

 NOTE: The assembler, masm, accepts strings of the form:

str: "hi mom"
str1: "hi moma"

and will generate output into the assembly file as:

str: 0110100101101000 <== left byte: i right byte: h
 0110110100100000 <== left byte: m right byte: space
 0110110101101111 <== left byte: m right byte: o
 0000000000000000 <== left byte: \0 right byte: \0
str1: 0110100101101000 <== left byte: i right byte: h
 0110110100100000 <== left byte: m right byte: space
 0110110101101111 <== left byte: m right byte: o
 0000000001100001 <== left byte: \0 right byte: a

This means that bytes are packed in two per word with the last word either all full
or half full of zeros as shown in the two different cases above. Since we use
strings in this exam it is important to understand how they are deployed in
memory.

1. The following assembly program (which has line reference numbers attached
to help you answer the questions below) will begin executing at location 0:

0 lodd start:
1 stod 4093
2 stod 4095
3 top: lodd 4095
4 subd mask:
5 jzer print:
6 jump top:
7 print: lodd char:
8 stod 4094
9 subd c2:
10 stod char:
11 subd chA:
12 jpos cont:
13 lodd chZ:
14 stod char:
15 cont: lodd 4093
16 subd mask:
17 jzer done:
18 jump top:
19 done: halt
20 start: 8
21 mask: 10
22 chA: "A"
23 chZ: "Z"
24 char: “Z”
25 c2: 2

A. Explain what lines 1 and 2 are used for:
B. As the program runs it begins to write characters on the display.

Describe what the output will look like.
C. When and how will this program reach the halt command ??

0 lodd start:
1 stod 4093
2 stod 4095
3 top: lodd 4095
4 subd mask:
5 jzer print:
6 jump top:
7 print: lodd char:
8 stod 4094
9 subd c2:
10 stod char:
11 subd chA:
12 jpos cont:
13 lodd chZ:
14 stod char:
15 cont: lodd 4093
16 subd mask:
17 jzer done:
18 jump top:
19 done: halt
20 start: 8
21 mask: 10
22 chA: "A"
23 chZ: "Z"
24 char: “Z”
25 c2: 2

A. Explain what lines 1 and 2 are used for:

To turn “ON” the rcvr and xmtr

B. As the program runs it begins to write
characters on the display. Describe what the
output will look like.

ZXVT – BZXVT – B……

C. When and how will this program reach
the halt command ??

When some keyboard input is available

The following busy-wait function (starting at label xbsywt :) is used with our
mic-1 IO interface in order to determine when it is safe to place another
character in the transmitter. When called, it will not return to the caller until
the transmitter is ready for another character. While this implementation
works correctly, it is inefficient because it contains more instructions than
required to perform the busy-wait. You must re-code the function using fewer
instructions to achieve the same functionality:

xbsywt: lodd 4095
 subd xdmask:
 jzer xrdy:
 jump xbsywt
xrdy: retn
xdmask: 10

 YOUR RE-WRIITEN VERSION BELOW: 

xbsywt:

xbsywt:

lodd

4095
subd

xdmask:

jzer

xrdy:
jump xbsywt:

xrdy:

retn
xdmask:

10

xbsywt:

lodd

4095
subd

xdmask:

jneg

xbsywt:
xrdy:

retn

xdmask:

10

. Contemporary random access memories can be broadly characterized as DRAM
or SRAM devices.

A. Explain why SRAM devices are typically faster than DRAM devices.
All transistors, no capacitors to refresh

B. Explain why DRAM devices are typically less expensive per bit than SRAM

devices.
One transistor and a capacitor cost much less than

6 or 7 transistors

C. On die CPU cache is generally fabricated as SRAM storage that deploys some
specific line size. If an x86 CPU is trying to complete an instruction like:
movl (%edx), %eax and the 4 bytes needed are not in cache, the resulting
cache miss will typically cause the cache controller to bring in one or two cache
line(s) that contain within them the 4 bytes required to complete the instruction.
Since the cache line for the newest x86 processors (Nehalem) is 64 bytes, a
lot more information is brought into the cache than is needed to satisfy the
current instruction. Explain and provide some examples of the attribute of
computer programs that makes this caching strategy a performance win.

Temporal and spatial locality (loops, function
calls)

The following procedure labeled sb: takes one argument in the form of a
memory address which is pushed onto the stack by the caller before it is
called. As we’ve seen in class, this routine is supposed to do a byte swap
on the content of the location passed as an argument. Part of the code is
missing beginning at the label sb: and another part is missing beginning
at the label add1: . You must add the missing code segments to each
location which will make sb: work correctly.

 sb:
  write missing code

 loco 8
 loop: jzer finish:
 subd c1:
 stod lpcnt:
 lodl 0
 jneg add1:
 addl 0
 stol 0
 lodd lpcnt:
 jump loop:
 add1:
  write missing code
 finish: lodl 2
 popi
 retn ; procedure ends here
 c1: 1 ; data locations for the procedure
 lpcnt: 0

 sb:
  write missing code

 loco 8
 loop: jzer finish:
 subd c1:
 stod lpcnt:
 lodl 0
 jneg add1:
 addl 0
 stol 0
 lodd lpcnt:
 jump loop:
 add1:
  write missing code
 finish: lodl 2
 popi
 retn ; procedure ends here
 c1: 1 ; data locations for the procedure
 lpcnt: 0

sb: lodl 1
pushi

add1: addl 0
addd c1:
stol 0
lodd lpcnt:
jump loop:

A particular computer system provides caching by using a direct cache for instructions
and data (often called a unified cache) consisting of 8192 sets of a single line of 16
bytes as shown in the diagram below. The computer system uses 32 bit addressing
for loads and stores and fetching instructions (its program counter (PC) is 32 bits).

