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Abstract. Abstract interpretation is an efficient means for approximat-
ing program behaviors before run-time. It can be used as the basis for
a number of different useful techniques in static analysis more broadly,
and can thus in-turn be used to prove properties needed for security or
optimization. Polyvariance represents a way of obtaining higher precision
in an abstract interpretation by producing multiple abstract states for
each function or lexical point of interest in the program. This paper ex-
plores the role of polyvariance in these analyses and how it is manifested,
unifying the disparate presentations in the literature.

1 Introduction

A control-flow analysis conservatively approximates the control-flow behavior of
a program, which for higher-order languages, necessarily implies a sound sup-
porting data-flow analysis. This paper considers these analyses from the perspec-
tive of abstract interpretation: a general method for producing sound conserva-
tive approximations of program semantics. Our process is to describe a simple
language, give a concrete operational semantics for a CES-like machine, and then
derive a sound abstract semantics which is made computable by bounding the
size of the machine’s configuration space. The result of the analysis is a finite ab-
stract state-space which conservatively approximates a usually infinite number
of different concrete state-spaces. All valid paths in the program are guaranteed
to be represented in a sound analysis. Above and beyond these genuine execu-
tions, imprecision is manifested as spurious traces which are indicated by the
analysis but which cannot exist in any concrete execution.

Polyvariant analyses are those which seek to improve precision by maintain-
ing separate values for each context in which they may be found. Call-sensitive
analyses for example, distinguish between values recieved from different call-
sites. A call-sensitive analysis could determine that x in the following code is
true in one context and false in another, while a monovariant analysis would
only determine that it was boolean.

(let ([f (lambda (x) ...)]) (f #f) (f #t))

? Different parts of our effort on this work were partially supported by the DARPA
programs APAC and CRASH.



This work surveys the role of polyvariance in such abstract interpretations,
as well as the diversity of approaches taken in the literature. We discuss the fixed
length call-string histories of Shivers’ k-CFA, the variable length contours used in
the polymorphic-splitting analysis of Wright and Jagannathan, and the restricted
binding environments in the polynomial-time 1-CFA of Jagannathan and Weeks.
We describe Agesen’s Cartesian Product Algorithm and the potential pitfalls of
applying it to a higher-order language. We also consider object-sensitivity and
give a rendering of this technique for our language. [25] [30] [1] [8] [21]

We unify the presentation of these concepts by giving each as a small-step
operational semantics for a simple language. Though originally formulated as a
type-inference algorithm (in the case of CPA) or as a constraint semantics (in
the case of polymorphic splitting), we show that each technique can be viewed
as a different model of polyvariance within an abstract interpretation.

1.1 CPS λ-calculus

We use a simple language with familiar abstract semantics at each step to stay
consistent. Call-sites are marked with a unique label which refers to its containing
lambda. Consider the CPS λ-calculus:

call ∈ Call ::= (ae ae . . .)l | (halt)

ae ∈ AE ::= x | lam
lam ∈ Lam ::= (λ (x . . .) call)

x ∈ Var ::= set of program variables

l ∈ Label ::= set of unique labels

The grammar structurally distinguishes between atomic expressions and call-
sites to permit only calls in tail position. This constrains the language to a
continuation-passing-style (CPS) form. Abstract interpretation can be imple-
mented for any language so long as we have a concrete (in our case, operational)
semantics to abstract. CPS is used here (as it was in its original formulation)
purely for the purposes of simplifying our discussion. We can compactly represent
its semantics using a CES-style machine:

ς ∈ State = Call× Env × Store× Time
ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ V alue

t ∈ Time = Label∗

a ∈ Addr = Var × Time
v ∈ V alue = Lam× Env

and a single small-step transition:

((λ (x1 . . . xj) call
′), ρ′) = A(aef , ρ, σ)

((aef ae1 . . . aej)l, ρ, σ, t) ⇒ (call′, ρ′′, σ′, t′)
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where ρ′′ = ρ′[xi 7→ ai]

σ′ = σ[ai 7→ A(aei, ρ, σ)]

ai = (xi, t
′)

t′ = l : t

where A is a concrete atomic-expression evaluator:

A(x, ρ, σ) = σ(ρ(x))

A(lam, ρ, σ) = (lam, ρ)

Each state (machine configuration) contains a call-site, a binding environment,
a value-store, and a timestamp. Each state transitions to a new state when a
closure can be invoked at the current call-site, or fails to transition and ter-
minates when a (halt) is reached. The atomic-expression in call-position aef is
evaluated to a closure and evaluation transitions to its call-site. The closure’s
binding environment is augmented with addresses for each function-argument,
and the store maps each of these to the value being bound. Each address is
guarenteed to be unique because it is being paired with the new timestamp t′.
t′ is constructed by prefixing the current timestamp with a label for the current
call-site. Because this call-history increases in length with each transition, no
two values need share a binding.

