
Events which cause process creation:

• System initialization.
• Execution of a process creation system call by a

running process.
• In Linux/UNIX: fork()
• In Windows CreateProcess()

• A user request to create a new process.
• Initiation of a batch job.

Process Creation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Events which cause process termination:

• Normal exit (voluntary).

• Using C call exit(0);
• Error exit (voluntary).

• Using C call exit(N); where 0 < N < 256 in Linux
• Fatal error (involuntary).

• Process receives a signal in Linux/UNIX
• Killed by another process (involuntary).

• Process receives a signal in Linux/UNIX

Process Termination

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Major Components of a Linux/UNIX Process
• PID
• PPID
• UID RUID and EUID
• GID RGID and EGID
• Address Space (Minimum: TEXT, GLOBAL DATA, STACK)
• Executable Program
• One or more Threads
• Default (Initial Thread) Scheduling Policy and Priority
• Current Working Directory
• Open Channel Table
• Signal Table

Process Components

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Address Space Model

Addr 0

TEXT

GLOBAL DATA

STACK

Addr N - 1

N Byte Address Space

Figure 2-4. Some of the fields of a typical process table entry.

Implementation of Processes

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-5. Skeleton of what the lowest level of the operating
system does when an interrupt occurs.

Interrupts on a Process Thread

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Thread States

DISPATCH

fork()

PREEMPT

WAKEUP

SLEEP

EXIT

ready

Run
K/U

block

Figure 2-7. A word processor with three threads.

Thread Usage (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-11. (a) Three processes each with one thread. (b) One
process with three threads.

The Classical Thread Model (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-12. The first column lists some items shared by all
threads in a process. The second one lists some items private

to each thread.

The Classical Thread Model (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-13. Each thread has its own stack.

The Classical Thread Model (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Conditions required to avoid race condition:

• No two threads may be simultaneously inside their

critical regions. (Mutex Requirement)
• No assumptions may be made about speeds or the

number of CPUs.
• No thread running outside its critical region may

block other thread. (Progress Requirement)
• No thread should have to wait forever to enter its

critical region. (Bounded Waiting Requirement)

Critical Regions (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-22. Mutual exclusion using critical regions.

Critical Regions (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Thread

Thread

Proposals for achieving mutual exclusion:

• Disabling interrupts
• Lock variables
• Strict alternation
• Peterson's solution
• The TSL instruction

Mutual Exclusion with Busy Waiting

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-23. A proposed solution to the critical region problem.
(a) Process 0. (b) Process 1. In both cases, be sure to note

the semicolons terminating the while statements.

Strict Alternation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-24. Peterson’s solution for achieving mutual exclusion.

Peterson's Solution

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-26. Entering and leaving a critical region
using the x-86 XCHG instruction.

The TSL Instruction (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Semaphores

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Basically an unsigned counter and a queue
• Two basic operations defined:

• wait(sem_object); also down(), p()
• signal(sem_object); also up(), v()

• A wait call is a conditional decrement
• If sem counter is +, decrement and return
• If sem counter is 0, block caller

• A signal call is a conditional increment
• If no waiters, increment counter
• If waiters, move one waiter to ready Q

GLOBAL TO PRODUCER AND CONSUMER THREADS:
sem_t prod = 10; sem_t cons = 0;
 sem_t iptr = 1; sem_t optr = 1;

int buf[10], in=0, out=0;
void p (sem_t *);
void v (sem_t *);
 PRODUCER FUNCTION CONSUMER FUNCTION

void producer(){
while(1){
 p(&prod);
 p(&iptr);
 buf[in] = random();
 in = (in + 1) % 10;
 v(&iptr);
 v(&cons);
}

void consumer(){
int val;
while(1){
 p(&cons);
 p(&optr);
 val = buf[out];
 // print val somewhere
 out = (out + 1) % 10;
 v(&optr);
 v(&prod);
}

MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE

Event Counters and Sequencers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Semaphores may provide more functionality than needed
to resolve certain kinds of synchronization requirements

• Total order problems like the multiple producer /
multiple consumer problem need the power of
semaphores

• Partial order problems like the single producer /
single consumer problem do not need all of the
functionality of a semaphore

• Event Counters can solve partial order problems more
efficiently than semaphores

• Event Counters in conjunction with Sequencers can solve
total order problems as efficiently as semaphores, and
can provide additional functionality

Event Counters

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Basically an unsigned counter and a queue
• Two basic operations defined:

• await(EventCounter, value);
• advance (EventCounter);

• An await call is a test between EC and value
• If value is =< EC return to caller
• If value is > EC block caller

• An advance call is an unconditional EC increment
• If any waiter has value =< EC after increment,

then move such waiter(s) to ready Q

 GLOBAL TO PRODUCER AND CONSUMER THREADS:
ec_t pEC, cEC;
int ring_buf[10];
unsigned in=0, out=0;
void await (ec_t * , int);
void advance (ec_t *);

PRODUCER FUNCTION CONSUMER FUNCTION

 void producer(){

while(1){
 await(&pEC, in – 10 + 1);
 ring_buf[in % 10] = random();
 in = (in + 1);
 advance(&cEC)
}

void consumer(){
int val;
while(1){
 await(&cEC, out + 1);
 val = ring_buf[out % 10];
 // print val somewhere
 out = (out + 1);
 advance(&pEC);
}

ONE PRODUCER, ONE CONSUMER RING BUFFER EXAMPLE

Sequencers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Basically an unsigned atomic counter
• One operation defined:

• ticket(Sequencer);
• A ticket call atomically returns the next Sequencer

value, and this value is generally used in an
await(EC, ticket(Seq)) form of call

