
91.304 Foundations of
(Th ti l) C t S i(Theoretical) Computer Science

Chapter 2 Lecture Notes (Section 2.2: Pushdown Automata)

Prof. Karen Daniels, Fall 2012,

with acknowledgement to:
-Sipser Introduction to the Theory of Computation textbook Sipser Introduction to the Theory of Computation textbook
and
-Dr. David Martin

1

Overview

New computational model: New computational model:
Pushdown Automata (like NFA, but add a stack)

Definition, Examples, p

Equivalence with Context-Free Grammars
Theorem 2.20: A language is context-free iff some
pushdown automaton recognizes it.
Lemma 2.21 () If a language is context-free,
then some pushdown automaton recognizes it.

⇒
p g

Lemma 2.27 () If a pushdown automaton
recognizes some language, then it is context-free.

⇐

2

Pushdown Automata Definition

Lik NFA b t dd t kLike NFA, but add a stack
states and transition

function

stack can hold unlimited
amount of information

3

Source: Sipser Textbook

Pushdown Automata Definition

F l D fi iti Formal Definition (6-tuple uses nondeterminism):
Nondeterministic PDA’s are more powerful than deterministic ones. We focus on
nondeterministic ones because they are as powerful as context-free grammars.

Each “th ead” has its o n stack
}{εε ∪Γ=Γ

Each “thread” has its own stack.

4

Source: Sipser Textbook

Pushdown Automata Definition

Fo mal Definition Specification of F δFormal Definition: Specification of F, δ

5

Source: Sipser Textbook

Pushdown Automata Examples

$ for empty stack test

not regular!

h h d f l (f f k) h

6

Source: Sipser Textbook

a,b c means: when machine is reading a from input, it replaces b (from top of stack) with c.→

Pushdown Automata Examples

Example 2 16Example 2.16

Nondeterministically guess whether
to match i = j or i = k.

$ for empty stack test

7

Source: Sipser Textbook

a,b c means: when machine is reading a from input, it replaces b (from top of stack) with c.→

Nondeterminism is essential for recognizing this language with a PDA!

Pushdown Automata Examples

E l 2 18Example 2.18
$ for empty stack test

Nondeterministically guess
end of w.

8

Source: Sipser Textbook

a,b c means: when machine is reading a from input, it replaces b (from top of stack) with c.→

Equivalence with Context-Free
Grammars

(for nondeterministic PDAs)

Theorem 2.20: A language is context-free iff
some pushdown automaton recognizes it

(for nondeterministic PDAs)

some pushdown automaton recognizes it.
Lemma 2.21 () If a language is context-
free, then some pushdown automaton

⇒
, p

recognizes it.
Lemma 2.27 () If a pushdown automaton

l h
⇐

recognizes some language, then it is context-
free.

9

Source: Sipser Textbook

Equivalence with Context-Free
Grammars

Lemma 2 21 () If a language is context⇒Lemma 2.21 () If a language is context-
free, then some pushdown automaton
recognizes it.

⇒

Proof Idea: Produce a pushdown automaton P from
the context-free grammar G for the context-free
language.

If G generates w, then P accepts its input w by
checking if there’s a derivation for w.

Each step of derivation yields an intermediate string.
K l t f thi t i th t kKeep only part of this string on the stack.
(see next slide for illustration)

Nondeterminism guesses sequence of correct
substitutions for a derivation

10

substitutions for a derivation.

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.21 ()

Proof Idea (again): Produce a pushdown

⇒

Proof Idea (again): Produce a pushdown
automaton P from the context-free grammar
G for the context-free language.g g

Each step of derivation yields an intermediate string.
Storing entire intermediate string on stack makes may not allow
PDA to find variables in intermediate string to make substitutions.

ll k l f h h kFix: Essentially keep only part of this string on the stack,
starting with 1st variable. (terminals temporarily pushed onto stack, then
matched with input and popped off)

stack
input:

11

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.21 ()

Proof Idea (again): Produce a pushdown

⇒

Proof Idea (again): Produce a pushdown
automaton P from the context-free grammar
G for the context-free language.g g

12

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.21 ()

Proof Idea (again): Produce a pushdown

⇒

Proof Idea (again): Produce a pushdown
automaton P from the context-free grammar G for
the context-free language.

Substituting string on right-hand side of
a rule.

means when P is in state q, a is next),,(),(saqur δ∈

luuu L1=

q,
input symbol, and s is symbol on top of stack, P reads a,
pops s, pushes u onto stack and goes to state r.

(note reverse order)

13

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.21 ()

Proof Idea (again): Produce a pushdown

⇒

Proof Idea (again): Produce a pushdown
automaton P from the context-free grammar G for
the context-free language.

