
Blame Prediction

Dries Harnie?, Christophe Scholliers, and Wolfgang De Meuter

Software Languages Lab, Vrije Universiteit Brussel, Belgium,
{dharnie,cfscholl,wdmeuter}@vub.ac.be

Abstract. Static type systems are usually conservative. Therefore, many
interesting programs are rejected by the type system, even though they
often execute without errors. Dynamic type systems would allow such
ill-typed programs to run. However, the cause of runtime errors is of-
ten far removed from the place where the type errors are raised, making
the program hard to debug. We present a hybrid typing discipline called
blame prediction which transforms programs in order to detect runtime
type errors as soon as they are guaranteed to happen. These type errors
relate the future type error with its cause, aiding in debugging. As a proof
of concept, we have applied blame prediction to a functional Scheme-like
language.

Keywords: type systems, dynamic typing, blame prediction

1 Introduction

In recent years there has been a surge in the use of dynamically typed program-
ming languages. Developers are building large systems for all kinds of purposes,
taking advantage of the fast prototyping and short edit-run-debug cycles offered
by these languages. These advantages arise because developers do not need to
get their program accepted by the type system. The interpreters for these lan-
guages only report errors at runtime when they are detected. It is up to the
programmer to discover the expressions that caused these errors.

In the meantime, researchers have developed expressive type systems that
attempt to ascribe types to ever-increasing subsets of dynamically typed pro-
gramming languages. This research is spearheaded by the ongoing research into
type systems and developer tools for Ruby and JavaScript [1,2]. This approach
guarantees that programs accepted by the type system do not exhibit runtime er-
rors. However, these type systems and tools work on a subset of these dynamic
languages and are necessarily conservative, which means that large classes of
real-world programs cannot be typed. For example, they often assume array el-
ements have the same type, that both branches of an if-expression return the
same type,. . .

Static and dynamic approaches aim to achieve different goals: static typing
approaches are conservative and report errors up front, but they only allow pro-
grams to run if it can be proven that they never produce errors. By contrast,
? Funded by the Prospective Research For Brussels program of Innoviris, Brussels.

2

dynamic typing approaches allow every program to run, but only report type
errors when primitive operations are applied. This means that statically identi-
fiable type errors will only be reported long after they could have been reported.

In this paper we present blame prediction: a hybrid technique that makes
primitive type tests explicit and performs them as early as possible. The key
insight of blame prediction is that primitive operations can be decoupled from
the type tests they need to perform, which allows these type tests to be performed
much earlier. When a type test fails and all code paths after the test require
it to succeed, a blame prediction error is raised. This error references both the
faulty expression and the primitive operations that depend on the type test.
Using these blame prediction errors, programmers can more easily debug their
code. We have implemented a proof-of-concept blame prediction transformation
for a functional core of Scheme. We are convinced blame prediction can be also
applied to a whole class of dynamic programming languages and type systems.

The rest of this paper is structured as follows: we describe the motivation
and the idea behind blame prediction in sections 2 and 3. Section 4 defines the
blame prediction transformation. Related work is described in section 5 and we
describe planned work in section 6.

2 Motivation

In this section we explain the tension between dynamic and static typing by
exploring a small example: a number guessing game, a typical assignment given
to first-year computer science students. This game consists of the user trying
to guess a hidden target number, for every guess the program gives feedback
like “too high” or “too low”. If the user guesses the number, the game is over.
Consider the following Scheme implementation of the number guessing game:

(define (guess target)
(let ((input (read)))

(cond ((eq? input 'quit) 'quit)
((< input target)
(display "Too low!\n") (guess target))

((> input target)
(display "Too high!\n") (guess target))

(else
(display "You guessed correctly.\n") 'done))))

Listing 1.1. Simple number guessing game in Scheme

This program uses the read primitive function to read input from the user
and parse it as a Scheme value. If this input is the symbol 'quit, the game
is immediately stopped. Otherwise the input is assumed to be a guess, so it
is compared to the target number. If the guess was correct, the game ends,
otherwise a feedback message is printed and the game continues.

