
The following problem deals with a virtual memory system with a 12 bit address
space (from 0 to 4096 (4K) locations). The system is byte addressable and
uses a 256 byte per page organization. The real memory, therefore, is
organized into 16 page frames of 256 bytes each. Assume the operating
system itself occupies the last six pages permanently, and that user programs
will page against the first 10 pages as they run. Remember, the 12 bit
address space will allow a user to have a virtual address space of 4096 bytes
(16 pages) even though only 10 real pages will be available for all running
users to share during execution. The current status of this system is shown
below for a time when 3 processes, A, B and C, are active in the system. All
process are full size programs using all 16 virtual pages available. A is
presently in the running state while B and C are in the ready state. As you
look at the current CPU registers you can see that process A has just
fetched a JUMP instruction from its code path. The PROGRAM COUNTER
(PC) value shown is the (binary) VIRTUAL address of the JUMP instruction
itself, which is now in the INSTRUCTION REGISTER (IR), and the JUMP
instruction shows a (binary) VIRTUAL address to jump to as it executes.

A. From what REAL physical byte address did the current JUMP instruction in
the IR come from ?

To what REAL physical byte address will control be transferred when the
current JUMP instruction executes ??

B.

 SYSTEM PAGE FRAME TABLE AND CURRENT PAGE TABLE FOR RUNNING
 PROCESS A ARE SHOWN BELOW (THE OS KEEPS THESE IN ITS SPACE)

 SYSTEM PAGE PAGE TABLE FOR
 FRAME TABLE PROCESS A
 (PHYSICAL PAGES)

 PAGE STATUS FRAME # VALID
 # (BASE 2) BIT CPU
|---------------| |----------------| |------------------------------
| 0 OWNED BY A | | NONE 0 | | PC(BASE 2) 101010010110
---------------		----------------	
1 OWNED BY B		NONE 0	
---------------		----------------	
2 OWNED BY C		NONE 0	
---------------		----------------	
3 OWNED BY B		0000 1	
---------------		----------------	
4 OWNED BY A		NONE 0	
---------------		----------------	
5 FREE		0110 1	
---------------		----------------	
6 OWNED BY A		NONE 0	
---------------		----------------	
7 OWNED BY C		1001 1	
---------------		----------------	
8 OWNED BY C		NONE 0	
---------------		----------------	
9 OWNED BY A		NONE 0	
---------------		----------------	
10 OP SYS		0100 1	
---------------		----------------	
11 OP SYS		NONE 0	
---------------		----------------	
12 OP SYS		NONE 0	
---------------		----------------	
13 OP SYS		NONE 0	
---------------		----------------	
14 OP SYS		NONE 0	
---------------		----------------	
15 OP SYS		NONE 0	
---------------		----------------	

1 0 1 0 1 0 0 1 0 1 1 0
VP = 10 offset = 150
PP = 4 ans: <4><150>

1 1 1 0 1 1 0 1 1 0 1 1
VP = 14 offset = 219
 PAGE FAULT
 ONLY FREE PAGE IS 5
PP = 5 ans: <5><219>

Consider the following resource-allocation policy for a fixed inventory of serially
reusable resources of three different types (such as tape drives, printers,
shared memory, etc.):

• Requests and releases of resources are allowed at any time.

• If a request for a resource is made by a process which is already holding

other resources, the request may be denied based on a system imposed
ordering required for allocations. For example, in a system imposed
ordering it may be required that any process that must hold a tape drive
and a printer at the same time must ask for and obtain the tape drive(s)
before asking for the print device(s).

• Resources which are currently in use by other processes will cause a

requesting process to block waiting for their availability in FIFO order.

• Whenever a resource is freed, some blocked process needing such

resource may secure the resource and move to the ready state.

A. List the 4 necessary conditions for a deadlock to occur in a computing system.

B. Can deadlock occur in the system described above ? If so, give an example. If
not, which necessary condition cannot occur that would be required for a
deadlock ?

