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Chapter 2: CFGs, CFLs, PDAs
We introduce our next programming model with a We introduce our next programming model with a 
grammatical formulation: more like REX than DFA
A context-free grammar (CFG) is a list of permitted 
substitution rules
S → ε S may be rewritten as εS → ε S may be rewritten as ε
S → 0 S 1 ...or as 0 S 1
The variables are the substitutable things, written in 
UPPER CASE, sometimes called nonterminalsUPPER CASE, sometimes called nonterminals
The terminals are the nonsubstitutable characters
Each rule has a single variable on the left of → and a 
list of terminals and variables on the right
The language generated by a CFG is the set of all 
(terminal) strings that can be found by starting from 
S and repeatedly substituting until no variables 
remain.
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Language generated by example

S  iSo in
S → ε
S → 0 S 1S → 0 S 1

We can generate the strings ε  01  We can generate the strings ε, 01, 
0011, 000111, etc.

In other words, the language 
{0n 1n | n≥ 0} -- which is non-regular
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Formal definition
G is a Context Free Grammar (CFG) if G is a Context Free Grammar (CFG) if 
G = (V, Σ, R, S) where

1. V is a finite set of variables
2. Σ is a finite set of terminals 

and V Σ = ∅
It's an alphabet that can't overlap with V

∩
It's an alphabet that can't overlap with V

3. R is a set of rules of the form α → β where
α ∈ V — a single variable
β ∈ (Σ ∪ V)* — a string of vars and terminals

4. S ∈ V is the starting variable
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Semantics of CFGs
If G=(V Σ R S) is a CFG  then ⇒G and ⇒G

* If G=(V,Σ,R,S) is a CFG, then ⇒G and ⇒G
are relations on the set (V∪Σ)* as follows

If α,γ ∈(V∪Σ)*, then α⇒G γ means that α can be 
rewritten as γ by using some rule from R exactly 
once
⇒G

* is the reflexive and transitive closure of ⇒G ⇒G is the reflexive and transitive closure of ⇒G 

In other words, α⇒G
* γ means that α can be 

rewritten as γ by using zero or more rules
Pronounce them "yields" or "derives"
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Language derived by a CFG

Finally  the language derived by or Finally, the language derived by or 
generated by (or simply of) G is 

L(G) = { w ∈  Σ* | S ⇒G
* w }

Note that w ∈  Σ* — so w may not contain 
any variables from V

They are "nonterminal" — not done yet
Σ is the set of "terminals" — when you stop
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Conventional form

Y   ith  f ll  if  th  4 You can either formally specify the 4 
parts of a CFG, or use the 
conventional notation in this conventional notation in this 
example:

start abbreviation for multiple rules

S → 0B | 0A
A → BAB | AS | 1B2 Here Σ = { 0, 1, 2}

B → 0 | S | ε
e e { 0, , }
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Facts about this grammar
S → 0B | 0AS → 0B | 0A
A → BAB | AS | 1B2
B → 0 | S | ε

S ⇒ 0B ⇒ 0S ⇒ 00A ⇒ 00BAB
⇒ 000AB ⇒ 0001B2B
⇒ 000102B ⇒ 0001020

Thus 00A ⇒* 0001B2B
and 0001020 ∈ L(G)( )

Also 1A ⇒ 11B2 ⇒ 1102 yet 1102    L(G)∈
Why?
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Context-free languages
Definition  L⊆Σ* is a context-free language (CFL) if it Definition  L⊆Σ is a context free language (CFL) if it 
is generated by some context free grammar (CFG).
Definition  
CFL(Σ) = { L⊆Σ* | L is context free } 
is the class of all CFLs
Note that "context free" refers to the left hand side of 
the rules

B 0 Ok "B  l  b  l d b  0"B → 0 Ok — "B may always be replaced by 0"
2B → 1A Not ok

such a rule is not allowed; this is a context-sensitive
l  h   B  l  b  l d h  d d b   rule that says B may only be replaced when preceded by a 

