
Expelled From Class No More:
Constraining Your Problem Kind

Philip K.F. Hölzenspies

University of Twente

1 The misbehaviour

Many Functional Programming Languages (FPLs) have some form of ad hoc
polymorphism. Haskell does this through type classes. It allows for definitions
and instantiations of type classes for higher-kinded types and for type classes
to have multiple parameters. Since the introduction of type families and so-
called Constraint kinds many more complex classes and instances have become
expressible. One long-standing problem, however, has not been resolved by any
of the extensions, namely the partiality of some type constructors. In this paper,
we present domain constraints as a suggested solution for these problematic
higher-kinded types and classes.

Let us first consider one of the classical instances of the problem in the
Haskell library, that has been there since before the formal definition of Haskell
98. Consider the type class Functor:

class Functor f where
fmap :: (a -> b) -> f a -> f b

In this class declaration, the variable in the so-called head is higher-kinded, i.e.
f :: * -> *. This follows from its use in the function fmap, where it is applied
to other types (a and b, which are determined by the first argument of fmap).

The limitation of this declaration is that f must be a total function on the
domain of types, i.e. f a must exist for any a. Unfortunately, this is not always
the case. To have sets of things, those things must be comparable for equality
(otherwise there is no difference between sets and bags). In Haskell, however, the
choice for the data type Set has been made to even require the elements to be
ordered1. This restriction is not very visible in the definition of the type Set—in
part because data types do not have contexts in earlier versions of Haskell and
even the DatatypeContexts extension in ghc has been depricated because it
did very little other than annotate the code for a human reader. Instead, the
restriction to types of the type class Ord is visible in the operations on sets, e.g.

fromList :: Ord a => [a] -> Set a
member :: Ord a => a -> Set a -> Bool
map :: (Ord a, Ord b) => (a -> b) -> Set a -> Set b

1 The Set type in Haskell really is a tree in order to reduce the worst-case complexity
of many operations.

Since the argument to the type constructor Set must be a type that is an
instance of type class Ord, we can say that the domain of the type-level function
Set is restricted. Going back to the Functor type class, we point out that the
type of fmap is unrestricted and that instances of the type class can not restrict
the type of member functions. With the introduction of type families (more
specifically, associated types) in combination with the new Constraint kind,
this problem seems to have been solved. Given this alternative class declaration
for Functor:

class Functor f where
type FunctorDomConstr f a :: Constraint
type FunctorDomConstr f a = ()
fmap :: (FunctorDomConstr f a, FunctorDomConstr f b)

=> (a -> b) -> f a -> f b

we can now instantiate Set for this class2:

instance Functor Set where
type FunctorDomConstr Set a = Ord a
fmap = map

By giving a default implementation for the domain constraint (the empty tuple
() denotes the empty set of constraints), instances that do not need to constrain
their domain do not need to implement the associated type. This solves the
problem of legacy code; anything that already was an instance of the class can
remain so without needing to be rewritten or recompiled.

For this particular instance, the problem of constrained domains seems solved.
Unfortunately, this solution has some critical shortcomings:

1. Type class authors must explicitly include an associated type of the kind
Constraint. This gives rise to two sub-problems:
(a) many authors do not do this when they have not come across the need

to do it in a relevant use-case of their library;
(b) it needlessly pollutes the namespace with names that are all specifically

used for one thing;
2. It limits the validity of such class declarations to compilers that implement

these extensions;
3. It does not scale well to subclasses and correctness of the propagation of

these constraints in subclasses can not be verified by the compiler;

We discuss these problems in more detail in Sect. 2. The solution we propose,
namely domain constraints, is introduced and discussed in Sect. 3. The full paper
discusses implementation details.
2 Haskell suffers the frustrating problem that types are not used to disambiguate the
occurrence of different functions with the same name. Normally map refers to the
mapping operation on lists from the standard prelude and the use of this function
from Data.Set should be disambiguated by explicit qualification. For brevity in our
code, we omit such qualifications.