Entry Valid Tag Data (16 bytes)
0
1
2
3
.
.
.

8191

 A. If the PC value of the next instruction fetch is (in hex) 0x004C71F5,

which cache set in the cache will be searched for the instruction ? (Give the
answer in base 10 between 0 - 8191)

 0000 000 0 010 0 110 0 0111 0001 1111 0101
 TAG = 0x26 13 BIT LINE = 1823 BYTE OFFSET
 B. What value will the tag bits be checked for in the tag field associated

with the line you selected in part A ? (Give the value in hex.)
 TAG BITS = 0x26

C. If the same 8192 cache lines were broken up into a 4 way set associative
cache (4 lines per set, 2048 sets), how many lines, and which cache set
would be searched for the above address (0x004C71F5,) ? Give the answer
in base 10)

 0000 0000 0 100 1 100 0 111 0001 1111 0101
 TAG = 0x98 11 BIT LINE = 1823 BYTE OFFSET
 4 LINES SEARCHED FOR THIS TAG IN SET 1823

Suppose a new MACRO instruction was added to the set in the book (you've actually done this
in your last assignment). This new instruction is called BSWAPD and will use a 4 bit op
code and a 12 bit address to specify a location in memory that is to be byte swapped
directly in its memory location, leaving the accumulator unchanged. (This instruction
would actually have to replace an existing instruction since all possible 4 bit op-code, 12 bit
address instructions are defined.) You must write a series of MIC-1 MAL (Micro Assembly
Language) statements to support this new instruction. You do NOT have to worry about
DECODING its OPCODE (we won't even worry about what its macro OPCODE is, but will
assume that your code begins with the first MAL statement needed after the instruction
has been successfully decoded by earlier parts of the microprogram and has jumped to your
first MAL statement), and you must make sure that when you finish byte swapping the
memory location, your microprogram segment will continue normal machine execution.

100 mar := ir; rd;
101 c := smask; rd;
102 a := mbr;
103 c := rshift(c); if z goto 107;
104 a := lshift(a); if n goto 106;
105 goto 103;
106 a := a + 1; goto 103;
107 mbr := a; wr;
108 goto 0; wr;

To begin accessing information on a magnetic disk requires a
period of time which is usually expressed in two additive components
of disk access time known as average seek time and
average rotational latency.

A. If the average seek time for a magnetic disk which spins at 15,000 RPM
is 5 ms. and the disk has 512 sectors of 512 bytes per track, what is
the expected average time required to actually transfer an arbitrary
single 512 byte sector from disk to memory ?

B. Once a data transfer has begun for the disk described above, what is the
maximum transfer rate (also known as maximum spindle bandwidth)
in bytes-per-second possible on the disk if a continuous sequential transfer
is made of all the data sectors on the current track (i.e. assume that a sector
can now transfer in the time it takes to pass under the read/write head) ?

A. If the average seek time for a magnetic disk which spins at 15,000 RPM
is 5 ms. and the disk has 512 sectors of 512 bytes per track, what is the
expected average time required to actually transfer an arbitrary single
512 byte sector from disk to memory ?

1m/15000R *60S/1M *1000mS/1S = 4mS/Rev
5mS + 2mS + 4mS/512Sectors = 7.0078125mS

B. Once a data transfer has begun for the disk described above,
what is the maximum transfer rate (also known as maximum
spindle bandwidth) in bytes-per-second possible on the disk if
a continuous sequential transfer is made of all the data sectors on
the current track (i.e. assume that a sector can now transfer in the
time it takes to pass under the read/write head) ?

512 Bytes/.0078125Ms = 65.536 MB/S

The following picture shows a part of the Mic-1 hardware we’ve been working with (the
complete picture is attached to back pages of the exam). You need to draw on this picture the
components and connections which would have to be added to this circuit to support a new kind
of MAL instruction that would somehow provide a 12 bit unsigned immediate value to be used in
a way that would allow microcode statements like pc := pc + 1234. The 12 bit immediate
value must be delivered to the ALU via the B – bus access, such that the example above
would have the pc value entering from the A latch, and the 1234 immediate value somehow
(based on your new circuitry) making its way from a part of the MIR to the B – bus access
side of the ALU. You must add this functionality without changing any existing functionality,
although this microinstruction may not itself have all the functionality possible of the other
microinstructions. (i.e. You may need to use fields like the A, B, C or ADDR components to
build your 12 bit immediate value, and if used this way, they would not be available in this new
MAL for their original purpose. This would be a necessary trade-off to include this new
immediate capability, but only the new MAL would notice this loss of previous functionality.)
The idea here is to use any available unused bit combinations to define another micro activity.

MUX

MUX

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

