
91.304 Foundations of
(Th ti l) C t S i(Theoretical) Computer Science

Chapter 2 Lecture Notes (Section 2.3: Non-Context-Free Languages)

David Martin
dm@cs uml edudm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-

1

sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

Picture so far

ALLB = { 0n 1n | n ≥ 0 }

CFL

REG

RPP

0*(101)*

FIN

REG

{ 0101, ε }

0 (101)

Each point is
a language in
this Venn
diagram

Does this exist?

2

g

Strategy for finding a non-CFL

J t d d l Just as we produced non-regular
languages with the assistance of RPP,
we'll produce non context free we ll produce non-context-free
languages with the assistance of the
context-free pumping propertycontext free pumping property

First we show that CFL ⊆ CFPP

And then show that a particular language And then show that a particular language
L is not in CFPP
Hence L can not be in CFL either

3

The Context-Free Pumping
Property, CFPP

D fi iti L i b f CFPP ifDefinition L is a member of CFPP if
There exists p≥0 such that

Fo e e s L satisf ing |s| ≥ p For every s∈L satisfying |s| ≥ p,
There exist u,v,x,y,z ∈ Σ* such that

1 s=uvxyz1. s=uvxyz
2. |vy|>0
3. |vxy|≤ p
4 F ll i ≥ 0

bold, red text shows
differences from RPP

4. For all i ≥ 0,
u vi x yi z ∈ L

4

The non-CFPP

R h i L i t i CFPP ifRephrasing L is not in CFPP if
For every p≥0

The e e ists some s L satisf ing |s| ≥ p There exists some s∈L satisfying |s| ≥ p
such that

For every u v x y z ∈ Σ* satisfying 1-3:For every u,v,x,y,z ∈ Σ satisfying 1 3:
1. s=uvxyz,
2. |vy|>0, and
3. |vxy|≤ p

There exists some i ≥ 0 for which

u vi x yi z L∈

5

u v x y z L∈

Game theory formulation

The direct (non contradiction) proof The direct (non-contradiction) proof
of non-context-freeness can be
formulated as a two-player gameformulated as a two player game

You are the player who wants to
establish that L is not CF-pumpable
Your opponent wants to make it difficult
for you to succeed
Both of you have to play by the rulesBoth of you have to play by the rules
Same setup as with regular pumping
(RPP)

6

Game theory continued

Th h j t f tThe game has just four steps.
1. Your opponent picks p≥0
2 Y i k L h th t | |≥2. You pick s∈L such that |s|≥ p
3. Your opponent chooses u,v,x,y,z ∈

Σ* such that s=uvxyz, |vy|>0, and
|vxy|≤ p

d h h4. You produce some i ≥ 0 such that
uvixyiz L∈

7

Game theory continued

If you are able to succeed through step 4 If you are able to succeed through step 4,
then you have won only one round of the
gameg
To show that a language is not in CFPP you
must show that you can always win,
regardless of your opponent's legal moves

Realize that the opponent is free to choose the
most inconvenient or difficult p and u,v,x,y,z most inconvenient or difficult p and u,v,x,y,z
imaginable that are consistent with the rules

8

Game theory continued

So you have to present a strategy for So you have to present a strategy for
always winning — and convincingly
argue that it will always winargue that it will always win

So your choices in steps 2 & 4 have to
depend on the opponent's choices in
t 1 & 3steps 1 & 3

And you don't know what the opponent
will choosewill choose
So your choices need to be framed in
terms of the variables p, u, v, x, y, z

9

To a ds p o ing CFL ⊆ CFPPTowards proving CFL ⊆ CFPP
To prove the claim that CFL ⊆ CFPP we'll simplify To prove the claim that CFL ⊆ CFPP we ll simplify
things by using Chomsky Normal Form (CNF)
Recall: a CFG G=(V,Σ,R,S0) is in Chomsky Normal
Form if each rule is of one of these forms:Form if each rule is of one of these forms:

A → BC, where A, B and C ∈ V, and B≠S0 and C≠S0

(neither B nor C is the start symbol)
A → c, where A ∈ V and c ∈ Σ
S0 → ε, where S0 is the grammar's start symbol (this
is the only ε production allowed)

Recall: Every context-free language L has a grammar y g g g
G that is in Chomsky Normal Form

10

Towards proving CFL ⊆ CFPP:
Length constraints

W ill h d f t b t CNF We will use some handy facts about CNF
grammars.
D fi iti S i t i Definition. Suppose s is some string
generated by a CNF grammar G. Then
let minheight(s) be the height (b f let minheight(s) be the height (number of

levels - 1) in the shortest parse tree for s
in the grammar G in the grammar G.
Example: minheight(ε) ≥ 1 for every G

11

Towards proving CFL ⊆ CFPP:
Length constraints

Lemma Suppose G is in Chomsky Normal Form Lemma Suppose G is in Chomsky Normal Form.
Then

1. For all n≥1, if minheight(s)≤n then
|s| ≤ 2n. In other words, constraining the height of a |s| ≤ 2 . In other words, constraining the height of a
parse tree also constrains the length of the string.

1. Recall length of string = # terminals = # leaves of
parse tree.

2. For all n≥ 0, if |s|>2n, then minheight(s)> n. In
other words, large strings come from tall trees.
(The 2 in 2x comes from the fact that each node in a (
parse tree for s has at most two children, because
the grammar is in CNF.)

12

The Context-Free Pumping
Property, CFPP (repeat)

D fi iti L i b f CFPP ifDefinition L is a member of CFPP if
There exists p≥0 such that

Fo e e s L satisf ing |s| ≥ p For every s∈L satisfying |s| ≥ p,
There exist u,v,x,y,z ∈ Σ* such that

1 s=uvxyz1. s=uvxyz
2. |vy|>0
3. |vxy|≤ p
4 F ll i ≥ 04. For all i ≥ 0,

u vi x yi z ∈ L

13

Theorem 2.19: CFL ⊆ CFPP:
Proof Idea
Let:Let:

A be a CFL and
G be a CFG generating A
s be a “very” long string in As be a very long string in A
s has a parse tree for its derivation

Parse tree is “very” long and contains a “long” path.
Pigeon-hole principle:g p p

“Long” path contains repetition of some variable R.
Repetition of R allows substitution of first occurrence of
R’s subtree where second occurrence of R’s subtree
occurs.

Result is a legal parse tree for language A.
Due to substitution we can cut s into 5 pieces uvxyz.

Occurrences of v and y can be “pumped” to yield
uvixyiz

14

uvixyiz.

Theorem 2.19: CFL ⊆ CFPP:
Proof Idea

15

Source: Sipser textbook

Theo em 2 19 CFL ⊆ CFPPTheorem 2.19: CFL ⊆ CFPP
Proof. Suppose L∈CFL and let G=(V,Σ,R,S0) be any CNF Proof. Suppose L∈CFL and let G (V,Σ,R,S0) be any CNF

grammar that generates it.
We set p=2|V|+1.
Now suppose s∈L where |s|≥ p. We must show how Now suppose s∈L where |s|≥ p. We must show how
to produce u,v,x,y,z etc.
Since |s| ≥ 2|V|+1 > 2|V|, we can apply the length fact
to conclude that minheight(s)> |V|. But there are to conclude that minheight(s)> |V|. But there are
only |V| variables in the grammar. So looking at the
parse tree for |s|, some variable R must be used more
than once.

For convenience later, pick R to be a variable that
repeats on the bottom |V| +1 internal nodes
(corresponding to variables) of that path of the
tree

16

tree.

