
A Dataflow Inspired Programming Paradigm for
Coarse-Grained Reconfigurable Arrays

A. Niedermeier, Jan Kuper, and Gerard J.M. Smit

Computer Architecture for Embedded Systems Group
Department of Electrical Engineering, Mathematics and Computer Science

University of Twente, The Netherlands

Abstract. In this paper, we present a new approach towards program-
ming coarse-grained reconfigurable arrays (CGRAs) in an intuitive, dataflow
inspired way. Based on the observation that available CGRAs are usually
programmed using C, which lacks proper support for instruction-level
parallelism, we instead started from a dataflow perspective combined with
a language that inherently supports parallel structures. Our programming
paradigm decouples the local functionality of a core from the global flow
of data, i.e. the kernels from the routing. We will describe the ideas of
our programming paradigm, and also the language and compiler itself.

1 Introduction

Many algorithms common in digital signal processing (DSP), like for example
audio filtering, contain a high degree of instruction-level parallelism. To accelerate
those algorithms, coarse-grained reconfigurable arrays (commonly used in combi-
nation with a general purpose control processor) are often used. In such systems,
the mostly sequential control operations are executed on the host processor,
while the data-intensive algorithms are executed on the reconfigurable array.
The reconfigurable array is composed of a network of simple blocks containing
a function unit and a small local memory. To run a certain application, the
blocks and the interconnects are configured accordingly. Programming CGRAs
however remains a challenge, since it is not trivial to extract the instruction level
parallelism from a given algorithm.

In the following, we will first give a brief overview about currently available
CGRAs. Then, we will shortly discuss the challenges that arise from programming
the available CGRAs. Finally, we will motivate our programming paradigm and
which is then presented in the remainder of the paper.

1.1 Related Work

A number of articles presenting reconfigurable architecture together with a
programming paradigm have been published already. Early publications include
PADDY-2 [1] and Matrix [2]. Examples of more recent publications are MorphoSys
[3], the eXtreme Processing Platform (XPP) [4], the Reconfigurable Instruction

Cell Array (RICA) [5], and ADRES [6]. In general, they all are composed of
an array of small configurable blocks interconnected by a configurable network.
Since the exact details are out of scope of this publication, the reader is referred
to the respective publications.

The above mentioned architecture all have in common that they are pro-
grammed in a C-based approach (or, for the earlier architectures, even in an
assembly language). The burden of extracting the algorithm structure (in terms
of parallelism and dataflow) lies on the compiler. This implies that the structure
of the algorithm is not inherently available in the algorithm specification and
might not be completely recognised by the compiler.

1.2 Our contribution

In our opinion, the choice of C for programming CGRAs is not an obvious one.
Since C has been designed as a sequential language, it lacks intuitive support to
express fine-grained parallelism. Of course, one could argue that C is the standard
programming language that is used to implement applications. However, none
of the compilers presented for the above mentioned architectures support the
complete set of C. Instead, for every architecture, a specific subset of C is chosen.

Motivated by the difficulty of programming such arrays, we developed a
dataflow-inspired programming paradigm. In our programming paradigm, a DSP
application is represented and implemented as a set of dataflow nodes.

The programming language itself is implemented as an embedded domain
specific language (EDSL) in Haskell. This enables a designer to implement DSP
applications in a concise and straight-forward manner by using Haskell’s higher
order functions. As these functions have a notion of structure, all information on
parallelism and flow of data is automatically contained in the resulting expressions.

2 Architecture

The architecture for which we present our programming paradigm is a grid of
small, independent, reconfigurable cores. It is shown in Figure 1. Each core is
connected to its direct neighbours using point-to-point links. Furthermore, the
grid is fully connected using a network-on-chip. External data can be provided by
using either a broadcast input which is connected to each core, or direct inputs
to the cores.

Each core in the architecture follows the rules of dataflow, i.e. as soon as all
operands for a certain core are available, the configured operation is performed.
Inside each core, a function unit is available, which can execute binary operations,
i.e. addition, multiplication and the like. Furthermore, a local register file to
store intermediate results and a storage for constants are available. Each core is
independent in the sense that it does not have a notion of the global topography
of the complete grid. Hence, it only has the notion of internal functionality, the
global flow of data is out of the core’s scope. For more details on the architecture,
the reader is referred to [7].

