
91.304 Foundations of 
(Th ti l) C t  S i(Theoretical) Computer Science

Chapter 2 Lecture Notes (Section 2.2: Pushdown Automata)

Prof. Karen Daniels, Fall 2012,

with acknowledgement to:
-Sipser Introduction to the Theory of Computation textbook Sipser Introduction to the Theory of Computation textbook 
and 
-Dr. David Martin

1



Overview

New computational model: New computational model: 
Pushdown Automata (like NFA, but add a stack)

Definition, Examples, p

Equivalence with Context-Free Grammars
Theorem 2.20: A language is context-free iff some 
pushdown automaton recognizes it.
Lemma 2.21 (    ) If a language is context-free, 
then some pushdown automaton recognizes it.

⇒
p g

Lemma 2.27 (    ) If a pushdown automaton 
recognizes some language, then it is context-free.

⇐
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Pushdown Automata Definition

Lik  NFA  b t dd  t kLike NFA, but add a stack
states and transition 

function

stack can hold unlimited
amount of information
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Source: Sipser Textbook



Pushdown Automata Definition

F l D fi iti  Formal Definition (6-tuple uses nondeterminism):
Nondeterministic PDA’s are more powerful than deterministic ones.  We focus on 
nondeterministic ones because they are as powerful as context-free grammars.

Each “th ead” has its o n stack
}{εε ∪Γ=Γ

Each “thread” has its own stack.
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Source: Sipser Textbook



Pushdown Automata Definition

Fo mal Definition  Specification of F  δFormal Definition: Specification of F, δ
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Pushdown Automata Examples

$ for empty stack test

not regular!

h h d f l (f f k) h
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Source: Sipser Textbook

a,b c means: when machine is reading a from input, it replaces b (from top of stack) with c.→



Pushdown Automata Examples

Example 2 16Example 2.16

Nondeterministically guess whether 
to match i = j or i = k.

$ for empty stack test
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Source: Sipser Textbook

a,b c means: when machine is reading a from input, it replaces b (from top of stack) with c.→

Nondeterminism is essential for recognizing this language with a PDA!



Pushdown Automata Examples

E l  2 18Example 2.18
$ for empty stack test

Nondeterministically guess 
end of w.
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Source: Sipser Textbook

a,b c means: when machine is reading a from input, it replaces b (from top of stack) with c.→



Equivalence with Context-Free 
Grammars

(for nondeterministic PDAs)

Theorem 2.20: A language is context-free iff
some pushdown automaton recognizes it

(for nondeterministic PDAs)

some pushdown automaton recognizes it.
Lemma 2.21 (    ) If a language is context-
free, then some pushdown automaton 

⇒
, p

recognizes it.
Lemma 2.27 (    ) If a pushdown automaton 

l h
⇐

recognizes some language, then it is context-
free.
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Equivalence with Context-Free 
Grammars

Lemma 2 21 (    ) If a language is context⇒Lemma 2.21 (    ) If a language is context-
free, then some pushdown automaton 
recognizes it.

⇒

Proof Idea: Produce a pushdown automaton P from 
the context-free grammar G for the context-free 
language.

If G generates w, then P accepts its input w by 
checking if there’s a derivation for w.

Each step of derivation yields an intermediate string.
K  l  t f thi  t i   th  t kKeep only part of this string on the stack.
(see next slide for illustration)

Nondeterminism guesses sequence of correct 
substitutions for a derivation
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substitutions for a derivation.

Source: Sipser Textbook



Equivalence with Context-Free 
Grammars: Lemma 2.21 (    ) 

Proof Idea (again): Produce a pushdown 

⇒

Proof Idea (again): Produce a pushdown 
automaton P from the context-free grammar 
G for the context-free language.g g

Each step of derivation yields an intermediate string.
Storing entire intermediate string on stack makes may not allow 
PDA to find variables in intermediate string to make substitutions.

ll k l f h h kFix: Essentially keep only part of this string on the stack, 
starting with 1st variable. (terminals temporarily pushed onto stack, then 
matched with input and popped off)

stack
input:
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Equivalence with Context-Free 
Grammars: Lemma 2.21 (    ) 

Proof Idea (again): Produce a pushdown 

⇒

Proof Idea (again): Produce a pushdown 
automaton P from the context-free grammar 
G for the context-free language.g g
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Equivalence with Context-Free 
Grammars: Lemma 2.21 (    ) 

Proof Idea (again): Produce a pushdown 

⇒

Proof Idea (again): Produce a pushdown 
automaton P from the context-free grammar G for 
the context-free language.

Substituting string               on right-hand side of 
a rule.

means when P is in state q, a is next ),,(),( saqur δ∈

luuu L1=

q,
input symbol, and s is symbol on top of stack, P reads a, 
pops s, pushes u onto stack and goes to state r.

(note reverse order)
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Equivalence with Context-Free 
Grammars: Lemma 2.21 (    ) 

Proof Idea (again): Produce a pushdown 

⇒

Proof Idea (again): Produce a pushdown 
automaton P from the context-free grammar G for 
the context-free language.