2 — context-free grammars can't say that
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Context-free languages
CFLs (and variants of them) are often used CFLs (and variants of them) are often used 
in compilers and interpreters in order to 
make sense of programs and other formal 

ifi tispecifications
Sample grammar:
E → E + E | E × E | ( E ) | N | | ( ) |
N → 0 | 1 | NN
Then E ⇒* 1 + (101 × 1110)

See discussion of parsing and ambiguity in 
textbook (p. 105-106).  Covered more in a 
compiler course.
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Another example

Let Σ={a b} and recall REX(Σ) the Let Σ={a,b} and recall REX(Σ) — the 
set of all regular expressions over Σ

S → B | I   (base or inductive cases) 
B → ∅ | ε | a | b
I → ( S S ) | ( S * ) | ( S ∪ S )I → ( S · S ) | ( S ) | ( S ∪ S )

The nonvariables are literal The nonvariables are literal 
characters and are underlined here, 
including the symbols ∅ and ε.
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Yet another example

L t G b  th  Let G be the grammar
S → ε | 0S1 | 1S0 | SS
and L = { x∈{0 1}* | n (x) = n (x) }and L1 = { x∈{0,1} | n0(x) = n1(x) }
Clearly L(G) ⊆ L1.  It's true but harder 
to see that L ⊆ L(G) as well  to see that L1 ⊆ L(G) as well... 
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DFA – to - CFL Conversion

Make a iable R fo  each DFA state Make variable Ri for each DFA state qi

Add rule           if             is DFA 
t iti

ji aRR → ji qaq =),(δ

transition
Add rule          if qi is a DFA accept ε→iR
state
Make R0 starting variable if DFA 
starting state is q0

Example: board work
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Ambiguity
String w is ambiguously derived in a grammar if grammar String w is ambiguously derived in a grammar if grammar 
generates w in multiple different ways.
Two derivations may differ in order of variable replacement 
yet be the same in their overall structureyet be the same in their overall structure.
Derivation is leftmost if, at each step, leftmost remaining 
variable is the one replaced.
A st ing is de i ed ambig o sl  in conte t f ee g amma  G A string w is derived ambiguously in context-free grammar G 
if it has at least 2 different leftmost derivations.
G is ambiguous if it generates some string ambiguously.
Example: board work 
G is inherently ambiguous if it can only be generated by 
ambiguous grammars.

kExample: 
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Chomsky Normal Form
Definition 2 8: A context free grammar is in Definition 2.8: A context-free grammar is in 
Chomsky normal form if every rule is of the form:

BCA→

where a is any terminal and A  B  and C are any 

BCA→

aA→
where a is any terminal and A, B, and C are any 
variables  (except that B and C may not be the start 
variable).  In addition, we permit the rule:

S
where S is the start variable.

ε→S
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Chomsky Normal Form (continued)
Theorem 2.9: Any context-free language is generated by a context-Theorem 2.9: Any context free language is generated by a context
free grammar in Chomsky normal form.
Proof Idea (see p. 107-108 for complete proof):

Add a new start variable S0 and rule:
Process ε rules:

SS →0

Remove            where A is not the start variable.
For every occurrence of A on right-hand side of a rule, add new rule 
with that occurrence deleted.
Repeat until all ε rules not involving start variable are removed.

Handle all unit rules:

ε→A

Handle all unit rules:
Remove unit rule:
Where rule            appears, add              unless this was unit rule 
previously removed.
Repeat until all unit rules are eliminated.

BA→
uB → uA→

p
Convert remaining rules into the proper form:

Replace each rule                         where          and each ui is a variable 
or a terminal symbol with rules:

kuuuA L21→ 3≥k

kkk uuAAuAAuAAuA 1233222111 ,,,, →→→→ K
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Chomsky Normal Form (continued)
Example 2.10
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Picture so far

ALLB = { 0n 1n | n ≥ 0 }

CFL

REG

RPP

0*(101)* F  { i bj k | i 1  j k }

FIN

REG

{ 0101, ε }

0 (101) F = { ai bj ck | i≠1 or j=k }

Each point is 
a language in 
this Venn 
diagram

Does this exist? 
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