• Sequencers, in conjunction with Event Counters
provide all of the synchronization capabilities of
semaphores

 GLOBAL TO PRODUCER AND CONSUMER THREADS:
ec_t pEC, cEC;
seq_t ps, cs;
int ring_buf[10];
unsigned in=0, out=0;
void await (ec_t * , int);
void advance (ec_t *);
int ticket (seq_t *);

PRODUCER FUNCTION CONSUMER FUNCTION

 void producer(){

int t; // local to each pro
while(1){
 t = ticket(&ps);
 await(&cEC, t);
 await(&pEC, t – 10 + 1);
 ring_buf[t % 10] = random();
 advance(&cEC)
}

void consumer(){
int u, val; // local to each con
while(1){
 u = ticket(&cs);
 await(&pEC, u);
 await(&cEC, u + 1);
 val = ring_buf[u % 10];
 // print val somewhere
 advance(&pEC);
}

MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE

Figure 2-33. A monitor.

Monitors (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-34. An outline of the producer-consumer problem with
monitors.

Monitors (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE
USING A MONITOR IN THE LANGUAGE CSP/k

MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE
USING A MONITOR IN THE LANGUAGE CSP/k (cont’d)

Figure 2-29. Implementation of mutex lock and mutex unlock.

Mutexes

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-30. Some of the Pthreads calls relating to mutexes.

Mutexes in Pthreads (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-31. Some of the Pthreads calls relating
to condition variables.

Mutexes in Pthreads (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-32. Using threads to solve
the producer-consumer problem.

Mutexes in Pthreads (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-38. Bursts of CPU usage alternate with periods of waiting
for I/O. (a) A CPU-bound process. (b) An I/O-bound process.

Scheduling – Thread Behavior

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Batch
• Interactive
• Real time

Categories of Scheduling Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-39. Some goals of the scheduling algorithm under
different circumstances.

Scheduling Algorithm Goals

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling Parameters
• When a thread is created it is allocated a set of scheduling parameters

• A scheduling policy
• Batch, timeshare, real-time

• A priority within that policy
• Batch priorities are low, timeshare intermediate, real-time high

• A possible time-slice (quantum)
• Timeshare and real-time round robin use timeouts

• Possible processor (core) affinity
• A thread can be connected to one or a set of cores

• Possible memory affinity
• In NUMA systems, a thread can be connected to one or a
 set of cores that are closer to some specific part of RAM

• Possible IO (bridge) affiinity
• In NUMA systems, a thread can be connected to one or a
 set of cores that are closer to some specific IO bridge

Buses

The bus structure of a pre-Nehalem Pentium 4

 sched_setscheduler() sets both the scheduling policy and the
 associated parameters for the thread whose ID is specified in arg tid.
 If tid equals zero, the scheduling policy and parameters of the
 calling thread will be set. The interpretation of the argument param
 depends on the selected policy. Currently, Linux supports the
 following "normal" (i.e., non-real-time) scheduling policies:

 SCHED_OTHER the standard round-robin time-sharing policy;

 SCHED_BATCH for "batch" style execution of processes; and

 SCHED_IDLE for running very low priority background jobs.

 The following "real-time" policies are also supported, for special
 time-critical applications that need precise control over the way in
 which runnable threads are selected for execution:

 SCHED_FIFO a first-in, first-out policy; and

 SCHED_RR a round-robin policy.

POSIX Scheduling Policies as Used in Linux/UNIX Systems

http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html

http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html

• Round-robin scheduling
• Priority scheduling
• Multiple queues
• Shortest process next
• Guaranteed scheduling
• Lottery scheduling
• Fair-share scheduling

Scheduling in Interactive Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-41. Round-robin scheduling.
(a) The list of runnable processes. (b) The list of runnable

processes after B uses up its quantum.

Round-Robin Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-42. A scheduling algorithm with four priority classes.

Priority Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-43. (a) Possible scheduling of user-level threads with a
50-msec process quantum and threads that run 5 msec per

CPU burst.

Thread Scheduling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-43. (b) Possible scheduling of kernel-level threads with
the same characteristics as (a).

Thread Scheduling (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Real Time Issues
• FIFO RT
• RR RT
• Deadline Scheduling

Scheduling in Real Time Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling in Real Time Systems (2)

• Real Time Issues
• Deterministic latency

• Policies that can guarantee
a minimum time bound from
ready state to run state

• Priority range
• Generally higher than non

RT policies
• Dynamic priority adjustment

• Hands-off for all but deadline

FIFO Real Time Policy
• Highest Priority First (no RR)
• Once an HPF thread reaches the

run state it cannot be preempted
by another thread of the same
highest priority

• Run state is left only by EXIT,
BLOCK operation or Priority
Preemption (no RR)

• Another thread of the same
priority can only run when the
first FIFO thread leaves the run
state

Round Robin Real Time Policy
• Highest Priority First with RR
• Once an HPF thread reaches the

run state it can be preempted by
another thread of the same highest
priority when its quantum expires

• Run state is left by EXIT,
BLOCK operation, Quantum
Expiration or Priority
Preemption

• Another thread of the same
priority can run if first RR
thread completes its time slice

Deadline Real Time Policy
• A thread’s priority is dynamically

adjusted as the thread approaches
a predetermined deadline

• The intent is to make sure that the
deadline scheduled thread will
reach the run state by the deadline

• The given thread’s priority will
have been dynmically
increased so much by the
deadline that it will have
become the highest priority
thread in the system

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Address Space Model
	Slide Number 5
	Slide Number 6
	Thread States
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Scheduling Parameters
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Scheduling in Real Time Systems (2)
	FIFO Real Time Policy
	Round Robin Real Time Policy
	Deadline Real Time Policy