1.2 0-CFA

0-CFA is the monovariant form of the k-CFA algorithm as presented in Shivers’
seminal paper [24] [16]. We use an abstracted version of our concrete semantics
to compute a conservative approximation of program behavior. In order to make
this state-space finite, we need only to bound the size of our timestamp or call-
history. k-CFA uses a k-length approximation of call-history, and 0-CFA merges
all histories together.

As a repercussion of bounding T̂ ime, multiple values will now share a single
address. Our abstract store maps addresses to flow-sets: sets of abstract values.
All possible values for a particular variable now share the same address:

ς̂ ∈ Ŝtate = Call× Ênv × Ŝtore× T̂ ime

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂ alue)

t̂ ∈ T̂ ime = Label0

â ∈ Âddr = Var × T̂ ime

v̂ ∈ V̂ alue = Lam× Ênv

The abstract transition function is non-deterministic, as multiple closures can
be referenced by a single variable:

((λ (x1 . . . xj) call), ρ̂
′) ∈ Â(aef , ρ̂, σ̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, ()) ≈> (call, ρ̂′′, σ̂′, ())
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where ρ̂′′ = ρ̂′[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(aei, ρ̂, σ̂)]

âi = (xi, ())

The abstract atomic-exppression evaluator returns flow-sets:

Â(x, ρ̂, σ̂) = ρ̂(σ̂(x))

Â(lam, ρ̂, σ̂) = {(lam, ρ̂)}

When discarding typographical differences, the two semantics are almost identi-
cal. There are essentially only two fundamental changes we’ve made to achieve a
finite approximation: we use a finite set of abstract addresses to bound the size
of our store, and introduce merging between values at each address. If we were
including other basic types, we would also replace them with a finite abstraction.
An unbounded set of numbers might become just {num} to differentiate from
other basic types, or perhaps elaborated slightly to {+, 0,−} in order to perform
a sign analysis.

In our case, the only types involved are closures, which thanks to our ab-
straction for addresses, are now drawn from a finite set. These however, are now
being merged together at bindings in our abstract store. Where before we indi-
cated a strong-update of our concrete store, we now use function-join to indicate
merging sets of values together via set-union. In this way, all values which have
have ever been bound to an address are kept. In 0-CFA there is a single address
for each program-variable. If some argument z is bound to 3 different closures in
our analysis, all 3 need to be represented by the same address z upon completion.
[29]

1.3 Soundness

An abstract interpretation is sound if all possible concrete executions will be
represented by the final analysis. Its embarrassing imprecision notwithstanding,

λx.V̂ alue is an example of a trivially sound store because it does indeed represent
all possible flows in any concrete execution of any program.

Showing that a more precise analysis is sound in general involves introducing
a bit more machinery we won’t bother with fully, and so we’ll not attempt to
do more than give a very rough sketch of the proof here. A proof of soundness
relies on defining the relationship between the concrete and abstract domains.
This relationship is a pair of functions for abstraction and concretization known
as a Galois Connection. Previous work has shown the use of this model in both
proving an existing analysis sound, and in producing analyses which are correct
by construction. Methods have been developed for automatically constructing
abstract approximations of concrete machines through the composition of these
Galois Connections. [29] [15] [12]

To specify the correspondence between our abstract semantics and our con-
crete semantics, we would need to provide at least an abstraction function α
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which maps concrete states to their most precise abstract representative:

α : State→ Ŝtate

With this specification we can prove a statement for each concrete transition
ς ⇒ ς ′, there exists an abstract transition ς̂ ≈> ς̂ ′ such that α(ς) v ς̂ and
α(ς ′) v ς̂ ′ which shows that simulation is preserved across transition. [16]

1.4 Complexity

Termination is guaranteed because the search is being performed over a finite
state-space.

