91.304 Foundations of
(Theoretical) Computer Science

Chapter 2 Lecture Notes (Section 2.2: Pushdown Automata)
Prof. Karen Daniels, Fall 2012

with acknowledgement to:

-Sipser Introduction to the Theory of Computation textbook
and

-Dr. David Martin

Overview

New computational model:

B Pushdown Automata (like NFA, but add a stack)
[l Definition, Examples

Equivalence with Context-Free Grammars

B Theorem 2.20: A language is context-free iff some
pushdown automaton recognizes it.

B Lemma 2.21 (=) If a language is context-free,
then some pushdown automaton recognizes it.

B [emma 2.27 (<) If a pushdown automaton
recognizes some language, then it is context-free.

Pushdown Automata Definition

states and transition
function

Like NFA, but add a stack

state
control

EEE input

TIGURE 2.11

~chematic of a finite automaton

state

FIGURE 2.12

Schematic of a pushdown automaton

%
v | stack
Z | stack can hold unlimited

amount of information

3

Source: Sipser Textbook

Pushdown Automata Definition

Formal Definition (6-tuple uses nondeterminism):

Nondeterministic PDA’s are more powerful than deterministic ones. We focus on
nondeterministic ones because they are as powerful as context-free grammars.

DEFINITION 2.13

A pushdown automaton is a 6-tuple (Q, X.1'. 4. qp. F), where Q, %,
I', and F are all finite sets, and
1. @ 1s the set of states,
2. ¥ is the input alphabet,
3. I' is the stack alphabet, Each “thread” has its own stack.
4. 0: Q x X: xI.—P(Q x I;) is the transition function, I, =I'u{e}
5. go €) is the start state, and
6. F' C () is the set of accept states.

4

Source: Sipser Textbook

Pushdown Automata Definition

Formal Definition: Specification of F, 6

A pushdown automaton M = (Q).X,T. 4. gy, F) computes as follows. It ac-
cepts input w if w can be written as w = wjws - - - Wy, where each w; € . and
sequences of states rg. 7y, ...,y € @ and strings sg, 81, ..., 8, € [exist that

satisfy the following three conditions. The strings s; represent the sequence of
stack contents that M has on the accepting branch of the computation.

1. 7o = go and sy = . This condition signifies that M starts out properly, in
the start state and with an empty stack.

2. Fori =0,...,m — 1, we have (riy1,b) € 0(r;, wiy1,a), where 5; = at

and s;.1 = bt for some a.b € I and £ € T'*. This condition states that M
moves properly according to the state, stack, and next input symbol.

3. rm € F. This condition states that an accept state occurs at the mput end.

5

Source: Sipser Textbook

Pushdown Automata Examples

EXAMPLE 2.14

The following is the formal description of the PDA (page 110) that recognizes

the language {0™1"| n > 0}. Let M; be (@, X%, T, 8, ¢1, F), where

Q=1{q01.92.93. 9},

== {0,1},
I'={o,$},

F={g1.q},and

d is given by the following table, wherein blank entries signify 0.

Input: 0 1 £
Stack:0|$] € 0 E3E 0‘ 3 €
a1 {(g2,9)}
2 {(g2,0)} {(gs.€)}
g3 {(g3,)} {(g4,€)}
qa

ab —>¢c¢

$ for empty stack test

0,E—0G
(2

1,0—=¢&

1,0—€

FIGURE 2.15

State diagram for the PDA A4 that recognizes {0"1"| n = 0}

not regular!

means: when machine is reading a from input, it replaces b (from top of stack) with c.

6

Source: Sipser Textbook

Pushdown Automata Examples

Example 2.16

$ for empty stack test £.6—$ Nondeterministically guess whether

to match i =jori=k.
E,E—E £,6—¢ £,5—e
(g5 (g
#,E—ra b,e—e c,a—&

FIGURE 2.17
State diagram for PDA M, that recognizes
{a*v’c*|i,5,k > 0and i = jori = k}

a,b > ¢ means: when machine is reading a from input, it replaces b (from top of stack) with c.

Nondeterminism is essential for recognizing this language with a PDA! ?

Source: Sipser Textbook

Pushdown Automata Examples

Example 2.18

$ for empty stack test

E,E—5 0,g—0
@ - 42 1.1

Nondeterministically guess
end of w.