If we try to apply a static type discipline to the program, the following steps
will occur: first of all, because the read primitive can return a value of any type,
the type of input is inferred as > (which represents all Scheme types), . In the

3

first branch of the cond, the eq? check narrows the type of input to symbols,
as the eq? primitive requires two input expressions of the same type. Then, in
the second branch, input is numerically compared to target, which needs two
numeric arguments. As this requires input to have a numeric type, a type error
is signaled and the program is rejected. Since the program is rejected, we cannot
run the program.

A dynamic typing discipline has the opposite result: the program will run
normally, but type tests are performed at runtime and errors are raised if they
fail. In this case, after the read primitive returns a value, it is compared to the
symbol quit. This does not require a runtime type test, only a pointer equality
test. The calls to <, > and = all verify that both input and target are numbers
before they execute the actual comparison code. If these type tests fail, an error
is signaled and evaluation is aborted.

Both approaches fall short: static typing simply rejects the program, while
dynamic typing accepts the program but it will crash if given the wrong input.
We require a hybrid approach: one that applies static typing for the most part,
while shielding expressions that might raise errors with type tests. One way of
making this program safer is by inserting dynamic type checks in the right places.
For example, the code assumes that the input variable is either a number or a
symbol, as evidenced by the eq? and < tests. The programmer could therefore
insert a type test into the code, right below the let:

(define (guess target)
(let ((input (read)))
(if (not (or (symbol? input) (number? input)))

(error "Invalid type for input")
(cond ...))))

Listing 1.2. Guessing game with an extra type test

If the user now enters an unexpected kind of input, an error is raised immediately.
This program has properties of both the static and dynamic approaches: it allows
the program to run as long as no type errors are raised, but an error is raised
as soon as possible if errors can be predicted. We discuss how to mechanize this
transformation in the next section.

3 Blame Prediction

In this section we specify blame prediction for a functional subset of Scheme
called Schemeβ . Its syntax and semantics are described in Figure 1. Both are
standard, but extra attention is paid to errors that can be raised during evalu-
ation.

The most important evaluation rule here is E-Apply, which is responsible
for applying both primitive operations and user-defined functions. Evaluation
of an application happens as follows: both the function and its arguments are
evaluated and then passed to the δ function. If the function being applied is a
primitive operation like +, the types of the arguments are tested and a err-not-int

4

error is raised if one of the arguments is not an integer. A second case is when
a user-defined function is invoked, in which case the number of arguments must
match the arity of the function. Otherwise an err-args-λ error is raised. Finally,
application of a non-function value results in a err-not-λ error. Note that — just
like in Scheme — these errors are raised at the time of application and propagate
outwards, halting the evaluation process.

e ∈ Exp ::= x variables
#f | #t | n constants and literals
(e e1 . . . en) application
(if e e e) conditional
(let (x e) e) let
(lambda (x1 . . . xn) e) lambda

v ::= #f | #t | n | λx1...n.e Runtime values
E ::= � | (if E e e) | (let (x E) e) Evaluation contexts

| (E e . . .) | (v . . . E e . . .)

(E-If-False) E〈(if #f e1 e2)〉 → E〈e2〉
(E-If-True) E〈(if v e1 e2)〉 → E〈e1〉 if v 6= #f

(E-Let) E〈(let (x v) e)〉 → E〈e[x/v]〉
(E-Lambda) E〈(lambda (x1 . . . xn) e)〉 → E〈λx1...n.e〉
(E-Apply) E〈(vf v1 . . . vn)〉 → E〈δ(vf , v1, . . . , vn)〉
(E-Error) E〈err-ω(v)〉 → err-ω(v)

δ(+, v1, v2) = v1 + v2 if int?(v1) ∧ int?(v2)
δ(+, v1, v2) = err-not-int(v1) if ¬int?(v1)
δ(+, v1, v2) = err-not-int(v2) if ¬int?(v2)