0-CFA is known specifically to be of worst-case cubic complexity. To deter-
mine whether or not an abstract closure flows to a variable, requires examining
at most each call site in the program O(n). There are then at most O(n) ∗O(n)
of these possible flows because the number of variables is bounded by the size of
the program, as is the number of lambdas [16]. The number of abstract closures
in the monovariant analysis is the same as the number of lambdas since each
abstract binding environment is fixed by the free variables in its function which
can be determined lexically.

VanHorn and Mairson reduce the circuit value problem to an instance of the
0-CFA control flow problem, proving it to be PTIME-hard. [27]

2 Polyvariance

In 0-CFA, each syntactic callsite is represented by a single abstract state. Poly-
variance, in general terms, is the degree to which an analysis breaks up these
syntactic points in the program and represents them with multiple differentiated
abstract states.

2.1 k-CFA

k-CFA is the broader hierachy of algorithms to which 0-CFA belongs. All forms
of this algorithm where k ≥ 1 represent increasingly polyvariant analyses. k-CFA
differentiates states with the addition of an abstract history, or calling-context,
referred to in it’s original presentation as an ’abstract contour’. [24] [25]

ς̂ ∈ Ŝtate = Call× Ênv × Ŝtore× T̂ ime

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂ alue)

â ∈ Âddr = Var × T̂ ime

v̂ ∈ V̂ alue = Lam× Ênv

t̂ ∈ T̂ ime = Labelk
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The state-space above introduces a k-length calling-context t̂ at each state which
serves to differentiate like variables with unlike calling histories. Each calling-
context is a tuple of call-site labels which represents the abstract history of calls
that lead to a given state. The state’s successors then get a calling-context which
has lost its oldest lambda, and has been appended with the calling lambda. This
new history is then included in the abstract addresses for these new states,
differentiating their flow-sets and giving our binding environment a purpose for
the first time.

((λ (x1 . . . xj) e), ρ̂
′) ∈ Â(aef , ρ̂, σ̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, (l1 . . . lk)) ≈> (e, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(aei, ρ̂, σ̂)]

âi = (xi, t̂
′)

t̂′ = (l l1 . . . lk−1)

A state (calll9 , ρ̂, σ̂, (l2 l5 l6)) would mean that l9 could be reached by a call
from l2, when reached after a call from l5 and so-forth. A calling-context like
this if found in an address (x, (l2 l5 l6)) would indicate that the values stored at
this address were bound to x following the above history. Values in k-CFA are
only merged once the fixed amount of call-history has been exceeded.

(λx. (λy. (λz. . . .) y) x)

Consider an example where there are two calls of indirection in front of a func-
tion. Here, if x is bound to two different values in a 2-CFA analysis, by the
time they reach z, the original context for the call to λx will have been lost
and the values will be merged. If multiple values reach a recursive function, no
matter how long a context is used, the values will eventually merge assuming
the analysis cannot determine a bound for the calling depth before the context
runs out. Using sufficiently precise abstract values to make this possible in the
general case would tend to make the analysis impractical to compute.

2.2 Exponential complexity for k ≥ 1

The use of these call-string histories pays dividends where unlike call-sites pro-
vide a lambda with unlike abstract values. Where the history used is sufficient to
capture these differences, they will be kept apart in the store, avoiding the usual
merging and loss of precision. The major downside of k-CFA for k ≥ 1 is that
its precision against run-time trade-off comes at too great a price: polyvariant
k-CFA is intractible for real world inputs.

Though long suspected, the proof that k-CFA is EXPTIME-complete came
only recently in [27].
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3 The Cartesian Product Algorithm

The Cartesian Product Algorithm was originally introduced as an enhancement
to a type inference algorithm which itself can be viewed as a specialization of
the abstract interpretation concept: one where dynamic program types are used
as constituents of the abstract value domain. We will present the source of im-
precision the original formulation attempts to address, generalize the solution
as a form of polyvariance in abstract interpretations (as it is suggested in publi-
cations which followed), and discuss CPA’s complexity and precision relative to
k-CFA.

