Process Creation

Events which cause process creation:

e System initialization.

Execution of a process creation system call by a
running process.

 |In Linux/UNIX: fork()

* In Windows CreateProcess()
e« Auser request to create a new process.
e Initiation of a batch job.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process Termination

Events which cause process termination:

Normal exit (voluntary).

e Using C call exit(0);

Error exit (voluntary).

e Using C call exit(N); where 0 < N < 256 in Linux
Fatal error (involuntary).

* Process receives a signal in Linux/UNIX

Killed by another process (involuntary).

* Process receives a signal in Linux/UNIX

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process Components

Major Components of a Linux/UNIX Process

PID

PPID

UID RUID and EUID
GID RGID and EGID

Address Space (Minimum: TEXT, GLOBAL DATA, STACK)
Executable Program

One or more Threads

Default (Initial Thread) Scheduling Policy and Priority
Current Working Directory

Open Channel Table

Signal Table

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Address Space Model

Addr O
TEXT
GLOBAL DATA
7 o N Byte Address Space
STACK

AddrN -1

Implementation of Processes

Process management Memory management File management
Registers Pointer to text segment info Root directory
Program counter Pointer to data segment info Working directory
Program status word Pointer to stack segment info | File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

Figure 2-4. Some of the fields of a typical process table entry.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Interrupts on a Process Thread

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

7. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Figure 2-5. Skeleton of what the lowest level of the operating
system does when an interrupt occurs.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Thread States

DISPATCH

PREEMPT

WAKEUP

Keyboard

Thread Usage (1)

Four score and seven
years ago, our fathers
brmnght forth upon this
cantinent a new nation:
canceived in liberty,
and dedicated 1o the
proposition that all
men are created equal

Now we aw engaged
in a great civil war
testing whether that

nation, ar any nation
so conceived and so
dedicated, can long
endure. We are met an
a great battlefisld of
that war,

We have come o
dedicate a portion of
thar field as a final
testing place for thoss
who here gave their

lives that this nation
might live. Ut is
altogether fitting and
proper that we should
do this.

But, ina largersemse,
we cannot dedicate, we
cannot consecrate we
cannot hallow this
gound. The bave
men, living and dead,

who struggled hers
have cansecrated it, far|
above emr poar power
10 add or detract. The
world will little note,
mr long remember,
what we say here, but
it can mever farget|
whatthey did here

Lt is for ws the living,
nther, to be dedicated

here 1o the unfinished
work which they wha
fought here have thus
far 50 nobly advanced
1t is mther for s 10 be
here dedicated 1o the
great task remaining
befor vs, that fom
these honared dead we
take incizased devotion
1o that cavse for which

they gave the last full
measure of devotion,
that we here highly
tesalve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of freedom
and thar governmem of
the people by the
people, for the people

L

T

Kernel

D

Figure 2-7. Aword processor with three threads.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

isk

The Classical Thread Model (1)

Process 1 Process 1 Process 1 Process
\\ | | i
User)
space
Thread Thread
Kernel |
space Kernel Kerne

(a) (b)

Figure 2-11. (a) Three processes each with one thread. (b) One
process with three threads.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Classical Thread Model (2)

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Figure 2-12. The first column lists some items shared by all
threads in a process. The second one lists some items private
to each thread.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Classical Thread Model (3)

Thread 2

|

Thread 1 Thread 3
\ /

23/2 2 / el faeBss
Thread 1's ,.H E H % Thread 3's stack
stack v

Kernel

Figure 2-13. Each thread has its own stack.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Critical Regions (1)
Conditions required to avoid race condition:

 No two threads may be simultaneously inside their
critical regions. (Mutex Requirement)

 No assumptions may be made about speeds or the
number of CPUs.

 No thread running outside its critical region may
block other thread. (Progress Requirement)

. No thread should have to wait forever to enter Its
critical region. (Bounded Waiting Requirement)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Critical Regions (2)

A enters critical region

/ A leaves critical region

Thread A | |
| I I I
| | I I
I | Battemptsto B enters | B leaves
| | enter critical \ critical region : critical region
region /
| | / | |
| |
Thread B I s i
| | Al | |
I 1 B blocked l !
T, Ty Ty T,

Time ——————

Figure 2-22. Mutual exclusion using critical regions.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutual Exclusion with Busy Waiting

Proposals for achieving mutual exclusion:

 Disabling interrupts
« Lock variables

e Strict alternation

« Peterson's solution
e The TSL instruction

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Strict Alternation

while (TRUE) { while (TRUE) {
while (turn != 0) /* loop */ ; while (turn !=1) /* loop */ ;
critical _region(); critical _region();
turn = 1; turn = 0;
noncritical _region(); noncritical _region();
} }
(a) (b)