δ(λx1...m.e, v1, . . . , vn) = e[x1 . . . xm/v1 . . . vn] if m = n
δ(λx1...m.e, v1, . . . , vn) = err-args-λ(λx1...m.e) if m 6= n

δ(v, . . .) = err-not-λ(v) if ¬function?(v)

Fig. 1. Evaluation rules of Schemeβ

Throughout this and the next section we will use a synthetic example to demon-
strate blame prediction. This function switches its operation (and thus its return
type) according to the truth value of the mode parameter: it either adds one to
a number, or prepends a string with “Hello”:

(define (inc-or-greet mode y)
(if mode

(+ y 1)
(string-append "Hello, " y)))

Listing 1.3. Running example

Consider the expression (inc-or-greet #t (read)). The read primitive
reads input from the user and passes it to the inc-or-greet function, along

5

with the boolean value #t. Inside this function, the true branch is taken and the
+ primitive is applied to y. If y is not a number, the interpreter raises an error
along the lines of “non-numeric value passed to +: y”.

One observation we can make is that despite the branch inside inc-or-greet,
the type of the y parameter must be int or string. If this is not case, the in-
vocation of inc-or-greet always produces an error. Since the type tests for
+ and string-append only happen right before they are invoked, users of
inc-or-greet receive a type error too late. We can therefore perform a type
test on y upon entering the function and error out if the test returns false:

(define (inc-or-greet mode y)
(check (or (string? y) (number? y))
(if mode

(+ y 1)
(string-append "Hello, " y))))

Listing 1.4. inc-or-greet, transformed

This check macro raises an error if its first argument is #f , otherwise it is
equivalent to its second parameter. Note that there is no type test on mode, as
the if-expression in Schemeβ accepts any type of value.

A second observation is that the return type of inc-or-greet depends on
the path taken through the function (based on the runtime value of mode), and
the type of the y parameter. While we cannot predict the first, we can assert
that if y is of type int or of type string and the evaluation of the body does not
result in an error, its return type is the same as that of y. We can thus say that
inc-or-greet is of type

((boolean× int)→ int) ∨ ((boolean× string)→ string)

We can then use this type to add type checking to code that invokes inc-or-greet.

(let ((input (read)))
(check (or (string? input) (number? input))
(inc-or-greet #t input)))

Listing 1.5. transformed application of inc-or-greet

4 The Blame Prediction Transformation

In this section we describe the transformation that enables blame prediction.
This transformation makes the primitive type tests performed by the runtime
system explicit, and aims to perform them as soon as possible. This transforma-
tion has two important properties:

Blame may only be predicted if all possible paths result in an error
This property forms the main distinction between blame prediction and a
type system: a type system performs all its type tests at verification time and
rejects (parts of) programs if they might cause a runtime error. By contrast,

6

blame prediction allows programs to run up until the point where all execu-
tion paths result in an error. For example, upon entering (inc-or-greet
#t "hi"), some paths can still succeed so no blame is predicted. Once exe-
cution reaches the true branch of the if-expression, all possible paths (namely
(+ y 1)) will result in an error. This property ensures that blame-predicted
programs only raise errors if their original versions do.

Blame prediction may resolve type tests statically
Blame predicted programs are allowed to elide type tests when the inferred
type of variables is exactly the requested type or when earlier type tests have
already satisfied a type test. Likewise, blame prediction is allowed to replace
expressions with type tests that will always fail by a static error message.
For example, (inc-or-greet #t #t) will always fail with a type error, so
the function does not need to be entered.

The blame prediction transformation has three stages: type inference (sub-
section 4.1), insertion of type tests (subsection 4.2), and moving type tests up-
wards (subsection 4.3). The rest of this section assumes that the input is free
of variable shadowing. Additionally, the input program needs to be in A-normal
form [3]: this makes the evaluation order explicit, simplifying the logic for moving
and insertion of type tests.