3.1 The Problem / Original formulation

In an abstract interpretation using types for values, where polymorphism is
non-existent each flow-set could contain a maximum of one value each, and the
algorithm reduces to a straightforward type-inference. Therefore, the authors of
CPA introduce it as an enhancement to a basic flow-set based type-inference
algorithm where polymorphic functions introduce merging and thus spurious
concrete variants. They turn a single polymorphic call in the analysis into mul-
tiple monomorphic calls, preserving the precise values across function calls, and
their inter-argument relationships.

The basic algorithm that CPA enhances works similarly to a abstract inter-
pretation over types. It also assigns a flow-set of dynamic types for each variable
in the program, but it then establishes constraints based off the program text,
and propagates values until all these constraints have been met. The primary
method for overcoming this merging, is introduced as the p-level expansion al-
gorithm of Palsberg and Schwartzbach – a kind of type-inference analog to call-
string histories in k-CFA, where the use of p parallels that of k. This is shown to
be insufficient however, as the authors of CPA give a case of merging which can-
not be overcome by any sized p. Their motivating example is the polymorphic
max function:

max(a, b) = if a > b then a else b

Here, the only constraint for an input to max is that it support comparison,
so a call max(“abc”, “xyz”) makes as much sense as a call max(3, 5). However,
if both these calls are made with a sufficient amount of obfuscating call-history
behind them, merging will cause the flow-sets for both a and b to each include
both string and int. This is imprecise as it implies that the call max(int, string)
is possible when it is not.

The solution that CPA proposes is to replace flow-sets of per-argument types,
with flow-sets of per-function tuples of types. In such an analysis, the func-
tion max itself would be typed {(int, int), (string, string)} preserving inter-
argument patterns and eliminating spurious concrete calls like (int, string). [1]
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3.2 Abstract contour formulation

In essence, this change makes flow-sets for each argument specific to the entire
tuple of types received in a call. This suggests an abstract contour representation
which pairs variables with tuples of abstract values in the store, instead of pairing
them with call histories as in k-CFA [17].

Ŝtore = Âddr ⇀ V̂ alue

T̂ ime = V̂ alue
∗

This would seem to maintain perfect precision; exact values would be known
for any given address. The problem with this approach is that it introduces
recursion into our state-space making it again unbounded. Closures contain en-
vironments containing contours made of closures. Our analysis again becomes a
concrete interpreter using arbitrarily precise values to differentiate themselves
in the store.

To faithfully extend this algorithm to a higher-order language, in the spirit
of its original presentation, we reduce abstract values to their types. An abstract
value like string could potentially remain as it is, but closures must be limited to
a finite set of types. We’ve chosen to reduce them to only their syntactic lambda,
merely dropping environments, on the assumption that this point in the program
is associated with a single type signature – whether it is known pre-analysis or
not.

Ŝtore = Âddr ⇀ P(V̂ alue)

T̂ ime = P(T̂ ype)∗

T̂ ype = Lam

A helper function can be defined which performs this reduction:

T̂ : P(V̂ alue)→ P(T̂ ype)

Merging is now possible between different binding environments. At each call,
a new contour is formed by reducing each of the flow-sets of the atomically-
evaluated function arguments:

((λ (x1 . . . xj) e), ρ̂
′) ∈ Â(aef , ρ̂, σ̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, t̂) ≈> (e, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(aei, ρ̂, σ̂)]

âi = (xi, t̂
′)

t̂′ = (T̂ (Â(ae1, ρ̂, σ̂)) . . . T̂ (Â(aej , ρ̂, σ̂)))
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3.3 Precision and Complexity

It is straightforward to see intuitively that CPA is more precise than k-CFA,
as is discussed in the original publication. For any pre-determined value of k, a
program can be constructed which nests calls passed this call depth and causes
merging. Any such merging, even when completely precise at the level of a par-
ticular argument, can produce spurious inter-argument patterns. CPA on the
other hand differentiates calls directly based on the full tuple of arguments they
receive and obtains perfect precision for a given finite set of abstract values.

That no length call-string history can match the precision of CPA was also
formally demonstrated for an object-oriented language just recently [2]. It may
be worth noting that k-CFA contains context information which CPA does not
and which might be useful for its own sake.