2 The parent-teacher conference

In this section, we discuss in more detail the problems that arise with the solution
that is currently possible in ghc’s Haskell, using the extensions ConstraintKinds
and TypeFamilies.

2.1 Those that play nice should not have to change

A common perspective on type classes is that they define a limited set of func-
tionality that any instance of the class must provide. This is what the name ‘ad
hoc polymorphism’ appeals to, i.e. the function

foo :: Bar a => a -> Int

is defined for any possible type a, as long as we know that at least the function-
ality specified by type class Bar is defined for it.

Consequentially, type class authors design their classes to describe a certain
collection of behaviours that form a meaningful whole. Asking authors to design
their classes in such a way that certain types can be more easily instantiated
seems, in this perspective, to be the wrong way around. Also, what instance
writers require of a class may very will vary radically between classes and in-
stances.

2.2 Not all schools have deep pockets

The language extensions used are extremely powerful, but also rather complex.
As discussed in Sect. 3, a much simpler language extension would suffice (and not
suffer the problems discussed in this section). Although ghc is largely seen as the
‘standard’ Haskell compiler, it is not the only one. Other compilers implement
other or fewer extensions and, at the time of writing, ghc is the only one with
ConstraintKinds and TypeFamilies.

2.3 The most important thing is to grow

The solution as suggested above does not scale well to subclasses. As an illus-
tration of the problem, consider the class Applicative as currently defined:

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

Any instance of Applicative must also be an instance of Functor. Thus,
any use of higher-kinded type f must be constrained by the domain constraint
from the Functor class and we must add the domain constraints for instances
of Applicative. This results in a new definition of the class above, as:

class Functor f => Applicative f where
type ApplicativeDomConstr f a :: Constraint
type ApplicativeDomConstr f a = ()
pure :: (FunctorDomConstr f a, ApplicativeDomConstr f a)

=> a -> f a
(<*>) :: (FunctorDomConstr f (a -> b), ApplicativeDomConstr f (a -> b)

, FunctorDomConstr f a, ApplicativeDomConstr f a
, FunctorDomConstr f b, ApplicativeDomConstr f b)

=> f (a -> b) -> f a -> f b

Of course, the default implementation of the domain constraint of this class
could be that of its superclass, i.e.

type ApplicativeDomConstr f a = (FunctorDomConstr f a)

but this only saves half of this hefty overhead and if a user does add domain
constraints for this class, she must remember to explicitly include those of the
superclass. There is no way to let the type-checker verify preservation of domain
constraints in subclasses. Aside from the obvious undesirability of the above, the
error messages become increasingly unfathomable for larger inheritance trees.

3 Setting boundaries

The solution we propose is a new language extension, that adds an explicit
mechanism for domain constraints of higher-kinded instances of classes. We call
this mechanism domain constraints and express it as follows. The classes remain
unannotated, as is the status quo. Only at the point of instantiation do domain
constraints come up. Consider the instantiation of Set for Functor:

instance Functor Set
domconstraint (Set a) = (Ord a)

where
fmap = map

The added keyword domconstraint heralds a binding point, i.e. all free vari-
ables between domconstraint and the equals sign are bound for the right-hand
side of the equals sign. The left-hand side of the domain constraint (in this case
(Set a)) must have kind * and must contain precisely one type from the in-
stance head. Said occurrence in the instance head must have kind * -> *. In
this example there is only one type in the instance head (Set), but in case of
multi-parameter type classes, this need not be the case. Thus, a domain con-
straint can only constrain the domain of one type; it does not define constrained
relationships between multiple types in a multi-parameter type class.

Semantically, this adds the constraint Ord a for every function of the class
that applies Set to some type a. These constraints are checked in the normal
way. The only added requirement is that, when domain constraints are violated
rather than the ‘normal’ constraints, the compiler can now generate a more
informative error.

4 Validation

The validation of this approach by means of an implementation in ghc and
the instantiation of types for a multitude of classes for which they could not
previously be instantiated from hackage is work in progress.