4.1 Type system

While blame prediction happens primarily at run-time, the transformation needs
to analyze the program beforehand and associate each subtree with a type. Such
a type encodes a primitive type like other type systems do but also records all
type tests that lead up to yielding a value of this type. The types returned by
this analysis are listed in Figure 2. The most unconventional part of this type
system are the conditional types (τ1 ∼ τ2) · τt: they represent a value that only
exists if τ1 is equivalent1 to τ2. τ1 is always a ground type like int or string,
or a function type. Union types combine the types returned by the branches of
if-expressions.

There are also function types that represent the different paths through a
function along with the type tests they make and their return types. Their
arguments are represented by type variables, which get embedded in type tests
and return types. Applying these functions yields a type-level application, which
substitutes argument types for type variables. If the function type being applied
is a type variable, the type-level application is left unresolved until the function
type is known. We will point out how each kind of type can be generated by the
type rules, shown in Figure 3.

– Rules T-const and T-var are defined as usual.
– Rule T-if enables if-expressions to combine the types of both branches using

a union type.
1 The type equivalence operator ∼ performs logical equivalence, instead of structural,
so (string ∨ int) ∼ (int ∨ string)

7

τ ::= int | string ground types
| τ ∨ τ union types
| α type variable
| Πα1...n.τ function type
| (α τ1 . . . τn) function type application
| (τ ∼ τ) · τ conditional type

TVar ⊇ α, β

Fig. 2. Types

– Rule T-let is different from normal type systems because it needs to ensure
that the type of the whole let-expression is guarded by the type tests made
by ex. For example, the type of (let (x (+ y 1)) #t) should record the
fact that y is used as a number, even though it is not used in the let body. In
order to record this, this type rule decomposes the type of ex into the types
at the leaves (τL) and the paths that lead to them. The rationale behind
this decomposition is that all type tests in ex have happened by the time the
body is evaluated. The let body is inferred with the type of the let variable
bound to the type leaves τL, yielding a body type τ . Finally, the type of the
let-expression is made by appending the type τ to each path in the type of
ex.

– Rule T-lambda infers the type of the body with the arguments bound
to type variables α1 . . . αn. This type is then wrapped in a type function
with these type variables as arguments. Any type tests performed on the
arguments are recorded in the type of the body as well. When this type
function is eventually applied (see rule T-apply below), the type tests are
propagated to the application site and can be eliminated or moved up.

– Rule T-apply analyzes function application. This rule infers the type of the
called function and its arguments and tries to apply the type function to the
arguments using the Apply type function discussed in the next section. The
type of the function application is finally made by prepending a type test on
the function to the type returned by Apply.
For bookkeeping purposes, each type test generated by rule T-apply is as-
sociated with the application node being scrutinized. This enables the later
steps of the transformation to assign blame to the correct part of the program
in case the type test fails.

The Apply function In the simplest case, the Apply function immediately
jumps to the case where τf is statically known to be a function. The return type
is constructed by substituting the actual types for the argument type variables
in the function type’s body. Below are some examples of Apply:

Apply(Πα.((string ∼ α) · string), {string}) = ((string ∼ string) · string) (1)
Apply(Πα, β.(int ∼ α) · (int ∼ β) · int, {int, int}) = (int ∼ int) · (int ∼ int) · int (2)

Apply(string ∨Πα.α, {int}) = error ∨ int (3)
Apply(α, {boolean, (string ∨ int)}) = (α boolean (string ∨ int)) (4)

8

Γ ` e : τ

c ∈ {#t,#f, n}
Γ ` c : Typeof(c)

(T-const)
Γ (x) = τ

Γ ` x : τ
(T-var)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (if e e1 e2) : τ1 ∨ τ2
(T-if)

Γ ` ex : τ1 Γ, x : τL ` e : τ τL = Leaves(τ1)
Γ ` (let (x ex) e) : Chain(τ1, τ)

(T-let)