CPA, like k-CFA, is of exponential complexity, and exceedingly impractical
for use on sufficiently complex input programs. Somewhat ironically, where CPA
improves precision, it is also fastest, and where CPA is unnecessary and delivers
no improvement over k-CFA, it is enormously inefficient. For a function like
max, one where the types of the arguments should match, CPA might require
as few as one flow per-type; this is just as with k-CFA, except it carries a vast
improvement in precision. For a function where all combinations of arguments
are possible, CPA requires each to be explicitly made, while k-CFA implies them
for equal precision at far greater efficiency.

The exponential complexity of CPA can be realized by examining the possible
abstract contours. If the largest number of arguments any function takes is J ,

the number of contours the analysis could produce is |T̂ ypes|J . Since J is only
bounded by the size of the program, CPA is exponential in the worst case. The
program could be transformed soundly into a curried style where no function
took more than a single argument. This could make the analysis efficient, but
it would be effectively threading most arguments through binding environments
and introducing merging which would lower precision and largely defeat the
purpose of CPA.

4 Object Sensitivity

Object-sensitivity is an alternative to traditional call-site sensitivity for object
oriented languages. When a method is invoked, the allocation context of its re-
cieving object is used to differentiate new bindings. Like k-CFA, a k-full-object
sensitive analysis is a heirarchy of analyses using allocation contexts of increas-
ing length. A 1-full-object analysis uses the syntactic location of the object’s
allocation. A 2-full-object analysis uses the allocation point of the recieving ob-
ject, along with the allocation-point of the object that created it (an allocation
context of length 2). [21] [26]

Objects and closures are both fundamentally the pairing of code with a data
environment over which the code operates. Either can be translated into the
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other. We apply the concept of object-sensitivity to the CPS λ-calculus by in-
cluding an allocation context within closures:

v̂ ∈ V̂ alue = Lam× Ênv × T̂ ime

t̂ ∈ T̂ ime = Labelk

Our transition then uses the contour of the closure invoked to differentiate new
bindings, as it would a calling-context in k-CFA.

((λ (x1 . . . xj) call), ρ̂
′, t̂′) ∈ Â(aef , ρ̂, σ̂, l, t̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, t̂) ≈> (call, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(aei, ρ̂, σ̂, l, t̂)]

âi = (xi, t̂
′)

The atomic-expression evaluator is extended to accept the current label and the
current contour as arguments. Then, upon closure creation, the current history
is extended with the current allocation-point and placed in the new closure.

Â(x, ρ̂, σ̂, l, t̂) = ρ̂(σ̂(x))

Â(lam, ρ̂, σ̂, l, (l1 . . . lk)) = {(lam, ρ̂, (l l1 . . . lk−1))}

Object-sensitivity has been epirically evaluated in multiple publications recently,
and has become a preferred method of polyvariance for object-oriented lan-
guages, but has not yet been studied for primarily functional languages.

5 Practical Call-Strings

In contrast to these attempts to improve on the precision of abstract call-string
histories, attempts have been made to bring a degree of call-string history poly-
variance to an analysis without incurring the full cost of 1-CFA.

5.1 Polymorphic Splitting

Polymorphic Splitting is a compromise between 0-CFA and k-CFA where the
length of the history used varies on a per-function basis. Let-bindings are used
as syntactic cues for determining which lambdas should be analyzed at increased
precision. A let-bound lambda is given a timestamp one longer than the times-
tamp at the let-form. The overall length of countours in this analysis is bounded
by the deepest nesting of let forms, and thus by the program’s length.
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To give a faithful rendering of this technique we introduce the ANF λ-calculus
for this section alone.

el ∈ E ::= (ae ae . . .)

| (let (x e) e)

| ae
ae ∈ AE ::= x | lam

lam ∈ Lam ::= (λ (x . . .) e)

x ∈ Var ::= set of program variables

l ∈ Label ::= set of unique labels

Administrative Normal Form is an intermediate representation which supports
two complications in addition to a call-site whose arguments can be atomically
evaluated: An atomic expression to return, and a let-form. We model the exe-
cution of this language using a CESK∗-like machine with nested continuations
threaded through the store to achieve a finite configuration space. Closures are
extended with an abstract contour.

