


 NOTE: The assembler,   masm,   accepts strings of the form: 
 
str:   "hi mom" 
str1:  "hi moma" 
 
and will generate output into the assembly file as: 
 
str:     0110100101101000        <==  left byte: i    right byte: h 
         0110110100100000        <==  left byte: m    right byte: space 
         0110110101101111        <==  left byte: m    right byte: o 
         0000000000000000        <==  left byte: \0   right byte: \0 
str1:    0110100101101000        <==  left byte: i    right byte: h 
         0110110100100000        <==  left byte: m    right byte: space 
         0110110101101111        <==  left byte: m    right byte: o 
         0000000001100001        <==  left byte: \0   right byte: a 
 
 
This means that bytes are packed in two per word with the last word either all full 
or half full of zeros as shown in the two different cases above.  Since we use 
strings in this exam it is important to understand how they are deployed in 
memory. 



1. The following assembly program (which has line reference numbers attached 
to help you answer the questions below) will begin executing at  location 0: 
 

0 lodd start: 
1 stod 4093 
2 stod 4095 
3 top: lodd 4095 
4 subd mask: 
5 jzer print: 
6 jump top: 
7 print: lodd char: 
8 stod 4094 
9 subd c2: 
10 stod char: 
11 subd chA: 
12 jpos cont: 
13 lodd chZ: 
14 stod char: 
15 cont: lodd 4093 
16 subd mask: 
17 jzer done: 
18 jump top: 
19 done: halt 
20 start: 8 
21 mask: 10 
22 chA: "A" 
23 chZ: "Z" 
24 char: “Z” 
25 c2:  2 
   

A. Explain what lines  1 and 2  are used for: 
B. As the program runs it begins to write characters on the display.  

Describe what the output will look like. 
C. When and how  will this program reach the halt command ?? 



0 lodd start:
1 stod 4093
2 stod 4095
3 top: lodd 4095
4 subd mask:
5 jzer print:
6 jump top:
7 print: lodd char:
8 stod 4094
9 subd c2:
10 stod char:
11 subd chA:
12 jpos cont:
13 lodd chZ:
14 stod char:
15 cont: lodd 4093
16 subd mask:
17 jzer done:
18 jump top:
19 done: halt
20 start: 8
21 mask: 10
22 chA: "A"
23 chZ: "Z"
24 char: “Z”
25 c2: 2

A. Explain what lines  1 and 2 are used for:

To turn  “ON” the rcvr and xmtr

B. As the program runs it begins to write 
characters on the display. Describe what the 
output will look like.

ZXVT – BZXVT – B……

C. When and how  will this program reach 
the halt command ??

When some keyboard input is available



The following busy-wait function ( starting at label xbsywt : ) is used with our 
mic-1 IO interface in order to determine when it is safe to place another 
character in the transmitter.  When called, it will not return to the caller until 
the transmitter is ready for another character.  While this implementation 
works correctly, it is inefficient because it contains more instructions than 
required to perform the busy-wait.  You must re-code the function using fewer 
instructions to achieve the same functionality: 

 
xbsywt: lodd   4095 
 subd   xdmask: 
 jzer      xrdy: 
 jump  xbsywt  
xrdy: retn 
xdmask: 10 
 
 
 
 
 
 
   YOUR RE-WRIITEN VERSION BELOW:    
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. Contemporary random access memories can be broadly characterized as DRAM
or SRAM devices. 

 
A.  Explain why SRAM devices are typically faster than DRAM devices. 
All transistors, no capacitors to refresh 

 
B. Explain why DRAM devices are typically less expensive per bit than SRAM 

devices. 
One transistor and a capacitor cost much less than 

6 or 7 transistors 
 

C.  On die CPU cache is generally fabricated as SRAM storage that deploys some 
specific line size.  If an x86 CPU is trying to complete an instruction like:        
movl (%edx), %eax     and the 4 bytes needed are not in cache, the resulting 
cache miss will typically cause the cache controller to bring in one or two cache 
line(s) that contain within them the 4 bytes required to complete the instruction.  
Since the cache line for the newest x86 processors (Nehalem) is 64 bytes, a 
lot more information is brought into the cache than is needed to satisfy the 
current instruction.  Explain and provide some examples of the attribute of 
computer programs that makes this caching strategy a performance win. 

Temporal and spatial locality (loops, function 
calls) 



The following procedure labeled   sb:   takes one argument in the form of a 
memory address which is pushed onto the stack by the caller before it is 
called.  As we’ve seen in class, this routine is supposed to do a byte swap 
on the content of the location passed as an argument.  Part of the code is 
missing beginning at the label   sb:   and another part is missing beginning 
at the label    add1:   .  You must add the missing code segments to each 
location  which will make   sb:   work correctly. 

   
 
     sb:       
                 write missing code
 
              loco  8 
     loop:    jzer  finish: 
              subd  c1: 
              stod  lpcnt: 
              lodl  0 
              jneg  add1: 
              addl  0 
              stol  0 
              lodd  lpcnt: 
              jump  loop: 
     add1:               
                 write missing code 
     finish:  lodl  2 
              popi 
              retn                 ; procedure ends here 
     c1:      1   ; data locations for the procedure 
     lpcnt:  0 



 
     sb:       
                 write missing code
 
              loco  8 
     loop:    jzer  finish: 
              subd  c1: 
              stod  lpcnt: 
              lodl  0 
              jneg  add1: 
              addl  0 
              stol  0 
              lodd  lpcnt: 
              jump  loop: 
     add1:               
                 write missing code 
     finish:  lodl  2 
              popi 
              retn                 ; procedure ends here 
     c1:      1   ; data locations for the procedure 
     lpcnt:  0 

sb: lodl 1
pushi

add1: addl 0
addd c1:
stol 0
lodd lpcnt:
jump loop:



A particular computer system provides caching by using a direct cache for instructions 
and data (often called a unified cache) consisting of 8192 sets of a single line of 16 
bytes as shown in the diagram below.  The computer system uses 32 bit addressing 
for loads and stores and fetching instructions (its program counter (PC) is 32 bits). 