Figure 2-23. A proposed solution to the critical region problem.
(a) Process 0. (b) Process 1. In both cases, be sure to note
the semicolons terminating the while statements.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Peterson's Solution

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */
int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */
void enter_region(int process); /* process is 0 or 1 */
{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;
}
void leave_region(int process) /* process: who is leaving */
{
interested[process] = FALSE; /* indicate departure from critical region */
}

Figure 2-24. Peterson’s solution for achieving mutual exclusion.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The TSL Instruction (2)

enter_region:
MOVE REGISTER,#1
XCHG REGISTER,LOCK
CMP REGISTER,#0
JNE enter_region
RET

leave_region:
MOVE LOCK,#0
RET

| put a 1 in the register

| swap the contents of the register and lock variable
| was lock zero?

| if it was non zero, lock was set, so loop

| return to caller; critical region entered

| store a 0 in lock
| return to caller

Figure 2-26. Entering and leaving a critical region
using the x-86 XCHG instruction.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Semaphores

Basically an unsigned counter and a queue
Two basic operations defined:
o walt(sem_object); also down(), p()
e signal(sem_object); also up(), v()
A wait call is a conditional decrement
* |If sem counter is +, decrement and return
* |f sem counter is O, block caller
A signal call is a conditional increment
* If no waiters, increment counter
o |f waiters, move one waiter to ready Q

MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE

GLOBAL TO PRODUCER AND CONSUMER THREADS:
sem_t prod = 10; sem_t cons =0;
sem_t iptr =1, sem_t optr =1;

int buf[10], in=0, out=0;
void p (sem_t *);
voidv (sem_t *);
PRODUCER FUNCTION CONSUMER FUNCTION

void producer(){ void consumer(){

I int val;
while(1){ while(1){
p(&?rod); p(&cons);
p(&iptr); p(&optr);
buf[in] = random(); val = buf[out];
- _ - 0 - ’
|n&? Enn_+ 1) % 10; // print val somewhere
v{(&ip r): out = (out + 1) % 10;
v(&cons); v(&optr);
} v(&prod) ;

Event Counters and Sequencers

« Semaphores may provide more functionality than needed
to resolve certain kinds of synchronization requirements
e Total order problems like the multiple producer /
multiple consumer problem need the power of
semaphores
e Partial order problems like the single producer /
single consumer problem do not need all of the
functionality of a semaphore
 Event Counters can solve partial order problems more
efficiently than semaphores
 Event Counters in conjunction with Sequencers can solve
total order problems as efficiently as semaphores, and
can provide additional functionality

Event Counters

Basically an unsigned counter and a queue
Two basic operations defined:
o await(EventCounter, value);
e advance (EventCounter);
An await call is a test between EC and value
e If value is =< EC return to caller
o If value is > EC block caller
An advance call is an unconditional EC increment
« If any waiter has value =< EC after increment,
then move such waiter(s) to ready Q

ONE PRODUCER, ONE CONSUMER RING BUFFER EXAMPLE

GLOBAL TO PRODUCER AND CONSUMER THREADS:
ec_t pEC, cEC;

int ring_buf[10];

unsigned 1n=0, out=0;

void awailt (ec_t * , 1Int);

void advance (ec_t *);

PRODUCER FUNCTION CONSUMER FUNCTION
void producer(){ void consumer(){
while(1){ int val;
awailt(&pEC, 1n — 10 + 1); while(1){
ring_ buf[in % 10] = random(); await(&cEC, out + 1);
= (in + 1); val = ring_bufJout % 10];
advance (&cEC) // print val somewhere
} out = (out + 1);

advance (&pEC) ;

Sequencers

Basically an unsigned atomic counter
One operation defined:

o ticket(Sequencer);
A ticket call atomically returns the next Sequencer
value, and this value is generally used in an
await(EC, ticket(Seq)) form of call
Sequencers, in conjunction with Event Counters
provide all of the synchronization capabillities of
semaphores

MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE

GLOBAL TO PRODUCER AND CONSUMER THREADS:
ec_t PpEC, cEC;

seq t ps, Cs;

int ring_buf[10];

unsigned 1n=0, out=0;

void await (ec_t * , Int);

void advance (ec t *);

int ticket (seq t *);

