
The source code below is for a simple program named proc_run , which takes an integer
argument and will run successfully on a Linux system when located in the working directory
and started from a shell prompt as shown: (see the reference pages for system call details)

-bash-3.00$./proc_run 5

int main(int argc, char* argv[]){
 int arg;
 char nstr[10];

 printf("LEVEL: %s\n", argv[1]);
 arg = atoi(argv[1]); // convert arg string to int
 --arg; // decrement arg value
 sprintf(nstr, "%d", arg); // convert int to arg string

 if(arg){
 switch(fork()){
 case -1:
 exit(0);
 case 0:
 execl("./proc_run", "proc_run", nstr, NULL);
 }
 }
 wait(NULL);
 printf("LEVEL: %s PROC IS DONE\n", argv[1]);
}

A. Write all the output that will be generated when this program is run with the

shell command shown above:

B. Although we expect the fork() calls made above to succeed, in general,

what could lead to a fork() call failing ?

int main(int argc, char* argv[]){
 int arg;
 char nstr[10];

 printf("LEVEL: %s\n", argv[1]);
 arg = atoi(argv[1]); // convert arg string to int
 --arg; // decrement arg value
 sprintf(nstr, "%d", arg); // convert int to arg string

 if(arg){
 switch(fork()){
 case -1:
 exit(0);
 case 0:
 execl("./proc_run", "proc_run", nstr, NULL);
 }
 }
 wait(NULL);
 printf("LEVEL: %s PROC IS DONE\n", argv[1]);
}

A. Write all the output that will be generated when this program is run with the

shell command shown above:
LEVEL 5
LEVEL 4
LEVEL 3
LEVEL 2
LEVEL 1
LEVEL 1 PROC IS DONE
LEVEL 2 PROC IS DONE
LEVEL 3 PROC IS DONE
LEVEL 4 PROC IS DONE
LEVEL 5 PROC IS DONE

B. Although we expect the fork() calls made above to succeed, in general,

what could lead to a fork() call failing ?
fork() can fail when the system is out of resources (mem, swap)
or a process limit is hit (too many user processes)

Exceptions are delivered to a processor under a variety of circumstances. In all cases, when
the exception is delivered and the processor recognizes it, the thread that is currently running
on that processor is diverted from its code path into an exception code path (typically
changing address space from user mode into kernel mode). Exception code paths are
generally activated via a vectoring mechanism, as we have discussed in class.

A. Exceptions are broadly categorized as either synchronous or asynchronous.
Explain the difference between the two types of exceptions, and provide an actual
example of each type.

B. An running thread tries to execute an instruction that dereferences a NULL pointer,

which results in that thread running an exception handler in the kernel.
1) What specific kind of an exception is this event ?

2) When the exception handler completes and returns back to the code of the

running thread, which instruction will the running thread start to execute ?

C. Consider a CPU that is currently executing an IDLE thread in user space at a time
when a local disk controller has just completed transferring disk blocks from a disk into
memory, and has sent an interrupt to that CPU. Between the executions of each
instruction of the IDLE thread, the CPU checks for interrupts, and when it finds this one
it forces the IDLE thread into the kernel to run the exception handler for this event. Can
the IDLE thread lose the CPU now while in the kernel (i.e. can a context switch happen
here), or must the IDLE thread return to user mode after completing the exception code ?
Explain your answer.

A. Exceptions are broadly categorized as either synchronous or asynchronous.
Explain the difference between the two types of exceptions, and provide an actual
example of each type.

Sync – divide by zero – caused by instruction execution
Async – disk controller interrupt – external event
B. An running thread tries to execute an instruction that dereferences a NULL pointer,

which results in that thread running an exception handler in the kernel.
1) What specific kind of an exception is this event ?
This is a FAULT
2) When the exception handler completes and returns back to the code of the

running thread, which instruction will the running thread start to execute ?
Attempt to re-execute the offending instruction

C. Consider a CPU that is currently executing an IDLE thread in user space at a time when

a local disk controller has just completed transferring disk blocks from a disk into
memory, and has sent an interrupt to that CPU. Between the executions of each
instruction of the IDLE thread, the CPU checks for interrupts, and when it finds this one it
forces the IDLE thread into the kernel to run the exception handler for this event. Can
the IDLE thread lose the CPU now while in the kernel (i.e. can a context switch happen
here), or must the IDLE thread return to user mode after completing the exception
code ? Explain your answer.

IDLE thread may be pre-empted, and not get back to user
run state for a while, but cannot block

The following shows the original sources for a simple masm program to be built from two
separate source files. It also shows the object files produced when each is assembled with
masm using the –o flag.

 A SIMPLE MAIN PROGRAM
bash-2.05$ cat main1.asm
main: lodd arg1:
 push
 lodd arg2:
 push
 call myadd:
 stod rslt:
 halt
 .LOC 10
arg1: 25
arg2: 75
rslt: 0

 A SIMPLE EXTERNAL FUNCTION
bash-2.05$ cat myadd.asm
myadd: lodl 1
 addl 2
 addd bias:
 retn
bias: 100

 ASSEMBLE WITH –o OPTION
bash-2.05$./masm_mrd -o < main1.asm > main1.obj
bash-2.05$ cat main1.obj
 0 U0000000000000000 arg1:
 1 1111010000000000
 2 U0000000000000000 arg2:
 3 1111010000000000
 4 U1110000000000000 myadd:
 5 U0001000000000000 rslt:
 6 1111111111000000
 10 0000000000011001
 11 0000000001001011
 12 0000000000000000
 4096 x
 rslt: 12
 arg2: 11
 arg1: 10
 main: 0

 ALSO ASSEMBLED WITH –o OPTION
bash-2.05$./masm_mrd -o < myadd.asm > myadd.obj
bash-2.05$ cat myadd.obj
 0 1000000000000001
 1 1010000000000010
 2 U0010000000000000 bias:
 3 1111100000000000
 4 0000000001100100
 4096 x
 bias: 4
 myadd: 0

If you built a linker program (just as you did in assignment #6), and linked these two separate
object files into an executable binary output file so the first executable instruction from the file
main1.asm was placed at location 0 in the executable, that output file would have 18 lines
of 16 bit entries. The first 4 of these entries are provided below, you must fill in the last 14.

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

 3 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

 4

 5

 6

Corresponding code
main: lodd arg1:
 push
 lodd arg2:
 push
 call myadd:
 stod rslt:
 halt
 .LOC 10

arg1: 25
arg2: 75
rslt: 0
myadd: lodl 1
 addl 2
 addd bias:
 retn
bias: 100

 Executable Content
 0 0000000000001010
 1 1111010000000000
 2 0000000000001011
 3 1111010000000000
 4 1110000000001101
 5 0001000000001100
 6 1111111111000000
 7 1111111111111111
 8 1111111111111111
 9 1111111111111111
10 0000000000011001
11 0000000001001011
12 0000000000000000
13 1000000000000001
14 1010000000000010
15 0010000000010001
16 1111100000000000
17 0000000001100100

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8