Recall informal description of P:

(Push $. Push S.)

(Match input with top 
of stack.)
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Equivalence with Context-Free 
Grammars: Lemma 2.21 (    ) 

Proof Idea (again): Produce a pushdown automaton P from 

⇒

Proof Idea (again): Produce a pushdown automaton P from 
the context-free grammar G for the context-free language.
Example:

aTbS →

(Match terminal with input 

TaT →
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Source: Sipser Textbook

( p
and then pop.)

Additional example: 
board work



Equivalence with Context-Free 
Grammars: Lemma 2.27 (    ) 

Lemma 2 27 (    ) If a pushdown automaton P⇐

⇐

Lemma 2.27 (    ) If a pushdown automaton P
recognizes some language, then it is context-free.

Proof Idea:

⇐

Design grammar G that does more:
Create variable Apq for each pair of states p and q in P.

A generates all strings taking P from p with empty Apq generates all strings taking P from p with empty 
stack to q with empty stack (overkill!)

To support this, first modify P so that:
It has a single accept state q tIt has a single accept state q accept.

It empties its stack before accepting.
Each transition either pushes a symbol onto the 
stack or pops one off the stack (not simultaneous).
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stack or pops one off the stack (not simultaneous).
How can we implement these 3 features? (example)

Source: Sipser Textbook



Equivalence with Context-Free 
Grammars: Lemma 2.27 (    ) 

Lemma 2 27 (    ) If a pushdown automaton P⇐

⇐

Lemma 2.27 (    ) If a pushdown automaton P
recognizes some language, then it is context-free.

Proof Idea (continued): Design grammar G that 
d   ( ti d)

⇐

does more (continued):
Understand how P operates on strings (e.g. string 
x):

First move must be a push (why?)
Last move must be a pop (why?)
Intermediate moves: 2 cases

C  1  S b l d  d i  b l h d  Case 1: Symbol popped at end is symbol pushed at 
beginning.                   
Case 2: Otherwise, symbol pushed at start is popped 
somewhere in between.

baAA rspq →

AAA →

See figures in 
later slides.
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rqprpq AAA →



Equivalence with Context-Free 
Grammars: Lemma 2.27 (    ) 

Lemma 2 27 (    ) If a pushdown automaton P⇐

⇐

Lemma 2.27 (    ) If a pushdown automaton P
recognizes some language, then it is context-free.

Recall:                   means when P is in state q, a is next input 
b l  d i  b l  t  f t k  P d     

⇐

),,(),( saqur δ∈
symbol, and s is symbol on top of stack, P reads a, pops s, 
pushes u onto stack and goes to state r.

18

Source: Sipser Textbook

Continue example…



Equivalence with Context-Free 
Grammars: Lemma 2.27 (    ) 

Lemma 2 27 (    ) If a pushdown automaton P⇐

⇐

Lemma 2.27 (    ) If a pushdown automaton P
recognizes some language, then it is context-free.

⇐

in state s
transition 
to state r

in state p transition to state q
input a input b

push t pop t 
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Equivalence with Context-Free 
Grammars: Lemma 2.27 (    ) 

Lemma 2 27 (    ) If a pushdown automaton P⇐

⇐

Lemma 2.27 (    ) If a pushdown automaton P
recognizes some language, then it is context-free.

⇐

transition 
to state r

in state p transition to state q
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Equivalence with Context-Free 
Grammars: Lemma 2.27 (    ) 

Lemma 2 27 (    ) If a pushdown automaton P⇐

⇐

Lemma 2.27 (    ) If a pushdown automaton P
recognizes some language, then it is context-free.

Show construction (previous 3 slides) works by proving:

⇐

Apq generates x iff x can bring P from state p with empty stack 
to state q with empty stack.

Claim 2.30: If Apq generates x, then x can bring P from state 
p with empty stack to state q with empty stack
⇒
p with empty stack to state q with empty stack.

Proof is by induction on number of steps in deriving  x from Apq.
(see textbook for details)

Claim 2.31: If x can bring P from state p with empty stack 
t  t t  ith t  t k  th  A t  
⇐
to state q with empty stack, then Apq generates x.

Proof is by induction on number of steps in computation of P that goes 
from state p to state q with empty stacks on input x.
(see textbook for details)
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A Consequence of Lemma 2.27

Corollary 2.32: Every regular 
language is context free.

Proof Idea:
Every regular language is 
recognized by a finite automaton.
Every finite automaton is a 
pushdown automaton that ignores pushdown automaton that ignores 
its stack.
Lemma 2.27 (rephrased): Every 
pushdown automaton can be 

i t d ith  t t f  associated with a context-free 
grammar.
Now apply transitivity.
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Picture so far

ALLB = { 0n 1n | n ≥ 0 }

CFL

≥

REG

RPP

0*(101)* F  { i bj k | i 1  j k }

FIN

REG

{ 0101, ε }

0 (101) F = { ai bj ck | i≠1 or j=k }

Each point is 
a language in 
this Venn 
diagram

Does this exist? 
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