PRODUCER FUNCTION CONSUMER FUNCTION
void producer(){ void consumer(){
int t; // local to each pro int u, val; // local to each con
while(1){ while(1){
t = ticket(&ps); u = ticket(&cs);
await(&ckeEC, t); awailt(&pEC, u);
awailt(&pEC, t — 10 + 1); awailt(&ceC, u + 1);
ring_buf[t % 10] = random(Q); val = ring_buffu % 10];
advance (&cEC) // print val somewhere
} advance (&pEC) ;

Monitors (1)

monitor example
integer i;
condition c;

procedure producer();

end;

procedure consumer();

end;
end monitor;

Figure 2-33. A monitor.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Monitors (2

monitor ProducerConsumer
condition full, empty;
integer count;

procedure insert(item: integer);
begin

if count = N then wait(full);

insert _itemfitem);

count := count + 1;

if count = 1 then signalfempty)
end;

function remove: integer;
begin
if count = 0 then wait(empty);
remove = remove _itent;
count = count — 1;
if count = N — | then signal(fi)
end;

count = 0;
end monitor;

procedure producer;
begin
while true do
begin
item = produce _item;
ProducerConsumer.insert(item)
end
end;

procedure consumer;
begin
while true do
begin
item = ProducerConsumer.remove;
consume _item(item)
end
end;

Figure 2-34. An outline of the producer-consumer problem with
monitors.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE
USING A MONITOR IN THE LANGUAGE CSP/k

01 CIRCULARBUFFER: PROCEDURE OPTIONS (CONCURRENT):

02

03 CIRCULARBUFFERMONITOR: MONITOR:

04 DECLARE [BUFFERS (100)) CHARACTER (80) VARYING:
05 DECLARE (FIRSTBUFFER, LASTBUFFER) FIXED;
] DECLARE ([TOTALBUFFERS, FULLBUFFERS) FIXED;
o7 DECLARE (ABUFFERISEMPTY) CONDITION:

o8 CECLARE {ABUFFERISFULL) CONDITION;

nl:}

10 0o ;

11 FIRSTBUFFER = 1;

12 LASTBUFFER = 1;

13 TOTALBUFFERS = 100;

14 FULLBUFFERS = 0;

15 END;

16

17 SPOOLER: ENTRY (IMAGE);

18 DECLARE (IMAGE) CHARACTER (*) VARYING:

19 IF FULLBUFFERS = TOTALBUFFERS THEM

20 WAIT (ABUFFERISEMPTY) ;

21 BUFFERS (LASTBUFFER) = IMAGE:

22 LASTBUFFER = MOD (LASTBUFFER, TOTALBUFFERS) + 1:
23 FULLBUFFERS = FULLBUFFERS + 1:

24 SIGNAL (ABUFFERISFULL) ;

25 END ;

26

27 DESPOOLER: ENTRY (IMAGE):

28 DECLARE {IMAGE) CHARACTER (*) VARYING:

29 IF FULLBUFFERS = O THEN

30 WAIT (ABUFFERISFULL):

3l IMAGE = BUFFERS (FIRSTBUFFER);

32 FIRSTBUFFER = MOD({FIRSTBUFFER, TOTALBUFFERS) + 1;
33 FULLBUFFERS = FULLBUFFERS = 1:

34 SIGNAL (ABUFFERISEMPTY) ;

35 END;

36

37 END:

MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE

USING A MONITOR IN THE LANGUAGE CSP/k (cont’d)

39 READCARDS: PROCESS:
40 DECLARE (CARDIMAGE) CHARACTER (B0) VARYING:
41 CARDIMAGE = "MORECARDS";

42 DO WHILE (CARDIMAGE <> 'ENDOFFILE‘);

43 GET SKIP EDIT (CARDIMAGE) (A(BO)): -

.4 CALL SPOOLER (CARDIMAGE) ;

45 END;

46 END;

47

48 PRINTLINES:. PROCESS;

49 DECLARE (LINEIMAGE) CHARACTER (BO) VARYING:
50 LINEIMAGE = "MORECARDS - ;

51 D WHILE [(LINEIMAGE <> "ENDUFFLILE),

52 CALL DESPOOLER (LINEIMAGE) ;

53 PUT SKIP EDIT (LINEIMAGE) (A({80));
54 END;

55 END;

56

57 END;

CSP/k program for managing a circular buffer.