C. Can indefinite postponement occur ? Explain.

Mutex Resources
Hold and Wait
No Pre-emption
Circular Wait

NO DL, the Circular Wait Condition is Denied
by imposing strict allocation ordering

NO IP … IP is a problem when denying No Pre-emption

 DRAW THE FINAL, REDUCED RESOURCE GRAPH HERE:

The following resource allocation graph shows the state of a 7 thread system using 6
types of resources at a particular instant. Using graph reduction, determine whether
any deadlock exists, and if there is deadlock indicate the process(es) and
resources involved. You must draw the final reduced graph whether or not there
is a deadlock.

T1

T3

T5
T7

T2

T6

T4

R1

R6

R5

R3

R4

R2

T1

T3

T5
T7

T2

T6

T4

R1

R6

R5

R3

R4

R2

T1

T3

T5
T7

T2

T6

T4

R1

R6

R5

R3

R4

R2

∞

1

2

3 4

5

6
7

8

9

11

10

The figure below depicts the free space at a point in time just before a free(3100)
operation is called by some process that had previously requested a block of heap
space of size 400 bytes. You must fill in the empty rectangle on the right side of
the diagram with the complete new picture of the free space after the free()
operation discussed above has completed.

FILL IN ALL DETAILS OF THE NEW
FREE LIST ORGANIZATION BELOW

free block list head

2500

4200
500

2500

3500

2000

4200

3500
200

NULL

800

MEMORY BYTE LOCATION

free block list head

2500

2500

2000

4200

3100
200

NULL

800

MEMORY BYTE LOCATION

4200
900

3100

The following information depicts a system consisting of 3 processes (a, b, and c) and
10 tape drives which the processes must share. The system is currently in a "safe"
state with respect to deadlock:

 process max tape demand current allocation outstanding claim
 a 4 2 2
 b 6 3 3
 c 8 2 6

Following is a sequence of events, each of which occurs a short time after the previous
event with the first event occurring at time one (t(1)). The exact time that each event
occurs is not important except that each is later than the last. I have marked the times
t(1), t(2), etc. for reference. Each event either requests or releases some tape drives
for one of the processes. If a system must be kept "safe" at all times, and if a request
can only be met by providing all the requested drives, indicate the time at which each
request will be granted using a first-come-first-served method for any processes that
may have to wait for their request (i.e. request 5 granted at t(9)) or indicate that a
request will not be granted any time in the sequential times listed. (Note: if a process
releases some drives at time(x) which a waiting process needs, that waiting process will
get its drives at that time(x). Put your final answers in the space provided below.

 time action
 t(1) request #1 c requests 2 drives
 t(2) request #2 a requests 2 drives
 t(3) release a releases 3 drives

ANSWERS:
Request #1 granted at ____???______

Request #2 granted at _____@ T2_____

Using the buddy system of memory allocation indicate the starting addresses
for each of the following memory allocation requests as they enter an initially
empty memory allocation region which has a memory size of 216 (64K) words.
(Addresses run from 0 to 64k-1, and can be given in K form, i.e. location
4096 = 4K.) Assume that when memory is allocated from a list the available
block of memory closest to address 0 (shallow end of memory) is always given
for the request. Give the address of each allocation in the space provided
below:

TIME JOB REQUESTING JOB RETURNED REQUEST SIZE(WORDS)
 | A 12K
 | B 3K
 v C 17K
 | A
 | D 1K
 v E 6K
 | B
 | D
 v F 8K
 | E
 | C
 v G 15K

 ANSWERS

Request A at ___________

Request B at ___________

Address 0

Address 16K

0 16 20 24 32 64

When a heavy-weight context switch occurs on a UNIX or Windows system (one
process address space leaving the CPU and another coming onto the CPU) we say
that a TLB shootdown must be done to the processor's memory management TLB
entries.

A. Draw a diagram and label and describe the fields in a TLB entry

B. Explain what a TLB shootdown is and why it is necessary on a heavy-weight
context switch.

C. Is a TLB shootdown necessary when a context switch is made between one
thread of a process and another thread of the same process ?? Explain.

VALID Virtual Addr PhysAddr + PROT (PTE)

Virtual addresses do NOT map the same in a new address space

NO: Same address space is used by ALL threads of a process

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10

