
The Microsoft FAT 16 file system (supported by all of Microsoft's operating
systems from latter versions of MS-DOS through Windows8, as well as all Linux
versions) is an example of a file allocation table (FAT) implementation, while the
standard Unix/Linux File System (UFS/Ext[n]) is an example of an indexed
(using index nodes knows as i-nodes) implementation. Both implementations are
reasonably robust and provide relatively fast access to a file's data, but the FAT 16
implementation has a significant disadvantage when compared to the i-node
system in terms of memory usage requirements.

A. Explain what this memory usage problem is for FAT when compared to an

i-node based system ?
The entire FAT table (indexes for all files in the file system) is loaded
into RAM when a volume is initially referenced, while only the specific
i-nodes associated with current open files are brought into RAM
using the Ext type file systems (only i-nodes of objects in use
brought into RAM
B. Explain why Microsoft’s FAT 16 implementation limits the size of a file system

to 2GB of total space. Make sure you clearly identify the limiting factor.
Since a FAT 16 table has only 216 entries, and since Microsoft limits
the maximum allocation unit size (cluster size) to 215 (32 KB) the
maximum sigle file size (as well as the maximum entire file system
size) is limited to 216 * 215 = 231 = 2GB

Journaling provides support for rapid reboots after power failures
by limiting the file system checking to only those things active at failure

For a typical UNIX/Linux file system using the I-NODE organization discussed in
class (assume the 15 pointers used with the Ext2,3,4 file systems and discussed in
class; 12 direct plus first, second and third level indirect):

A. What is the size limit on a file created in a 8192 Byte (16 disk sectors) per
element (or logical block) file system, assuming that 8 bytes are required for
all pointers ?

NOTE:

• You may express the answer in KBytes, MBytes, GBytes or powers of 2 as
well as decimal, octal or hex, just make it clear what kind of answer you
provide.

FILE SIZE LIMIT IS: ______________________

B. The Linux ext2 file system is built around the architecture discussed above, but, unlike
the ext3 file system, ext2 does not include support for journaling. Explain what
journaling is, and why it is important enough to be included in virtually all new file
systems. (i.e., What is the principal advantage of a journaled file system ?)

An 8 KB allocation unit using 8 byte pointers can hold 1024 pointers, so
(12 direct * 8 KB) + (1024 * 8KB) + (10242 * 8KB) + (10243 * 8KB) ~= 8TB

Let ω = 2 3 1 3 2 4 6 7 4 5 6 7 2 1, be a page
reference stream. You are asked to work with two stack algorithms below.
Remember, when 2 locations on the stack are being compared, a swap of locations
is only allowed if the lower location has a greater priority than the upper location,
not the same priority. You may find the work sheet on the back of this exam useful.

A. Assuming the primary memory is initially unloaded, how many page

faults will the given reference stream have using the replacement algorithm
OPT for:

 1. A memory with 3 physical frames____________________

 2. A memory with 5 physical frames____________________

7 infinite + 2 crossings = 9

7 infinite + 0 crossings = 7

ω 2 3 1 3 2 4 6 7 4 5 6 7 2 1

1 2 3 1 3 2 4 6 7 4 5 6 7 2 1

2 2 3 1 1 2 4 4 7 7 7 6 7 2

3 2 2 3 1 2 6 6 6 5 5 6 7

4 3 1 2 2 2 2 2 5 6

5 3 1 1 1 1 1 1 5

6 3 3 4 4 4 4 4

7 3 3 3 3 3

c1

c2 1 1 1 1 1 2 2 2 3 3 3 11/2

c3 1 1 1 1 1 1 2 2 2 2 9/3

c4 1 1 8/4

c5 1 7/5

c6

c7

∞ 1 2 3 3 3 4 5 6 6 7 7 7 7 7

The code shown below compiles with no errors, and has no system call or
library call errors. It is to be executed by a process that has just used the
execlp() system call to load and run it from an a.out type file (the line numbers
are included for reference in answering part B below). As it begins normal
execution, it runs the main() function in its initial thread (IT), where it initializes a
global enumeration called color to the constant value RED. The IT then
initializes a mutex, and a condition variable and creates two new threads. After
creating the threads, the IT safely changes the color variable to ORANGE. The
IT then moves to a join call, waiting for the two other threads to finish so it can
print its final message and exit, but it never finishes.

A. Show what output is produced by this process, based on the code
provided:

B. Although some progress is made in this process (producing the output

you listed above in Part A) the process never finishes.

1. Explain why the process never finishes

2. Using the line numbers included for reference, specify what code
you would put at what line locations, to allow the process to come
to a normal termination.