Recall informal description of P:

(Push $. Push S.)

(Match input with top
of stack.)

14

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.21 ()

Proof Idea (again): Produce a pushdown automaton P from

⇒

Proof Idea (again): Produce a pushdown automaton P from
the context-free grammar G for the context-free language.
Example:

aTbS →

(Match terminal with input

TaT →

15

Source: Sipser Textbook

(p
and then pop.)

Additional example:
board work

Equivalence with Context-Free
Grammars: Lemma 2.27 ()

Lemma 2 27 () If a pushdown automaton P⇐

⇐

Lemma 2.27 () If a pushdown automaton P
recognizes some language, then it is context-free.

Proof Idea:

⇐

Design grammar G that does more:
Create variable Apq for each pair of states p and q in P.

A generates all strings taking P from p with empty Apq generates all strings taking P from p with empty
stack to q with empty stack (overkill!)

To support this, first modify P so that:
It has a single accept state q tIt has a single accept state q accept.

It empties its stack before accepting.
Each transition either pushes a symbol onto the
stack or pops one off the stack (not simultaneous).

16

stack or pops one off the stack (not simultaneous).
How can we implement these 3 features? (example)

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.27 ()

Lemma 2 27 () If a pushdown automaton P⇐

⇐

Lemma 2.27 () If a pushdown automaton P
recognizes some language, then it is context-free.

Proof Idea (continued): Design grammar G that
d (ti d)

⇐

does more (continued):
Understand how P operates on strings (e.g. string
x):

First move must be a push (why?)
Last move must be a pop (why?)
Intermediate moves: 2 cases

C 1 S b l d d i b l h d Case 1: Symbol popped at end is symbol pushed at
beginning.
Case 2: Otherwise, symbol pushed at start is popped
somewhere in between.

baAA rspq →

AAA →

See figures in
later slides.

17

Source: Sipser Textbook

rqprpq AAA →

Equivalence with Context-Free
Grammars: Lemma 2.27 ()

Lemma 2 27 () If a pushdown automaton P⇐

⇐

Lemma 2.27 () If a pushdown automaton P
recognizes some language, then it is context-free.

Recall: means when P is in state q, a is next input
b l d i b l t f t k P d

⇐

),,(),(saqur δ∈
symbol, and s is symbol on top of stack, P reads a, pops s,
pushes u onto stack and goes to state r.

18

Source: Sipser Textbook

Continue example…

Equivalence with Context-Free
Grammars: Lemma 2.27 ()

Lemma 2 27 () If a pushdown automaton P⇐

⇐

Lemma 2.27 () If a pushdown automaton P
recognizes some language, then it is context-free.

⇐

in state s
transition
to state r

in state p transition to state q
input a input b

push t pop t

19

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.27 ()

Lemma 2 27 () If a pushdown automaton P⇐

⇐

Lemma 2.27 () If a pushdown automaton P
recognizes some language, then it is context-free.

⇐

transition
to state r

in state p transition to state q

20

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.27 ()

Lemma 2 27 () If a pushdown automaton P⇐

⇐

Lemma 2.27 () If a pushdown automaton P
recognizes some language, then it is context-free.

Show construction (previous 3 slides) works by proving:

⇐

Apq generates x iff x can bring P from state p with empty stack
to state q with empty stack.

Claim 2.30: If Apq generates x, then x can bring P from state
p with empty stack to state q with empty stack
⇒
p with empty stack to state q with empty stack.

Proof is by induction on number of steps in deriving x from Apq.
(see textbook for details)

Claim 2.31: If x can bring P from state p with empty stack
t t t ith t t k th A t
⇐
to state q with empty stack, then Apq generates x.

Proof is by induction on number of steps in computation of P that goes
from state p to state q with empty stacks on input x.
(see textbook for details)

21

Source: Sipser Textbook

A Consequence of Lemma 2.27

Corollary 2.32: Every regular
language is context free.

Proof Idea:
Every regular language is
recognized by a finite automaton.
Every finite automaton is a
pushdown automaton that ignores pushdown automaton that ignores
its stack.
Lemma 2.27 (rephrased): Every
pushdown automaton can be

i t d ith t t f associated with a context-free
grammar.
Now apply transitivity.

22

Source: Sipser Textbook

Picture so far

ALLB = { 0n 1n | n ≥ 0 }

CFL

≥

REG

RPP

0*(101)* F { i bj k | i 1 j k }

FIN

REG

{ 0101, ε }

0 (101) F = { ai bj ck | i≠1 or j=k }

Each point is
a language in
this Venn
diagram

Does this exist?

23

g

Source: Dr. David Martin