C00

C01

C02

C03

C10

C11

C12

C13

C20

C21

C22

C23

C30

C31

C32

C33

Fig. 1: The architecture

3 Programming Paradigm

In this section, we present our programming paradigm. We adopt ideas from
dataflow, such as the firing rule (i.e. a node executes its operation once all
required inputs are available and there is sufficient space at the output) and the
representation of an algorithm as a graph with nodes representing the operations
and edges representing the flow of data. Furthermore, we use finite state machines
to extend the possibilities of pure dataflow notation.

On the conceptual level, we consider a DSP application on two different views:
The local view, i.e. everything that is executed locally on one core, and the global
view, which is the global flow of data through the array.

3.1 The local view

Figure 2 shows a high-level illustration of both the local view and a core of the
target architecture. As mentioned in Section 2, each core includes a function unit,
represented by the OP block, a register file, represented by the R block and a
constant storage, represented by the C block.

The configuration of the local view is described as a sequence of stages. Each
stage is defined in terms of

– source of each input (EX ternal input i , a Constant stored at x , Register
x)

– opcode defining the current operation (ADD, MUL, ...)
– whether to store the result (store at Register x , (do not store))

OP

In 1 In 2

Store

Out

R

C
- EXi
- Cx
- Rx

- ADD
- MUL
- ...

- Rx
- _

- True
- False

input

opcode

store

output

Fig. 2: Configuration principle

– whether the result is visible at the output (True, False)

For illustration, we use the example of a pipelined multiply-accumulate (MAC)
operation on data streams. The MAC operation on the streams x and y is defined
as follows:

mac =

N∑
i=0

xiyi = x0y0 + x1y1 + x2y2 + . . . + xNyN (1)

The mac operation is implemented in a pipelined fashion on a single core
using separate stages for the multiplication and addition. The implementation of
the complete mac operation requires three stages. In Figure 3, the configuration
is shown.

The first stage is labelled S0. Here, the tokens available on the external inputs
EX0 and EX1 (corresponding x0 and y0 from Equation 1) are multiplied and
stored in the register file at R0. The second stage, S1, is then executed, which
represents a multiplication of x1 and y1. The result of this multiplication is stored
in R1. The third stage, S2, performs an addition on the values stored in R0 and
R1 and stores the result in the R0. From here on, the core alternates between
stages S1 and S2.

3.2 The global view

While the local view defines everything that happens inside a core, the global
flow of data is out of the core’s scope. A core only has the notion that an input

MUL

EX0 EX1

R0 True

MUL

EX0 EX1

R1 False

ADD

R0 R1

R0 True

Fig. 3: Local view

can come from an external source, for example another core, but precisely which
core is irrelevant. Consequently, for the flow of data a global dataflow scheme is
required, i.e. the global view. Tokens are exchanged between different cores in
the array by having named inputs and outputs in the local view that correspond
to communication channels in the global view. The global view is illustrated in
Figure 4. In this example, four cores (C0 to C3) communicate using the core’s
address and the name of the core’s inputs. For example, C0 is sending a token
to input 0 of C1 by annotating (1,0) to the token.

C0 C1

C2 C3

(1,0)

(3,0)

(3,1)

(2,0) (1,1)

0

1

1

00

Fig. 4: Global view

The routing of the outgoing tokens is then handled by the interconnection
logic in the grid. By decoupling the local specification of a core and the global
routing of data, the cores do not require a knowledge of the complete topography
and can thus be independently defined.

4 Language and Compiler

In this section we present the specification of the compiler. The starting point
is the definition of an Embedded Domain Specific Language (EDSL) targeted
at the presented architecture. Then we will show how this EDSL can be used
in combination with Haskell’s higher order functions to specify algorithms in a
convenient way by exploiting the implicit parallelism. Finally, the code generation
is presented.