 1 #include <pthread.h>
 2 #include <stdio.h>
 3 #include <errno.h>
 4
 5 enum COLOR {RED, GREEN, ORANGE} color;
 6
 7 pthread_t thread_id[2];
 8 pthread_mutex_t color_lock;
 9 pthread_cond_t color_condx;
 10
 11 void *th0();
 12 void *th1();
 13
 14 int main(int argc, char *argv[])
 15 {
 16 color = RED;
 17 printf("\nCOLOR INITIALIZED TO RED\n");
 18 pthread_mutex_init(&color_lock, NULL);
 19 pthread_cond_init(&color_condx, NULL);
 20 if(pthread_create(&thread_id[0],NULL, th0, NULL) != 0){
 21 perror("pthread_create failed ");
 22 exit(3);
 23 }
 24 if(pthread_create(&thread_id[1],NULL, th1, NULL) != 0){
 25 perror("pthread_create failed ");
 26 exit(3);
 27 }
 28 pthread_mutex_lock(&color_lock);
 29 color = ORANGE;
 30 pthread_mutex_unlock(&color_lock);
 31 pthread_cond_signal(&color_condx);
 32 pthread_join(thread_id[0], NULL);
 33 pthread_join(thread_id[1], NULL);
 34 printf("\nPROGAM COMPLETE\n");
 35 exit(0);
 36 } Code continued next page:

Continued from pervious page:

 37
 38 void *th0(){
 39 pthread_mutex_lock(&color_lock);
 40 while(color != ORANGE)
 41 pthread_cond_wait(&color_condx, &color_lock);
 42 color = GREEN;
 43 printf("\nCOLOR ORANGE CHANGED TO COLOR GREEN\n");
 44 pthread_mutex_unlock(&color_lock);
 45 return NULL;
 46 }
 47
 48 void *th1(){
 49 pthread_mutex_lock(&color_lock);
 50 while(color != GREEN)
 51 pthread_cond_wait(&color_condx, &color_lock);
 52 color = ORANGE;
 53 printf("\nCOLOR GREEN CHANGED TO COLOR ORANGE\n");
 54 pthread_mutex_unlock(&color_lock);
 55 return NULL;
 56 }

A. Show what output is produced by this process, based on the code
provided:

 COLOR INITIALIZED TO RED
 COLOR ORANGE CHANGED TO COLOR GREEN

B. Although some progress is made in this process (producing the output
you listed above in Part A) the process never finishes.

1. Explain why the process never finished

The condition var is never signalled by th0, so th1
cannot leave its cond wait and IT is stuck in join

2. Using the line numbers included for reference, specify what code
you would put at what line locations, to allow the process to come to
a normal termination.
After line 44 and 54, must signal condx var:
 pthread_cond_signal(&color_condx); OR
 pthread_cond_broadcast(&color_condx);

 38 void *th0(){
 39 pthread_mutex_lock(&color_lock);
 40 while(color != ORANGE)
 41 pthread_cond_wait(&color_condx, &color_lock);
 42 color = GREEN;
 43 printf("\nCOLOR ORANGE CHANGED TO COLOR GREEN\n");
 44 pthread_mutex_unlock(&color_lock);
 pthread_cond_signal(&color_condx);
 45 return NULL;
 46 }

 47

 48 void *th1(){
 49 pthread_mutex_lock(&color_lock);
 50 while(color != GREEN)
 51 pthread_cond_wait(&color_condx, &color_lock);
 52 color = ORANGE;
 53 printf("\nCOLOR GREEN CHANGED TO COLOR ORANGE\n");
 54 pthread_mutex_unlock(&color_lock);
 pthread_cond_signal(&color_condx);
 55 return NULL;
 56 }

The inode based UNIX file system generally allocates space to growing files by
providing a fixed size element (or block) when more space is needed. An
element (or block) is a contiguous collection of sectors on disk, and a common
element size used in many implementations is 8KB.

A. Why are elements allocated instead of just allocating one sector at a time to

a growing file ?

B. What type of fragmentation does this kind of allocation lead to ?

C. If we have a UNIX type file system which uses 64KB elements, and contains
a set of files that all grow sequentially over time, what can we expect the
average amount of fragmentation per file to be at any given time ?

Elements conserve pointers and provide better
disk performance

Internal fragmentation of ½ an allocation unit (element)
per file object

½ an allocation unit (element) in the case of a 64 KB element
leads to 32 KB internal fragmentation per file object on average

 Process A
 Euid 0
 Egid 1

 Process C
 Euid 310
 Egid 20

 Directory /
 uid 0
 gid 1
 Permissions d rwx r-x r-x
 Directory /abc
 uid 310
 gid 20
 Permissions d rwx r-x ---
 File /abc/file_one
 uid 320
 gid 20
 Permissions - r-s rwx rwx

- Can process A write on /abc/file_one ? Explain

- Can process C use the chmod 644 /abc/file_one shell command
 successfully ? Explain.

Consider the following details regarding a collection of UNIX objects:

YES – process A has super user UID = 0 and has full access to everything

NO – a chmod command by a non-super user process requires the
process EUID to match the UID on the target i-node (no match here)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

