
91.304 Foundations of
(Th ti l) C t S i(Theoretical) Computer Science

Chapter 2 Lecture Notes (Section 2.1: Context-Free Grammars)

David Martin
dm@cs uml edudm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-

1

sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

Chapter 2: CFGs, CFLs, PDAs
We introduce our next programming model with a We introduce our next programming model with a
grammatical formulation: more like REX than DFA
A context-free grammar (CFG) is a list of permitted
substitution rules
S → ε S may be rewritten as εS → ε S may be rewritten as ε
S → 0 S 1 ...or as 0 S 1
The variables are the substitutable things, written in
UPPER CASE, sometimes called nonterminalsUPPER CASE, sometimes called nonterminals
The terminals are the nonsubstitutable characters
Each rule has a single variable on the left of → and a
list of terminals and variables on the right
The language generated by a CFG is the set of all
(terminal) strings that can be found by starting from
S and repeatedly substituting until no variables
remain.

2

remain.

Language generated by example

S iSo in
S → ε
S → 0 S 1S → 0 S 1

We can generate the strings ε 01 We can generate the strings ε, 01,
0011, 000111, etc.

In other words, the language
{0n 1n | n≥ 0} -- which is non-regular

3

Formal definition
G is a Context Free Grammar (CFG) if G is a Context Free Grammar (CFG) if
G = (V, Σ, R, S) where

1. V is a finite set of variables
2. Σ is a finite set of terminals

and V Σ = ∅
It's an alphabet that can't overlap with V

∩
It's an alphabet that can't overlap with V

3. R is a set of rules of the form α → β where
α ∈ V — a single variable
β ∈ (Σ ∪ V)* — a string of vars and terminals

4. S ∈ V is the starting variable

4

Semantics of CFGs
If G=(V Σ R S) is a CFG then ⇒G and ⇒G

* If G=(V,Σ,R,S) is a CFG, then ⇒G and ⇒G
are relations on the set (V∪Σ)* as follows

If α,γ ∈(V∪Σ)*, then α⇒G γ means that α can be
rewritten as γ by using some rule from R exactly
once
⇒G

* is the reflexive and transitive closure of ⇒G ⇒G is the reflexive and transitive closure of ⇒G

In other words, α⇒G
* γ means that α can be

rewritten as γ by using zero or more rules
Pronounce them "yields" or "derives"

5

Language derived by a CFG

Finally the language derived by or Finally, the language derived by or
generated by (or simply of) G is

L(G) = { w ∈ Σ* | S ⇒G
* w }

Note that w ∈ Σ* — so w may not contain
any variables from V

They are "nonterminal" — not done yet
Σ is the set of "terminals" — when you stop

6

Conventional form

Y ith f ll if th 4 You can either formally specify the 4
parts of a CFG, or use the
conventional notation in this conventional notation in this
example:

start abbreviation for multiple rules

S → 0B | 0A
A → BAB | AS | 1B2 Here Σ = { 0, 1, 2}

B → 0 | S | ε
e e { 0, , }

7

nonterminals must be
terminals

Facts about this grammar
S → 0B | 0AS → 0B | 0A
A → BAB | AS | 1B2
B → 0 | S | ε

S ⇒ 0B ⇒ 0S ⇒ 00A ⇒ 00BAB
⇒ 000AB ⇒ 0001B2B
⇒ 000102B ⇒ 0001020

Thus 00A ⇒* 0001B2B
and 0001020 ∈ L(G)()

Also 1A ⇒ 11B2 ⇒ 1102 yet 1102 L(G)∈
Why?

8

Why?

Context-free languages
Definition L⊆Σ* is a context-free language (CFL) if it Definition L⊆Σ is a context free language (CFL) if it
is generated by some context free grammar (CFG).
Definition
CFL(Σ) = { L⊆Σ* | L is context free }
is the class of all CFLs
Note that "context free" refers to the left hand side of
the rules

B 0 Ok "B l b l d b 0"B → 0 Ok — "B may always be replaced by 0"
2B → 1A Not ok

such a rule is not allowed; this is a context-sensitive
l h B l b l d h d d b rule that says B may only be replaced when preceded by a

2 — context-free grammars can't say that

9

Context-free languages
CFLs (and variants of them) are often used CFLs (and variants of them) are often used
in compilers and interpreters in order to
make sense of programs and other formal

ifi tispecifications
Sample grammar:
E → E + E | E × E | (E) | N | | () |
N → 0 | 1 | NN
Then E ⇒* 1 + (101 × 1110)

See discussion of parsing and ambiguity in
textbook (p. 105-106). Covered more in a
compiler course.

