF.)

The Context-Free Pumping Property, CFPP (repeat)

Definition L is a member of CFPP if - There exists $p \geq 0$ such that

- For every $s \in L$ satisfying $|s| \geq p$,
\square There exist $u, v, x, y, z \in \Sigma^{*}$ such that

1. $s=u v x y z$
2. $|v y|>0$
3. $|v x y| \leq p$
4. For all $i \geq 0$,

$$
u v^{i} x y^{i} z \in L
$$

Theorem 2.19: CFL \subseteq CFPP:
 Proof Idea

Let:
A be a CFL and
G be a CFG generating A
s be a "very" long string in A
$\square \quad s$ has a parse tree for its derivation

- Parse tree is "very" long and contains a "long" path.
- Pigeon-hole principle:
- "Long" path contains repetition of some variable \mathbf{R}.
\square Repetition of \mathbf{R} allows substitution of first occurrence of R's subtree where second occurrence of R's subtree occurs.
- Result is a legal parse tree for language A.
- Due to substitution we can cut s into 5 pieces uvxyz.

O Occurrences of v and y can be "pumped" to yield uv'xy'z.

Theorem 2.19: CFL \subseteq CFPP: Proof Idea

FIGURE 2.35
Surgery on parse trees
Source: Sipser textbook

Theorem 2.19: CFL \subseteq CFPP

Proof. Suppose $L \in C F L$ and let $G=\left(V, \Sigma, R, S_{0}\right)$ be any CNF grammar that generates it.
\square We set $\mathrm{p}=2|\mathrm{~V}|+1$.
\square Now suppose $s \in L$ where $|s| \geq p$. We must show how to produce u, v, x, y, z etc.
\square Since $|s| \geq 2^{|V|+1}>2 \mid \mathrm{VI}$, we can apply the length fact to conclude that minheight(s)>|V|. But there are only |V| variables in the grammar. So looking at the parse tree for $|s|$, some variable \mathbf{R} must be used more than once.

- For convenience later, pick \mathbf{R} to be a variable that repeats on the bottom $|\mathrm{V}|+1$ internal nodes (corresponding to variables) of that path of the tree.

CFL \subseteq CFPP continued

\square We know that $S_{0} \Rightarrow^{*} s$ and that \mathbf{R} appears within this derivation twice
\square So let u, v, x, y, z be strings satisfying

- uvxyz=s
- $\mathrm{S}_{0} \Rightarrow^{*} u \mathbf{R z}$ (first appearance)
- $\mathbf{R} \Rightarrow^{*}$ vRy (second appearance)
- $\mathbf{R} \Rightarrow^{*} x \quad$ (then turning into x)
\square So $S_{0} \Rightarrow^{*} u \mathbf{R z} \Rightarrow^{*} u v R y z \Rightarrow^{*} u v x y z=s$ (we knew that $S_{0} \Rightarrow$ s already)
\square But the grammar is context free, so we can apply any of the \mathbf{R} substitutions at any point
\square Thus $S_{0} \Rightarrow^{*} u R z \Rightarrow^{*} u x z=u v^{0} \times y^{0} z$
ㅁ And $S_{0} \Rightarrow^{*}$ uvRyz \Rightarrow^{*} uvvRyyz \Rightarrow^{*} uvvxyyz $=u v^{2} x y^{2} z$ and so on. Hence, the pumping property holds.

$C F L \subseteq C F P P$ continued

$\square \quad$ We still have to see the length constraints $|v y|>0$ and $|v x y| \leq p$ though.
ㅁ Recall $s=u v x y z$.
Suppose that $|v y|=0$ (to get a contradiction). Then the parse tree has to include
$S_{0} \Rightarrow{ }^{*} \mathrm{uRz} \Rightarrow \geq^{1} \mathrm{uRz} \Rightarrow{ }^{*} \mathrm{uxz}$
(≥ 1 meaning "at least one substitution") This is because we know that \mathbf{R} is actually repeated in the tree.
\square But CNF rules always add to the string. The only exception is the optional rule $S_{0} \rightarrow \varepsilon$, but we've already assumed that $|s|$ is long, so it isn't ε. Thus line (\}) above can't be true, and hence $|v y|=0$ is impossible.

CFL \subseteq CFPP continued

\square We still have to see the length constraint |vxy| $\leq p$.
\square We know that \mathbf{R} repeats somewhere within the bottom $|\mathrm{V}|+1$ internal nodes (representing variables) of the tree while producing the vxy part of s. Let h be the actual height of this subtree. Then

- minheight(vxy) $\leq h \leq|V|+1$ (length of longest branch) \Rightarrow $|v x y| \leq 2^{|v|+1}=p($ by lemma (1.0 on slide 12)).
\square Q.E.D.

Game theory (repeat)

The game has just four steps.

1. Your opponent picks $\mathrm{p} \geq 0$
2. You pick $s \in L$ such that $|s| \geq p$
3. Your opponent chooses $u, v, x, y, z \in$
Σ^{*} such that $s=u v x y z,|v y|>0$, and $|v x y| \leq p$
4. You produce some $i \geq 0$ such that $u v^{i} x y^{i} z \notin L$

Example 2.36

$\square L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not a CFL

- To see this: let opponent choose p, then we set $s=$ $a^{P} b^{p} C^{p}$. Clearly $|s|>p$ and $s \in L$.
\square So opponent breaks it up into u, v, x, y, z subject to the length constraints $|v y|>0$ and $|v x y| \leq ' p$.
ㅁ We need to show that some i exists for which uvixyiz is not in L .
- Note: the first character of v must be no more than p chars away from the last character of y, because $|v x y| \leq p$.
- So in the string $u v^{0} x y^{0} z$, we have removed at least one char and at most p chars - but we have removed at most 2 types of characters: that is, some "a"s \& "b"s, or some "b"s \& "c"s. It's impossible to remove 3 types ("a"s \& "b"s \& "c"s) this way.
- So the resulting string isn't in $\mathrm{L} . \mathrm{i}=0$ is our exponent.

Closure properties of CFL

\square Reminder: closure properties can help us measure whether a computation model is reasonable or not
\square CFL is closed under

- Union, concatenation
- Thus, exponentiation and *
\square CFL is not closed under
- Intersection
- Complement
\square Weak intersection:
If $A \in C F L$ and $R \in \mathbf{R E G}$, then $A \cap R \in C F L$

Revised Picture

