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What Is An Operating System (1)

A modern computer consists of:

e«  One or more processors

«  Main memory

 Disks

Printers

e Various input/output devices

Managing all these components requires a layer of
software — the operating system
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What Is An Operating System (2)
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Figure 1-1. Where the operating system fits in.
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The Operating System as an Extended

Machine

Application programs

- Beautiful interface

Hardware

-— Ugly interface

Figure 1-2. Operating systems turn ugly hardware into beautiful
abstractions.
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The Operating System as a Resource
Manager

Allow multiple programs to run at the same time

« Manage and protect memory, I/O devices, and
other resources

 Includes multiplexing (sharing) resources in two
different ways:

* In time
* In space
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|ICs and Multiprogramming
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Figure 1-5. A multiprogramming system
with three jobs in memory.
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Computer Hardware Review
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Figure 1-6. Some of the components
of a simple personal computer.
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Multithreaded and Multicore Chips
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Figure 1-8. (a) A quad-core chip with a shared L2 cache.
(b) A quad-core chip with separate L2 caches.
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Typical access time

Memory (1)

Typical capacity

1 nsec Registers <1 KB

2 nsec Cache 4 MB
10 nsec Main memory 512-2048 MB
10 msec Magnetic disk 200-1000 GB
100 sec Magnetic tape 400-800 GB

Figure 1-9. A typical memory hierarchy.
The numbers are very rough approximations.
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Figure 1-10. Structure of a disk drive.
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/O Devices
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Figure 1-11. (a) The steps in starting an 1/O device and
getting an interrupt.
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Enterprise: 2008 Nehalem Based
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per channel

Intel Virtualization Technology
PCl Express* Gen 2
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The Operating System Zoo

Mainframe operating systems

Server operating systems
Multiprocessor operating systems
Personal computer operating systems
Handheld operating systems
Embedded operating systems

Sensor node operating systems
Real-time operating systems

Smart card operating systems
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Operating System Concepts

Processes

Address spaces

~lles

nput/Output

Protection

Ontogeny recapitulates phylogeny

e Large memories

* Protection hardware
e Disks

* Virtual memory
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Processes

Figure 1-13. A process tree. Process A created two child
processes, B and C. Process B created three child
processes, D, E, and F.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Files (1)
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Figure 1-14. A file system for a university department.
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Files (2)

(@) (b)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not
accessible. (b) After mounting, they are part of the file
hierarchy.
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Files (3)

Process Process

(==

Figure 1-16. Two processes connected by a pipe.
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System Calls

Address
OxFFFFFFFF _
Return to caller ] .
T =k I Library
rap to the kerne procedure
5| Put code for read in register read
10
4
User space < Increment SP 11 3
~ Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
6 9
Kernel space < Dispatch i 8 | Sys call
(Operating system) P - “| handler

ofr

Figure 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).
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System Calls for Process Management

Process management

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

Figure 1-18. Some of the major POSIX system calls.
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System Calls for File Management (1)

File management

Call Description
fd = open(file, how, ...) Open a file for reading, writing, or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get a file’s status information

Figure 1-18. Some of the major POSIX system calls.
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System Calls for File Management (2)

Call Description
s = mkdir(hame, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(name1, name2) Create a new entry, name2, pointing to name
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

Figure 1-18. Some of the major POSIX system calls.
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Miscellaneous System Calls

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls.
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Memory Layout

Address (hex)
FFFF

Stack

W/

Data I

Text

0000

Figure 1-20. Processes have three segments:
text, data, and stack.
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Windows Win32 API

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file

read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx | Get various file attributes
mkdir CreateDirectory Create a new directory

rmndir RemoveDirectory Remaove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount | (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetlLocalTime Get the current time

Figure 1-23. The Win32 API calls that roughly correspond
to the UNIX calls of Fig. 1-18.
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