4.1 EDSL

The grammar for the EDSL is based on the operations, which the cores in the
architecture can execute, i.e. simple binary operations like multiplication and
addition. Furthermore, a notation for delays and feedback loops to the same node
is supported. The EDSL is implemented as an algebraic datatype in Haskell. By
defining the EDSL as a datatype, one can use Haskell functions to recursively
construct a complex expression.

As a consequence, the resulting expression is then the abstract syntax tree
(AST) of the expression that was specified. This means that the parser is “for
free”.

In Listing 1.1, the definition for the EDSL datatype is given. The names of
the constructors hereby resemble their functionality. In line 1, the definition how
to specify a constant number is given, line 2 specifies how a delay is defined, the
definition in line 3 shows how the result from the previous clock cycle can be
used (i.e. a feedback loop), line 4 represents an input where the string denotes
and input stream and finally in line 5 the operation itself is defined. Op is a data
constructor of the type Expr and indicates a compound operation, and OpCode
defines the opcode.

data Expr = Const Number 1
| DELAYED Expr 2
| PREV RES 3
| Input String 4
| Op OpCode Expr Expr 5

data OpCode = ADD | MUL | SQR | AND ... 6

Listing 1.1: recursive EDSL definition for an expression

4.2 A first example

Next we want to show how a simple algorithm can be implemented by using the
EDSL in combination with a higher order function. If we want to implement
a simple summation of all elements in a vector x, it can be written as follows:
sum up x = foldl (Op ADD) (Const 0) x

As example, the function sum up is applied to an input vector of length four.
The expression tree is then automatically unrolled:

ghci> sum_up [Input "x0",Input "x1",Input "x2",Input "x3"]
ghci> Op ADD

(Op ADD
(Op ADD

(Op ADD (Const 0) (Input "x0"))
(Input "x1"))

(Input "x2"))
(Input "x3")

Input “x0”

Op ADDConst 0

Input “x1”

Op ADD

Input “x2”

Op ADD

Input “x3”

Op ADD out

Fig. 5: sum up xs

Note that the input x to sum up is now of type Expr , not a list of numbers.
The type of sum up x itself is also Expr , i.e. it is an expression in our EDSL.
The function foldl distributes the Op ADD over the list of inputs x , the initial
value is given by Const 0. A graphical representation of this concrete usage of
sum up is shown in Figure 5.

4.3 Streaming notation

In many cases, a streaming notation for specifying a chain of operations is desired.
Consider the case shown in Figure 6. To the left, a stream x is streamed into the
system. In the first stage, kernel1 performs its computation on x , then kernel2
executes on the output of kernel1 and finally kernel3 is applied to the output of
kernel2 . In our compiler, we implemented a function that supports this streaming
notation:

(→) a f = f a
→ accepts an argument a and a function f as arguments and applies the

function f to the argument a. A usecase example is shown in Listing 1.2. In lines
1 to 3, the kernels are defined, in lines 4 and 5 two different implementation for
the streaming pipeline shown in Figure 7 are presented.

Op ADDx Op MUL Op ADD out

Fig. 7: Graphical representation of the implemented streaming pipeline

kernel1x kernel2 kernel3 out

Fig. 6: Implementation of a streaming pipeline

kernel1 x = Op ADD x x 1
kernel2 x = Op MUL x x 2
kernel3 x = Op ADD x x 3

stream0 x = foldl (→) x [kernel1 , kernel2 , kernel3] 4
stream1 x = x → kernel1 → kernel2 → kernel3 5

Listing 1.2: Implementation of a streaming pipeline

4.4 Generation of the code for the cores

In order to generate code for the hardware architecture, an expression in the
EDSL is converted into a unique graph as shown in the previous section. The next
step of the compiler is to iterate through all nodes in this graph and generate
the correct code.

Each node is one of the five different possible cases given in Listing 1.1: A
constant, a delayed expression, a pointer to the previous result, an input, or an
operation.

Code is only directly generated for nodes that define an operation. All the
other cases are used as inputs by the operation nodes and are handled there.

The code generation for an operation node can be split into two cases: Either,
the expression is simply an operation on two incoming, non-delayed and non-
fedback signals, or one or more of the inputs comprise a delay or a feedback
loop.