ς̂ ∈ Ŝtate = E× Ênv × Ŝtore× K̂ont× T̂ ime

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂ alue+ K̂ont)

κ̂ ∈ K̂ont = Var × Ênv × E× Âddr × T̂ ime

t̂ ∈ T̂ ime = Label∗

â ∈ Âddr = Var × T̂ ime+ Var

v̂ ∈ V̂ alue = Lam× Ênv × T̂ ime

There are three abstract transitions, one for each kind of expression. A let-form
proceeds inside the bound expression and sets up a new continuation. Each
continuation contains a variable to be let-bound, an environment to reinstate
for this binding, an expression to return to, an address for this expression’s
continuation, and a timestamp to reinstate. The current continuation is placed
in the store at the address used for the new continuation.

((let (x e1) e2)l, ρ̂, σ̂, (xκ, ρ̂κ, eκ, aκ, t̂κ), t̂) ≈> (e1, ρ̂, σ̂
′, κ̂, t̂)

where κ̂ = (x, ρ̂, e2, xκ, t̂)

σ̂′ = σ̂ t [xκ 7→ (xκ, ρ̂κ, eκ, aκ, t̂κ)]

Call-sites operate as they do in k-CFA, except the timestamp used is taken from
the closure to be invoked.

((λ (x1 . . . xj) e), ρ̂
′, t̂′) ∈ Â(aef , ρ̂, σ̂, t̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, κ̂, t̂) ≈> (e, ρ̂′′, σ̂′, κ̂, t̂′)
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where ρ̂′′ = ρ̂′[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(aei, ρ̂, σ̂, t̂)]

âi = (xi, t̂
′)

Values are returned according to the current continuation. A binding is made
in the continuation’s environment for the variable xκ and control continues to the
continuation expression eκ. Nested continuations are selected non-deterministically
from the address âκ provided.

κ̂ ∈ σ̂(âκ)

(ae, ρ̂, σ̂, (xκ, ρ̂κ, eκ, âκ, t̂κ), t̂) ≈> (eκ, ρ̂′, σ̂′, κ̂, t̂κ)

where ρ̂′ = ρ̂κ[xκ 7→ âx]

σ̂′ = σ̂ t [âx 7→ Â(ae, ρ̂, σ̂, t̂)]

âx = (xκ, t̂κ)

From these transitions, the anaysis behaves as k-CFA would over an ANF lan-
guage, with the exception that contours are stored within closures, each closure
choosing it’s own timestamp. The meaning of the algorithm is thus largely de-
fined by atomic-expression evaluation, which determines how lambdas are eval-
uated to closures. When a lambda is encountered being called, returned, or
lambda-bound, it is placed in a closure with the current timestamp and binding
environment. If however, it occurs immediately inside a let-form, the current
timestamp is extended with the syntactic label for the lambda.

Â(laml, ρ̂, σ̂, t̂) =

{
{(lam, ρ̂, l : t̂)} if lam is let−bound
{(lam, ρ̂, t̂)} otherwise

This alone only serves to make bindings unique to the syntactic lambda which
creates them, and has no impact on precision. When a variable is referenced
however, those bound by a let-form have their closures mutated during access.
The timestamp t̂λ in each closure is replaced with t̂λ[lλ/l], a version with all
labels lλ replaced with l. This effectively makes the contour used for let-bound
lambdas specific to the exact point of access.

Â(xl, ρ̂, σ̂, t̂) =


{(elλλ , ρ̂λ, t̂λ[lλ/l])

| (elλλ , ρ̂λ, t̂λ) ∈ σ̂(ρ̂(x))} if x is let−bound
σ̂(ρ̂(x)) otherwise

The complexity of polymorphic spitting remains exponential, as it easily
devolves into doing all the work of a k-CFA analysis in the worst-case, however
it has been empirically shown to be practical for sizable benchmarks. The authors
found it’s precision comparable to that of a 1-CFA, while it’s running times were
closer to that of 0-CFA. That it even beat the running time for 0-CFA in some
test-cases can be attributed to its higher precision culling spurious paths which
would have otherwise been explored by the monovariant analysis. [30]
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5.2 Polynomial-time 1-CFA