E,EE

0,0—&
1 E,$%’E q'g 1:1—FE

FIGURE 2.19
State diagram for the PDA Mj that recognizes {ww™ | w € {0,1}*}

a,b - ¢ means: when machine is reading a from input, it replaces b (from top of stack) with c.
8

Source: Sipser Textbook

Equivalence with Context-Free
Grammars

(for nondeterministic PDAS)

Theorem 2.20: A language Is context-free iff
some pushdown automaton recognizes It.

Lemma 2.21 &) If a language is context-
free, then some pushdown automaton
recognizes it.

Lemma 2.27 ¢) If a pushdown automaton

recognizes some language, then it is context-
free.

9

Source: Sipser Textbook

Equivalence with Context-Free
Grammars

Lemma 2.21 (=) If a language is context-
free, then some pushdown automaton
recognizes It.

B Proof ldea: Produce a pushdown automaton P from
the context-free grammar G for the context-free
language.

1 If G generates w, then P accepts its input w by
checking if there’s a derivation for w.
B Each step of derivation yields an intermediate string.
= Keep only part of this string on the stack.
= (see next slide for illustration)

B Nondeterminism guesses sequence of correct
substitutions for a derivation.

10

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.21 (=)

Proof Idea (again): Produce a pushdown
automaton P from the context-free grammar

G for the context-free language.

[0 Each step of derivation yields an intermediate string.

B Storing entire intermediate string on stack makes may not allow
PDA to find variables in intermediate string to make substitutions.
B Fix: Essentially keep only part of this string on the stack,

starting with 15t variable. (terminals temporarily pushed onto stack, then
matched with input and popped off)

control v

A

input: [0]1]1]o[o[1] |

. A| stack

= 0]

~—= —r— ?

01 A1 A0 fal

FIGURE 2.22

P representing the intermediate string 01 A1 A0 11

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.21 (=)

Proof Idea (again): Produce a pushdown
automaton P from the context-free grammar
G for the context-free language.

The following is an informal description of P,

1. Place the marker symbol $ and the start variable on the stack.
2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

c. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

12

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.21 (=)

[J Proof ldea (again): Produce a pushdown
automaton P from the context-free grammar G for
the context-free language.

[0 Substituting string u=u;---u, on right-hand side of
a rule.
m (',u)€9(q,a,S) means when P is in state g, a is next

input symbol, and s is symbol on top of stack, P reads a,
pops s, pushes u onto stack and goes to state r.

8(g.a, s) to contain (g, ui)-
5(({11 £, E:' = {(QQ; Up—1]}
0(g2.€.€) = {(g3, wi-2) 1,

€,e5y (note reverse order)

0(qi—1.€.8) = {(r,u1)}-

13
FIGURE 2.23

Implementing the shorthand (r, zyz) € d(q, a, s) Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.21 (=)

[J Proof ldea (again): Produce a pushdown
automaton P from the context-free grammar G for

the context-free language.

Recall informal description of P: @

1. Place the marker symbol $ and the start variable on the stack. [c.cs8 (Push $. Push 5.)

2. Repeat the following steps forever.
5 : In¥ g, A—w forrule A—w
a. If the top of stack is a variable symbol A, nondeterministically select .
one of the rules for A and substitute 4 by the string on the right-hand a,a—e¢ for terminal a
side of the rule. g,$—e (Match input with top

b. If the top of stack is a terminal symbol a, read the next symbol from of stack.)
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

c. If the top of stack is the symbol $, enter the accept state. Doing so

accepts the input if it has all been read. FIGURE 2.24

State diagram of P

14

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.21 (=)

[J Proof Idea (again): Produce a pushdown automaton P from
the context-free grammar G for the context-free language.

D Example - EXAMPEE: “DDE ot il niiost e comsditabs emeethh i D SR e

We use the procedure developed in Lemma 2.21 to construct a PDA P; from the
following CFG G.

S —alb|b
T —Tale

The transition function is shown in the following diagram.

S —>aTb
T—>Ta
€,5—b
g, T—e
§’§j§ (Match terminal with input
: and then pop.)
Additional example: FIGURE 2.26 =

board work State diagram of P,

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.27 (<)

0 Lemma 2.27 (<) If a pushdown automaton P
recognizes some language, then it is context-free.

B Proof ldea:

[0 Design grammar G that does more:
B Create variable A, for each pair of states p and g in P.