For a simple expression, code generation is straight forward, for the non-simple
case, the delay or the feedback have to be taken into account by providing an
initial token for the first iteration and providing information where the data
should be stored in the register file. To illustrate the different possibilities, three
examples are shown as use cases. In Figure 8, the resulting graph is shown for an
addition of one external input and a constant.

ADD

C1 EX0

_ True

Fig. 8: out y = Op ADD (CONST 1) y

Figures 9 and 10 show two slightly more complex examples where either
one input is delayed (out x y = Op ADD (DELAYED x) y) or where one
of the operands is the previous result, thus forming a feedback loop (out y =
Op ADD PREV RES y).

ADD

C0 EX1

_ True

ADD

C0 EX1

_ True

Fig. 9: out x y = Op ADD (DELAYED x) y

ADD

R0 EX0

R0 True

ADD

C0 EX0

R0 True

Fig. 10: out y = Op ADD PREV RES y

All information except the routing information has now been generated, the
routing settings are derived in the next step, the mapping.

4.5 Mapping to the target architecture

After the code for all the cores has been generated, each node in the algorithm
graph is mapped to one core in the hardware architecture. This is performed using
simulated annealing [8]. The result is a mapping of each node in the algorithm
graph to a core in the hardware architecture. The mapping is written to a file
which is then processed within the compiler. Using the mapping information, the
last missing step in the code generation, namely the global view, i.e. the routing
settings, is filled into the programming code of the nodes.

5 Case Studies

To illustrate the usage principle of the complete design flow, three use-case
algorithms are presented in this section: a multiplication of two vectors, a finite-

out

x1 y1 x2y2

x3 y3

x4 y4 x5 y5

x6

y6

x7 y7

x8y8

+

+

+

+

+

+

+

+

∗ ∗

∗

∗ ∗ ∗

∗

∗

(a) Mapping of vxv

out

xxxxxxxx

+

+

+

+

+

+ +

+

∗

∗

∗ ∗

∗

∗

∗∗

(b) Mapping of fir

out

xxxxx

++

+

∗

+ +

+

++

∗

∗ ∗

∗

∗

∗

∗

(c) Mapping of stream

Fig. 11: Mapping results

impulse-response (FIR) filter and a chained FIR filter demonstrating the previ-
ously introduced streaming notation.

5.1 Multiplication of two vectors

Input
“x0”

Input
“y0”

Op MUL

Op ADDConst 0

Input
“x1”

Input
“y1”

Op MUL

Op ADD

Input
“x2”

Input
“y2”

Op MUL

Op ADD

Input
“x7”

Input
“y7”

Op MUL

Op ADD

. . .

. . . out

Fig. 12: Structure of vxv

The first step in the design flow is shown in Listing 1.3. In this step, the
algorithm is specified within our compiler using the EDSL and Haskell’s higher
order functions.

vxv x y = out 1
where 2

ms = zipWith (Op MUL) x y 3
out = foldl (Op ADD) (Const 0) ms 4

Listing 1.3: Implementation of a multiplication of two vectors

The structure is built using the two higher-order functions zipWith and foldl .
A graphical representation of vxv for two vectors of length eight is shown in

Figure 12. In line 1 of the code, the function name vxv and its arguments x and
y which are the two vectors to be multiplied are defined. out is the resulting
output. In line 3, the vectors are element wise multiplied which leads to the row
of Op MUL in Figure 12. Finally, in line 4, the results of the multiplications are
added up, which leads to the row of Op ADD in Figure 12. Note that the input
vectors represent input signals denoted with Input “name index”.

The next step in the design flow is the actual code generation and mapping
to the target architecture. The mapping for vxv is shown in Figure 11a. Both
the code generation and mapping were automatically derived using the compiler
described in Section 4.

5.2 FIR filter

The next example is a complete example for an 8-tap FIR filter. The filter was
implemented in the transposed form, the structure is displayed in Figure 13. The
tokens on the arcs represent delay elements between the additions.

Input “x”

Op MUL

Op ADD

Const
c7

Const 0

Op MUL

Op ADD

Const
c6

Op MUL

Op ADD

Const
c5

Op MUL

Op ADD

Const
c0

. . .