Polynomial-time 1-CFA differentiates each state with a single call history, as 1-
CFA does, but only allows free variables in a closure’s environment to remember
this history for a single closure creation deep. Each time a function is called, it’s
abstract contour is updated and all the flows for its free variables are propagated
to the new history for that call. They then share a history with the latest ar-
guments to be sent in all new closures created. An environment in this analysis
boils down to the single abstract contour it maps all variables onto. We simplify
this and pair lambdas directly with a single contour to form a closure:

ς̂ ∈ Ŝtate = Call× Ŝtore× T̂ ime

v̂ ∈ V̂ alue = Lam× T̂ ime

t̂ ∈ T̂ ime = Label

((λ (x1 . . . xj) call
′), t̂λ) ∈ Â(aef , t̂, σ̂)

((aef ae1 . . . aej)l, σ̂, t̂) ≈> (call′, σ̂′, l)

where σ̂′ = σ̂ t [(xi, l) 7→ Â(aei, t̂, σ̂)]

t
⊔
{[(y, l) 7→ Â(y, t̂λ, σ̂)] | y ∈ free(call′)}

Â(x, t̂, σ̂) = σ̂((x, t̂))

Â(lam, t̂, σ̂) = {(lam, t̂)}

Because the closure is updated at each call, the binding environment previously
in the second position of our abstract state is redundant with the single call-
history in the final position, so we omit it. Likewise, the creation of a new
binding environment (previously called ρ̂′′) is no longer needed as it was in k-
CFA since it would simply be set to λ .t̂′ and so is subsumed here by t̂′ itself.
Our updated store is one joined with the bindings formed by the function call,
along with bindings which propagate values for the free variables in the function
to their new contour.

Polynomial-time 1-CFA has not yet been empirically investigated, but its
complexity has an upper bound of O(n6). [8]

6 The Future

The potential for new explorations in this area looks bright. The recent paper A
posteriori soundness by Might and Manolios [20] has provided an exceptionally
general guarantee of soundness for abstract allocation functions which allows
for nearly any form of merging or differentiation in the store which could be
conceived. Even methods which tune a live analysis directly for precision are
allowed for, so no fully pre-defined strategy would even be necessary.
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6.1 A posteriori soundness

The usual process for demonstrating the soundness of an abstract interpretation
is a priori in the sense that the concrete and abstract transition relations along
with the abstraction map relating the two state-spaces have been defined in
advance, and are then justified as sound before any analysis is produced. A pos-
teriori soundness differs from this in that a portion of the justifying abstraction
map cannot be known until after the analysis is run.

The a posteriori soundness proof relies on factoring apart the concrete seman-
tics, abstract semantics, and their correspondence. A portion of the abstraction
map α is isolated which represents the correspondence between concrete ad-
dresses and abstract addresses: αL. A portion of the transition relation is also
factored out which represents the process of producing bindings. The abstract
transition relation can then be parameterized by a allocation-policy π̂ which
determines this process for a given abstract state. The crux of the argument is
then that given a non-deterministic selection of π̂, a justifying αL can always
be produced after the fact, which proves the prior selection sound – whatever
it might have been. This means that so long as the remaining analysis follows
a single liberal soundness condition: the choice of allocation policy π̂ is entirely
arbitrary as far as the correctness of the analysis is concerned. [20]

6.2 Precision-adaptive analyses

The implication of this is that the allocation policy π̂ of an abstract interpre-
tation can be selected entirely with precision and complexity in view. A policy
can even adapt to the source text itself to make these choices without soundness
needing to be proven for each specific program. If soundness needed to be proved
a priori, this would not be possible since the mechanics of the proof would rely
upon aspects of specific programs which could not be known in advance. The
work thus not only simplifies deciding that a new form of polyvariance would be
sound, but makes it possible to produce polyvariant analyses which use different
amounts of history for different functions, different kinds of history for different
functions, and which make these decisions while the analysis is still live.

7 In Summary

The concept of polyvariance in control-flow analyses covers a wide array of tech-
niques which allows for an analysis to be tuned up or down along the preci-
sion/complexity trade-off. Merging and differentiation of flow-sets in the store,
beyond one address per variable, requires a value on which to base the differen-
tiation: in the case of k-CFA this is Shivers’ abstract contour. It has since been
proved that any basis for differentiation which obeys a single liberal constraint
will remain sound, and a number of specific variants on the traditional contour
have already been discussed in the literature each offering a unique trade-off in
precision.
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