CFL ⊆ CFPP contin edCFL ⊆ CFPP continued
We know that S0 ⇒* s and that R appears within this 0 pp
derivation twice
So let u,v,x,y,z be strings satisfying

uvxyz=s
S0 ⇒ uRz (first appearance)

R ⇒* vRy (second appearance)
R ⇒* x (then turning into x)

So S * uRz * uvRyz * uvxyz s (we knew that So S0 ⇒* uRz ⇒* uvRyz ⇒* uvxyz = s (we knew that
S0 ⇒* s already)
But the grammar is context free, so we can apply any
of the R substitutions at any pointof the R substitutions at any point
Thus S0 ⇒* uRz ⇒* uxz = u v0 x y0 z
And S0 ⇒* uvRyz ⇒* uvvRyyz ⇒* uvvxyyz = uv2xy2z
and so on. Hence, the pumping property holds.

17

, p p g p p y

CFL ⊆ CFPP contin edCFL ⊆ CFPP continued

We still have to see the length constraints |vy|>0 and We still have to see the length constraints |vy|>0 and
|vxy|≤ p though.

Recall s = uvxyz.
Suppose that |vy|=0 (to get a contradiction). Then the Suppose that |vy| 0 (to get a contradiction). Then the
parse tree has to include
S0 ⇒* uRz ⇒≥1 uRz ⇒* uxz (�)
(≥1 meaning "at least one substitution") This is because

 k th t R i t ll t d i th twe know that R is actually repeated in the tree.
But CNF rules always add to the string. The only
exception is the optional rule S0→ ε, but we've already
assumed that |s| is long, so it isn't ε. Thus line (�) assumed that |s| is long, so it isn t ε. Thus line (�)
above can't be true, and hence |vy|=0 is impossible.

18

CFL ⊆ CFPP contin edCFL ⊆ CFPP continued

We still have to see the length constraint |vxy|We still have to see the length constraint |vxy|

≤ p.
We know that R repeats somewhere within the We know that R repeats somewhere within the
bottom |V|+1 internal nodes (representing
variables) of the tree while producing the vxy) p g y
part of s. Let h be the actual height of this
subtree. Then

minheight(vxy) ≤ h ≤ |V|+1 (l th f l t b h) ⇒minheight(vxy) ≤ h ≤ |V|+1 (length of longest branch) ⇒
|vxy| ≤ 2|V|+1 = p (by lemma (1.0 on slide 12)).

Q E D

19

Q.E.D.

Game theory (repeat)

Th h j t f tThe game has just four steps.
1. Your opponent picks p≥0
2 Y i k L h th t | |≥2. You pick s∈L such that |s|≥ p
3. Your opponent chooses u,v,x,y,z ∈

Σ* such that s=uvxyz, |vy|>0, and
|vxy|≤ p

d h h4. You produce some i ≥ 0 such that
uvixyiz L∈

20

Example 2.36
L = {anbncn | n ≥ 0} is not a CFL{ | ≥ }
To see this: let opponent choose p, then we set s =
apbpcp. Clearly |s|>p and s∈L.
So opponent breaks it up into u,v,x,y,z subject to the
l th t i t | | 0 d | |≤

pp p , , ,y, j
length constraints |vy|>0 and |vxy|≤ p.
We need to show that some i exists for which uvixyiz
is not in L.

N t th fi t h t f t b th Note: the first character of v must be no more than p
chars away from the last character of y, because
|vxy|≤ p.
So in the string uv0xy0z, we have removed at least g y ,
one char and at most p chars — but we have
removed at most 2 types of characters: that is, some
"a"s & "b"s, or some "b"s & "c"s. It's impossible to
remove 3 types ("a"s & "b"s & "c"s) this way.

21

yp () y
So the resulting string isn't in L. i=0 is our exponent.

Closure properties of CFL
Reminder: closure properties can help us Reminder: closure properties can help us
measure whether a computation model is
reasonable or not
CFL is closed underCFL is closed under

Union, concatenation
Thus, exponentiation and *

CFL i t l d dCFL is not closed under
Intersection
Complementp

Weak intersection:

If A∈CFL and R∈REG, then A∩R∈ CFL

22

,

Revised Picture
ALLALL

CFPP

RPP

CFL

REG

FINEach point is
a language in
this Venn
diagram

23

g