. . .

. . .

out

Fig. 13: Structure of fir

The implementation using the EDSL is shown in Listing 1.4. In line 1, the
function name fir and the arguments are defined, in this case c (the filter
coefficients) and x (the input sample). In line 3, x is broadcasted to the row
of Op MUL from Figure 13. Here, the function map together with an initial
argument x is used . This defines a multiplication of each filter coefficient with
the input x . In line 4, the delayed addition represented by the bottom row in
Figure 13 is implemented. For this, the higher order function foldl is used that
starts off with the constant value 0 (shown to the left in Figure 13 and then
applies a delayed addition dadd (which is defined in line 5) to each result of the
previously defined multiplications ms. It can be seen that the FIR filter has a
comparable communication structure to the multiplication of two vectors, with
the difference that it contains delay elements between the additions, indicated
by the dots between the Op ADD nodes. Also, only one input is used which is
broadcasted to all multipliers.

The automatically derived mapping is shown in Figure 11b.

fir c x = as 1
where 2

ms = map (Op MUL x) c 3
as = foldl dadd (Const 0) ms 4
dadd a b = DELAYED ((Op ADD) a b) 5

Listing 1.4: Implementation of a FIR filter

5.3 Streaming pipeline

The final example is a simple streaming pipeline that uses the → notation. We
use the previously defined FIR filter to stream an input through two chained
FIR filters with two sets of filter coefficients c1 and c2 . The implementation of
the pipeline is as follows:

stream x = x → (fir c1) → (fir c2)
The automatically derived mapping is shown in Figure 11c.

6 Conclusion and Outlook

A programming paradigm was developed in order to express instruction-level
parallelism for coarse-grained reconfigurable arrays. The functional programming
language Haskell was used as a base, as it inherently has a notion of structure
and, thus, can easily express parallelism and the flow of data.

For our programming paradigm we adopted principles from dataflow and finite
state machine (FSM) notations, which made it possible to express algorithms in
the form of dataflow graphs with extended control. Furthermore, we considered a
DSP application to be composed of two views: The local view, which represents
everything that happens within one core, and the global view, which represents
the flow of data through the array.

For the compiler, we implemented an embedded domain specific language
(EDSL) as recursive datatype. In combination with higher order functions, this
EDSL can be used to construct expressions that directly resemble the structure
of a given problem. Consequently, the abstract syntax tree does not explicitly
have to be extracted.

References

1. A. Yeung and J. Rabaey, “A reconfigurable data-driven multiprocessor architecture
for rapid prototyping of high throughput dsp algorithms,” in System Sciences,
Proceeding of the Twenty-Sixth Hawaii International Conference on, vol. 1. IEEE,
1993, pp. 169–178.

2. E. Mirsky and A. DeHon, “Matrix: a reconfigurable computing architecture with
configurable instruction distribution and deployable resources,” in FPGAs for Custom
Computing Machines, Proceedings. IEEE, 1996, pp. 157–166.

3. H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. Chaves Filho, “Mor-
phosys: an integrated reconfigurable system for data-parallel and computation-
intensive applications,” Computers, IEEE Transactions on, vol. 49, no. 5, pp. 465–481,
2000.

4. V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt, “Pact
xpp—a self-reconfigurable data processing architecture,” the Journal of Supercom-
puting, vol. 26, no. 2, pp. 167–184, 2003.

5. S. Khawam, I. Nousias, M. Milward, Y. Yi, M. Muir, and T. Arslan, “The reconfig-
urable instruction cell array,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 16, no. 1, pp. 75–85, 2008.

6. B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Adres: An
architecture with tightly coupled vliw processor and coarse-grained reconfigurable
matrix,” in Field-Programmable Logic and Applications. Springer, 2003, pp. 61–70.

7. A. Niedermeier, J. Kuper, and G. Smit, “Dataflow-based reconfigurable architecture
for streaming applications,” in System on Chip (SoC), 2012 International Symposium
on. IEEE, 2012, pp. 1–4.

8. E. Aarts and J. Korst, “Simulated annealing and boltzmann machines,” 1988.

