MODERN OPERATING SYSTEMS
Third Edition
ANDREW S. TANENBAUM

Chapter 1
Introduction

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What Is An Operating System (1)

A modern computer consists of:

e« One or more processors

« Main memory

 Disks

Printers

e Various input/output devices

Managing all these components requires a layer of
software — the operating system

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What Is An Operating System (2)

E-mail Music
Web reader player

browser

User interface program

User mode <

> Software

%
Kernel mode { Operating system

Figure 1-1. Where the operating system fits in.

] 5

~ Hardware

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Operating System as an Extended

Machine

Application programs

- Beautiful interface

Hardware

-— Ugly interface

Figure 1-2. Operating systems turn ugly hardware into beautiful
abstractions.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Operating System as a Resource
Manager

Allow multiple programs to run at the same time

« Manage and protect memory, I/O devices, and
other resources

 Includes multiplexing (sharing) resources in two
different ways:

* In time
* In space

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

|ICs and Multiprogramming

Job 3

Job 2

Job 1

Operating
system

Memory
partitions

Figure 1-5. A multiprogramming system
with three jobs in memory.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Computer Hardware Review

Monitor
Hard
Keyboard USB printer disk drive
o P goooo
: Hard
CPU Memory co\ﬂtc:ﬁﬁer Esﬁ’ﬁgﬁg: cogt?oEI;Ier disk
MMU controller
Bus

Figure 1-6. Some of the components
of a simple personal computer.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multithreaded and Multicore Chips

L1
cache
Core1 | | Core 2 Core 1| | Core 2
L2 L2
7]
Core 3 Core 4
L2 L2
(a) (b)

Figure 1-8. (a) A quad-core chip with a shared L2 cache.
(b) A quad-core chip with separate L2 caches.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Typical access time

Memory (1)

Typical capacity

1 nsec Registers <1 KB

2 nsec Cache 4 MB
10 nsec Main memory 512-2048 MB
10 msec Magnetic disk 200-1000 GB
100 sec Magnetic tape 400-800 GB

Figure 1-9. A typical memory hierarchy.
The numbers are very rough approximations.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Surface 7

Surface 6
Surface 5

Surface 4
Surface 3

Surface 2
Surface 1

Surface 0

Disks

J

(

» 1
pe o201

(

Read/write head (1 per surface)

(

2,

(

TS

.—h—
g

Direction of arm motion

Figure 1-10. Structure of a disk drive.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

/O Devices

Disk drive
¢ Current instruction

I Next instruction

&) 3| Interrupt Disk
~ | controller controller 3. Return
1. Interrupt

(el
1 . \ /
2. Dispatch f
to handler \’I“

Interrupt handler -~

f= fl=y

Figure 1-11. (a) The steps in starting an 1/O device and
getting an interrupt.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Monitor

Buses 0

Graphics
adaptor
/AGP bus
Local bus Memory bus
Pentium 4 l
CPU Bridge Main
Level 1 caches—pO ™ l/ chip memory
Level 2 cache ——t| |
PCl bus
< e u
-
\ ATAPI
SCSI USB 2 Avallable controller
PCI slot A A
P | L A
Y Y Y Y
Key- Hard DVD
iause board disk drive

The bus structure of a modern Pentium 4.

Enterprise: 2008 Nehalem Based

Two Socket System Architecture

‘.‘:-\._U.".-\.._"...:-'\-\.. £ ?-.
IR

PCl Express*
Gen 2 |

¢

BN Intel® QuickPath Interconnect

Nehalem-€EP Platform:

Two sockets each with Integrated
Memory Controller

Turbo mode operation

Intel QuickPath Architecture

DDR3 Memory: 3 Channel, 3 DIMMs
per channel

Intel Virtualization Technology
PCl Express* Gen 2

Enterprise: 2009 Nehalem Based

Four Socket System Architecture

PCl Express” Gen 2

[\B;Mmo-ex

< 1/0

I intel)
o . /
Nehalem|

EX ‘
) B

PCl Express” Gen 2

o

Boxboro-EX Platform:
Four processors with Intel QuickPath Interconnects
PCl Express Gen 2, Integrated Memory Controller

* Other names and brands may be claimed as the property of others

B Intel® QuickPath Interconnect

The Operating System Zoo

Mainframe operating systems

Server operating systems
Multiprocessor operating systems
Personal computer operating systems
Handheld operating systems
Embedded operating systems

Sensor node operating systems
Real-time operating systems

Smart card operating systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Operating System Concepts

Processes

Address spaces

~lles

nput/Output

Protection

Ontogeny recapitulates phylogeny

e Large memories

* Protection hardware
e Disks

* Virtual memory

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Processes

Figure 1-13. A process tree. Process A created two child
processes, B and C. Process B created three child
processes, D, E, and F.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Files (1)

Root directory

-

Students Faculty
ya /
4 ~
Robbert Matty r Leo Prof.Brown Prof.Green Prof. White
Y
I v 2 P
! r J,
/ /
[7\ x o
r Y Y \ Y
Courses Papers Grants Committees
i J] \
/] i \
) il 1 \
\ [1\ I 1\
/
Y r
O O
CS101 CS105 . v s SOSP COST-11

Files

Figure 1-14. A file system for a university department.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Files (2)

(@) (b)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not
accessible. (b) After mounting, they are part of the file
hierarchy.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Files (3)

Process Process

(==

Figure 1-16. Two processes connected by a pipe.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls

Address
OxFFFFFFFF _
Return to caller] .
T =k I Library
rap to the kerne procedure
5| Put code for read in register read
10
4
User space < Increment SP 11 3
~ Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
6 9
Kernel space < Dispatch i 8 | Sys call
(Operating system) P - “| handler

ofr

Figure 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for Process Management

Process management

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (1)

File management

Call Description
fd = open(file, how, ...) Open a file for reading, writing, or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get a file’s status information

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (2)

Call Description
s = mkdir(hame, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(name1, name2) Create a new entry, name2, pointing to name
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Miscellaneous System Calls

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Layout

Address (hex)
FFFF

Stack

W/

Data I

Text

0000

Figure 1-20. Processes have three segments:
text, data, and stack.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Windows Win32 API

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file

read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx | Get various file attributes
mkdir CreateDirectory Create a new directory

rmndir RemoveDirectory Remaove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount | (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetlLocalTime Get the current time

Figure 1-23. The Win32 API calls that roughly correspond
to the UNIX calls of Fig. 1-18.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