Entry Valid Tag Data (16 bytes) 
0    
1    
2    
3    
. 
. 
. 

   

8191    
 
        A. If the PC value of the next instruction fetch is (in hex) 0x004C71F5, 

which cache set in the cache will be searched for the instruction  ?  (Give the 
answer in base 10 between 0 - 8191) 

   0000 000 0 010 0 110    0 0111 0001 1111   0101 
                       TAG  = 0x26                          13 BIT LINE = 1823         BYTE OFFSET 
        B. What value will the tag bits be checked for in the tag field associated 

with the line you selected in part A ? (Give the value in hex.) 
                            TAG BITS = 0x26 

C.  If the same 8192 cache lines were broken up into a 4 way set associative 
cache (4 lines per set, 2048 sets), how many lines, and which cache set 
would be searched for the above address (0x004C71F5,) ?  Give the answer 
in base 10) 

   0000 0000 0 100 1 100 0   111 0001 1111   0101 
                       TAG = 0x98                            11 BIT LINE = 1823        BYTE OFFSET 
    4 LINES SEARCHED FOR THIS TAG IN SET 1823 



Suppose a new MACRO instruction was added to the set in the book  (you've actually done this 
in your last assignment).  This new instruction is called  BSWAPD  and will use a 4 bit op 
code  and a 12 bit address to specify a location in memory that is to be  byte swapped 
directly in its memory location, leaving the accumulator unchanged. (This instruction 
would actually have to replace an existing instruction since all possible 4 bit op-code, 12 bit 
address instructions are defined.)   You must write a series of MIC-1  MAL (Micro Assembly 
Language) statements to support  this new instruction.  You do NOT have to worry about 
DECODING its OPCODE (we won't even worry about what its macro OPCODE is, but will 
assume that your code begins with the first MAL statement needed after the instruction 
has been successfully decoded by earlier parts of the microprogram and has jumped to your 
first MAL statement), and you must make sure that when you finish byte swapping the 
memory location, your microprogram segment will continue normal machine execution. 



100  mar := ir; rd;
101 c := smask; rd;
102  a := mbr;
103  c := rshift(c); if z goto 107;
104  a := lshift(a); if n goto 106;
105  goto 103;
106  a := a + 1; goto 103;
107  mbr := a; wr;
108  goto 0; wr;



To begin accessing information on a magnetic disk requires a 
period of time which is usually expressed in two additive components
of disk access time known as average seek time and 
average rotational latency. 

A. If the average seek time for a magnetic disk which spins at 15,000 RPM
is     5 ms. and the disk has 512 sectors of 512 bytes per track, what is 
the expected average time required to actually transfer an arbitrary 
single 512 byte sector from disk to memory ? 

B. Once a data transfer has begun for the disk described above, what is the 
maximum transfer rate (also known as maximum spindle bandwidth) 
in bytes-per-second possible on the disk if a continuous sequential transfer 
is made of all the data sectors on the current track (i.e. assume that a sector 
can now transfer in the time it takes to pass under the read/write head) ?



A. If the average seek time for a magnetic disk which spins at 15,000 RPM
is     5 ms. and the disk has 512 sectors of 512 bytes per track, what is the 
expected average time required to actually transfer an arbitrary single
512 byte sector from disk to memory ?

1m/15000R *60S/1M *1000mS/1S = 4mS/Rev
5mS + 2mS + 4mS/512Sectors = 7.0078125mS

B. Once a data transfer has begun for the disk described above, 
what is the maximum transfer rate (also known as maximum 
spindle bandwidth) in bytes-per-second possible on the disk if 
a continuous sequential transfer is made of all the data sectors on
the current track (i.e. assume that a sector can now transfer in the
time it takes to pass under the read/write head) ?

512 Bytes/.0078125Ms =  65.536 MB/S



The following picture shows a part of the Mic-1 hardware we’ve been working with (the 
complete picture is attached to back pages of the exam).  You need to draw on this picture the 
components and connections which would have to be added to this circuit to support a new kind 
of MAL instruction that would somehow provide a 12 bit unsigned immediate value to be used in 
a way that would allow microcode statements like     pc := pc + 1234.     The 12 bit immediate 
value must be delivered to the  ALU  via the B – bus access, such that the example above 
would have the  pc  value entering from the A latch, and the 1234 immediate value somehow 
(based on your new circuitry) making its way from a part of the MIR to the B – bus access 
side of the ALU.  You must add this functionality without changing any existing functionality, 
although this microinstruction may not itself have all the functionality possible of the other 
microinstructions. (i.e. You may need to use fields like the A, B, C  or ADDR components to 
build your 12 bit immediate value, and if used this  way, they would not be available in this new 
MAL for their original  purpose.  This would be a necessary trade-off to include this new 
immediate capability, but only the new MAL would notice this loss of previous functionality.)  
The idea here is to use any available unused bit combinations to define another micro activity.   



 

MUX

 

MUX
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