Mutexes

mutex_lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex_lock | try again

ok: RET | return to caller; critical region entered

mutex_unlock:
MOVE MUTEX,#0 | store a 0 in mutex
RET | return to caller

Figure 2-29. Implementation of mutex lock and mutex unlock.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutexes in Pthreads (1)

Thread call Description

Pthread_mutex_init Create a mutex

Pthread_mutex_destroy | Destroy an existing mutex

Pthread_mutex_lock Acquire a lock or block

Pthread_mutex_trylock Acquire a lock or falil

Pthread_mutex_unlock Release a lock

Figure 2-30. Some of the Pthreads calls relating to mutexes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutexes in Pthreads (2)

Thread cali Description

Pthread_cond_init Create a condition variable
Pthread_cond_destroy Destroy a condition variable
Pthread_cond_wait Block waiting for a signal
Pthread_cond_signal Signal another thread and wake it up
Pthread_cond_broadcast | Signal multiple threads and wake all of them

Figure 2-31. Some of the Pthreads calls relating
to condition variables.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutexes in Pthreads (3)

#include <stdio.h=>

#include <pthread.h>

#define MAX 1000000000 /* how many numbers to produce */

pthread _mutex_t the _mutex;

pthread_cond_t condc, condp;

int buffer = 0; /* buffer used between producer and consumer */

void *producer(void *ptr) /* produce data */
{ int i
for (i= 1, i <= MAX; i++) {

pthread_mutex_lock(&the _mutex); /* get exclusive access to buffer */
while (buffer != 0) pthread_cond_wait(&condp, &the_mutex);
buffer = i; /* put item in buffer */
pthread_cond_signal(&condc); /* wake up consumer */
pthread_mutex_unlock(&the _mutex);/* release access to buffer */

}
pthread_exit(0);
}

void *consumer(void *ptr) f* consume data */
{ inti;
for (i = 1: i <= MAX; i++) {

pthread_mutex_lock(&the_mutex); /* get exclusive access to buffer */
while (buffer ==0) pthread_cond_wait(&condc, &the_mutex);
buffer = 0; f* take item out of buffer */
pthread_cond_signal{&condp); * wake up producer */
pthread_mutex_unlock(&the _mutex);/* release access to buffer */

}
pthread_exit(0);
}

int main(int arge, char **argv)

{
pthread_t pro, con;
pthread_mutex_init(&the_mutex, 0);
pthread_cond_init{&condc, 0);
pthread_cond_init(&condp, 0);
pthread_create(&con, 0, consumer, 0);
pthread_create(&pro, 0, producer, 0);
pthread_join(pro, 0);
pthread_join(con, 0);
pthread_cond _destroy(&condc);
pthread_cond_destroy{&condp);
pthread_mutex _destroy(&the_mutex);

Figure 2-32. Using threads to solve
the producer-consumer problem.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling — Thread Behavior

() I — — — |

Long CPU burst \

Waiting for 1/0

Short CPU burst \
/ _
L

(o) [L1 Il Il (—i] L1 L]

I
8]

C3

Time

Figure 2-38. Bursts of CPU usage alternate with periods of waiting
for 1/0O. (a) A CPU-bound process. (b) An I/O-bound process.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Categories of Scheduling Algorithms

e Batch
e [nteractive
e Real time

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling Algorithm Goals

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Figure 2-39. Some goals of the scheduling algorithm under
different circumstances.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling Parameters

 When a thread is created it is allocated a set of scheduling parameters
* A scheduling policy
e Batch, timeshare, real-time
A priority within that policy
« Batch priorities are low, timeshare intermediate, real-time high
A possible time-slice (quantum)
« Timeshare and real-time round robin use timeouts
Possible processor (core) affinity
« Athread can be connected to one or a set of cores
Possible memory affinity
* In NUMA systems, a thread can be connected to one or a
set of cores that are closer to some specific part of RAM
Possible 1O (bridge) affiinity
* In NUMA systems, a thread can be connected to one or a
set of cores that are closer to some specific 10 bridge

Buses

Local bus

Pentium 4
CPU

Level 1 caches—pTO @™

Level 2 cache —r»l |

Monitor

[

Graphics
adaptor

AGP bus
@/

PCI

bus

Bridge
chip

Memory bus

|

(

o
T

<

T 1 5\

SCSI USB 2
Ay
Y Y
Key-
Mausa board

The bus structure of a pre-Nehalem Pentium 4

Available
PCI slot

ATAPI
controller

A

Y

A

Y

Hard
disk

DVD

drive

Main
memory

Enterprise: 2008 Nehalem Based

Two Socket System Architecture

EQ’:
T

PCl Express™
Gen 2 |

@ I{:H g“ 0 cooltools-shape

¢

BN Intel® QuickPath Interconnect

Nehalem-€EP Platform:

Two sockets each with Integrated
Memory Controller

Turbo mode operation

Intel QuickPath Architecture

DDR3 Memory: 3 Channel, 3 DIMMs
per channel

Intel Virtualization Technology
PCl Express* Gen 2

Enterprise: 2009 Nehalem Based

Four Socket System Architecture

:
N
= Boxbom{ c
g 0 S
En intel) H
A u o
% i‘x. i >
1 5
& a

J

Boxboro-EX Platform: B Intel® QuickPath Interconnect

Four processors with Intel QuickPath Interconnects
PCl Express Gen 2, Integrated Memory Controller

* Other names and brands may be claimed as the property of others

POSIX Scheduling Policies as Used in Linux/UNIX Systems

sched_setscheduler() sets both the scheduling policy and the
associated parameters for the thread whose ID is specified in arg tid.
If tid equals zero, the scheduling policy and parameters of the
calling thread will be set. The interpretation of the argument param
depends on the selected policy. Currently, Linux supports the
following "normal” (i.e., non-real-time) scheduling policies:

SCHED_ OTHER the standard round-robin time-sharing policy;
SCHED BATCH for "batch" style execution of processes; and
SCHED IDLE for running very low priority background jobs.
The following "real-time" policies are also supported, for special
time-critical applications that need precise control over the way in
which runnable threads are selected for execution:

SCHED_FIFO afirst-in, first-out policy; and

SCHED RR around-robin policy.

http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html

Scheduling In Interactive Systems

 Round-robin scheduling
e Priority scheduling
 Multiple queues

e Shortest process next

e Guaranteed scheduling
e Lottery scheduling

« Fair-share scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Round-Robin Scheduling

Current Next Current
process process process
B F D G A F D G A B

(@) (b)

Figure 2-41. Round-robin scheduling.
(a) The list of runnable processes. (b) The list of runnable
processes after B uses up its guantum.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Priority Scheduling

Queue Runable processes
headers , A

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

Figure 2-42. A scheduling algorithm with four priority classes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Thread Scheduling (1)

Process A Process B Process A Process B
Order in which l

threads run \

2. Runtime 1 @2 G
system
picks a —
thread — E =

4
L1. Kernel picks a process 1 Kernel picks a thread E
Possible: A1, A2, A3, A1, A2, A3 Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3 Also possible: A1, B1, A2, B2, A3, B3

=)\

Figure 2-43. (a) Possible scheduling of user-level threads with a
50-msec process quantum and threads that run 5 msec per
CPU burst.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Thread Scheduling (2)

Process A Process B Process A Process B
Order in which l

threads run \

2. Runtime 1 2 3

= |
picks a —

thread — = =

4
L1. Kernel picks a process 1 Kernel picks a thread E
Possible: A1, A2, A3, A1, A2, A3 Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3 Also possible: A1, B1, A2, B2, A3, B3

=\ L

Figure 2-43. (b) Possible scheduling of kernel-level threads with
the same characteristics as (a).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling In Real Time Systems

« Real Time Issues
e FIFORT

 RRRT
 Deadline Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling In Real Time Systems (2)

« Real Time Issues
e Deterministic latency

 Policies that can guarantee
a minimum time bound from
ready state to run state

* Priority range
* Generally higher than non
RT policies
* Dynamic priority adjustment
« Hands-off for all but deadline

FIFO Real Time Policy

Highest Priority First (no RR)

Once an HPF thread reaches the
run state it cannot be preempted
by another thread of the same
highest priority
e Run state is left only by EXIT,
BLOCK operation or Priority
Preemption (no RR)

* Another thread of the same
priority can only run when the
first FIFO thread leaves the run
State

Round Robin Real Time Policy

Highest Priority First with RR

Once an HPF thread reaches the
run state it can be preempted by
another thread of the same highest
priority when its quantum expires

* Run state is left by EXIT,
BLOCK operation, Quantum
EXxpiration or Priority
Preemption

* Another thread of the same
priority can run if first RR
thread completes its time slice

Deadline Real Time Policy

A thread’s priority is dynamically
adjusted as the thread approaches
a predetermined deadline

The intent is to make sure that the

deadline scheduled thread will

reach the run state by the deadline

* The given thread’s priority will

have been dynmically
Increased so much by the
deadline that it will have
become the highest priority
thread in the system

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Address Space Model
	Slide Number 5
	Slide Number 6
	Thread States
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Scheduling Parameters
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Scheduling in Real Time Systems (2)
	FIFO Real Time Policy
	Round Robin Real Time Policy
	Deadline Real Time Policy