= Ay generate_s all strings taking P fr_om p with empty
stack to g with empty stack (overkilll)

B To support this, first modify P so that:
= It has a single accept state g ,..opt-
= |t empties its stack before accepting.

= Each transition either pushes a symbol onto the
stack or pops one off the stack (not simultaneous).

= How can we implement these 3 features? (example)
16

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.27 (<)

L Lemma 2.27 (<) If a pushdown automaton P
recognizes some language, then it is context-free.

B Proof Idea (continued): Design grammar G that
does more (continued):

[0 Understand how P operates on strings (e.g. string
X):
B First move must be a push (why?)
B [ast move must be a pop (why?)
B Intermediate moves: 2 cases

{- Case 1: Symbol popped at end is symbol pushed at
n

See figures i
later slides.

beginning. A, — aAb

Case 2: Otherwise, symbol pushed at start is popped
somewhere in between. Ay — ALA,

17

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.27 (<)

0 Lemma 2.27 (<) If a pushdown automaton P

recognizes some language, then it is context-free.

B Recall: (r,u)eos(g,a,s) means when P is in state g, a is next input
symbol, and s is symbol on top of stack, P reads a, pops s,
pushes u onto stack and goes to state r.

PROOF Saythat P = (Q,X.T,6, go, {gaccepe }) and construct G. The variables
of G are {Ap,| p,g € Q}. The start variable is Ag, q...... Now we describe G’
rules.

* Foreachp,q,r,s € Q, t €T, and a,b € X, if §(p, a,) contains (r,t) and
d(s, b, t) contains (g, €), put the rule A,;, — aA,bin G.

* Foreach p,¢,r € Q, putthe rule Ay, — A, 4., inG.

* Finally, for each p € @, put the rule 4, — £ in G.

Continue example... 18
Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.27 (<)

0 Lemma 2.27 (<) If a pushdown automaton P
recognizes some language, then it is context-free.

* Foreachp,q.r,s € Q, t €T, and a,b € %, if §(p, a, €) contains (r, ¢) and
d(s, b, t) contains (g, €), put the rule A,;, — aA,:bin G.

T

Stack 4
height transition generated
SSAMMEL SR AR et by Apg
Input string "\ _ pop t
ey : A4
in state p gy " Jb transition to state q
HpRS generated input b
by A,
FIGURE 2.29
PDA computation corresponding to the rule 4,, — aA,.b 19

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.27 (<)

0 Lemma 2.27 (<) If a pushdown automaton P
recognizes some language, then it is context-free.

* Foreach p.q,7 € Q, putthe rule A,, — A, 4., in G.

T

Stack
height

_— generated
by Apg

transition

I 5 to state r
nput string

b
in statep \ \ /\ \ / transition to state q
generated generated
by Apr by Arq
FIGURE 2.28
PDA computation corresponding to the rule 4,, — A4, 4.,

20

Source: Sipser Textbook

Equivalence with Context-Free
Grammars: Lemma 2.27 (<)

0 Lemma 2.27 (<) If a pushdown automaton P

recognizes some language, then it is context-free.

B Show construction (previous 3 slides) works by proving:

O A, generates x iff x can bring P from state p with empty stack
to state q with empty stack.

O —> Claim 2.30: If A,q generates X, then x can bring P from state
p with empty stack to state g with empty stack.
B Proof is by induction on number of steps in deriving x from A,.
B (see textbook for details)

[0 <= Claim 2.31: If x can bring P from state p with empty stack
to state q with empty stack, then A, generates x.

B Proof is by induction on number of steps in computation of P that goes
from state p to state q with empty stacks on input x.

B (see textbook for details)

21

Source: Sipser Textbook

A Conseguence of Lemma 2.27

[Corollary 2.32: Every regular
language is context free.

B Proof ldea:

O

O

Every regular language is
recognized by a finite automaton.

Every finite automaton is a
pushdown automaton that ignores
its stack.

Lemma 2.27 (rephrased): Every
pushdown automaton can be
associated with a context-free
grammar.

Now apply transitivity.

FIGURE 2.33
Relationship of the regular and context-free languages

22

Source: Sipser Textbook

Picture so far

B=4{0"1"|

\

0*(101)*

{ 0101, ¢ }

Each point is
a language in
this Venn

diagram

ALL

< | 1Iz1 or j=K }

o
T Does this exist?

23

Source: Dr. David Martin