10

compiler course.

Another example

Let Σ={a b} and recall REX(Σ) the Let Σ={a,b} and recall REX(Σ) — the
set of all regular expressions over Σ

S → B | I (base or inductive cases)
B → ∅ | ε | a | b
I → (S S) | (S *) | (S ∪ S)I → (S · S) | (S) | (S ∪ S)

The nonvariables are literal The nonvariables are literal
characters and are underlined here,
including the symbols ∅ and ε.

11

Yet another example

L t G b th Let G be the grammar
S → ε | 0S1 | 1S0 | SS
and L = { x∈{0 1}* | n (x) = n (x) }and L1 = { x∈{0,1} | n0(x) = n1(x) }
Clearly L(G) ⊆ L1. It's true but harder
to see that L ⊆ L(G) as well to see that L1 ⊆ L(G) as well...

12

DFA – to - CFL Conversion

Make a iable R fo each DFA state Make variable Ri for each DFA state qi

Add rule if is DFA
t iti

ji aRR → ji qaq =),(δ

transition
Add rule if qi is a DFA accept ε→iR
state
Make R0 starting variable if DFA
starting state is q0

Example: board work

13

Ambiguity
String w is ambiguously derived in a grammar if grammar String w is ambiguously derived in a grammar if grammar
generates w in multiple different ways.
Two derivations may differ in order of variable replacement
yet be the same in their overall structureyet be the same in their overall structure.
Derivation is leftmost if, at each step, leftmost remaining
variable is the one replaced.
A st ing is de i ed ambig o sl in conte t f ee g amma G A string w is derived ambiguously in context-free grammar G
if it has at least 2 different leftmost derivations.
G is ambiguous if it generates some string ambiguously.
Example: board work
G is inherently ambiguous if it can only be generated by
ambiguous grammars.

kExample:

14

}or|{ kjjicba kji ==

Chomsky Normal Form
Definition 2 8: A context free grammar is in Definition 2.8: A context-free grammar is in
Chomsky normal form if every rule is of the form:

BCA→

where a is any terminal and A B and C are any

BCA→

aA→
where a is any terminal and A, B, and C are any
variables (except that B and C may not be the start
variable). In addition, we permit the rule:

S
where S is the start variable.

ε→S

15

Chomsky Normal Form (continued)
Theorem 2.9: Any context-free language is generated by a context-Theorem 2.9: Any context free language is generated by a context
free grammar in Chomsky normal form.
Proof Idea (see p. 107-108 for complete proof):

Add a new start variable S0 and rule:
Process ε rules:

SS →0

Remove where A is not the start variable.
For every occurrence of A on right-hand side of a rule, add new rule
with that occurrence deleted.
Repeat until all ε rules not involving start variable are removed.

Handle all unit rules:

ε→A

Handle all unit rules:
Remove unit rule:
Where rule appears, add unless this was unit rule
previously removed.
Repeat until all unit rules are eliminated.

BA→
uB → uA→

p
Convert remaining rules into the proper form:

Replace each rule where and each ui is a variable
or a terminal symbol with rules:

kuuuA L21→ 3≥k

kkk uuAAuAAuAAuA 1233222111 ,,,, →→→→ K

16

kkk 1233222111 ,,,, −−

Chomsky Normal Form (continued)
Example 2.10

17

Picture so far

ALLB = { 0n 1n | n ≥ 0 }

CFL

REG

RPP

0*(101)* F { i bj k | i 1 j k }

FIN

REG

{ 0101, ε }

0 (101) F = { ai bj ck | i≠1 or j=k }

Each point is
a language in
this Venn
diagram

Does this exist?

18

g