Γ, x1 : α1, . . . , xn : αn ` e : τ
Γ ` (lambda (x1 . . . xn) e) : Πα1...n.τ

(T-lambda)

Γ ` ei : τi ∀i ∈ [1 . . . n] Γ ` ef : τf

Γ ` (ef e1 . . . en) : ((Πα1...n._) ∼ τf) ·Apply(τf , {τ1...n})
(T-apply)

Auxiliary definitions
Apply(τα ∨ τβ , {τ1...n}) = Apply(τα, {τ1...n}) ∨Apply(τβ , {τ1...n})
Apply((τt ∼ τα) · τ, {τ1...n}) = (τt ∼ τα) ·Apply(τ, {τ1...n})
Apply(Πα1...m.τf , {τ1...n}) = τf [α1...m/τ1...n] if m = n
Apply(Πα1...m.τf , {τ1...n}) = error if m 6= n
Apply(α, {τ1...n}) = (α τ1 . . . τn)
Apply(τ, {τ1...n}) = error

Chain(τ1 ∨ τ2, τc) = Chain(τ1, τc) ∨ Chain(τ2, τc)
Chain((τt ∼ τ1) · τ, τc) = (τt ∼ τ1) · Chain(τ, τc)
Chain(τ, τc) = τc

Leaves(τ1 ∨ τ2) = Leaves(τ1) ∨ Leaves(τ2)
Leaves((τt ∼ τ) · τ1) = Leaves(τ1)
Leaves(τ) = τ

Fig. 3. Blame prediction: type inference rules and auxiliary definitions

9

If the first argument to Apply is a conditional type or a union type, Apply
is called recursively while preserving the original structure of the type. This can
result in invalid function applications, for example in example 3 above. These
applications are replaced with error tokens. After invoking Apply, only the non-
error parts of union types are retained. If all parts of a union type result in
error, the entire type is error. This is allowed because rule T-apply prepends
a function test to the type of the application, ensuring only function values
are applied. Normal type systems would reject such programs immediately, but
blame prediction must continue as such an expression might be buried in a
function that is never called or only on some paths. Expressions that are assigned
the type error are guarded by type tests, so they are never reached.

Finally, a type variable might be the type function being applied to several
type arguments. This can happen as a result of the user creating higher-order
functions, which are common in functional languages. The type of such an ap-
plication is a type-level function application, as in example 4 above. Type-level
function applications remain in the type until their type variable is replaced by
a concrete type, at which point Apply is called anew. This mechanism enables
blame prediction to deal with higher-order functions.

After assigning types to all expressions of the program, a round of simplifi-
cation is performed on the types. This includes:

– eliminating trivially true type tests such as string ∼ string in example 1,
– pruning type branches that will never succeed (((int ∼ string) · int) ∨ string

becomes string), and
– merging union types with equivalent branches (int ∨ int becomes just int).

4.2 Introducing type tests

After inferring types for the program, blame prediction then makes type tests
explicit by transforming the program. Type tests are introduced at application
sites of both primitive operations and user-defined functions. Every type test
is annotated with two labels: a blame label that references the function whose
preconditions are being checked, and a cause label that points to the expression
being tested. For example, in the expression (f x), the blame label points to
the definition of f and the cause is the expression x. These labels correspond to
source positions in the user’s program.

A type test is of the form [check (τ? cause) blame]. We denote it using
square brackets as it is attached to nodes in the program, rather than being
reified in the code. The next step in the process will move these nodes up and
reify them once they reach their final place.

At each application site, the resulting type is converted to a tree structure
of checks by the type-test function below:

type-test((τt ∼ τ) · τf) = [and [check (τt? ec) lb] type-test(τf))]
type-test(τ1 ∨ τ2) = [or type-test(τ1) type-test(τ2)]
type-test(_) = #t

10

Remember from subsection 4.1 that each type test is associated with a cause
label lc and a blame label lb, both referring to source locations. To generate the
actual check, the blame prediction transformation first looks up the variable or
constant ec at label lc and inserts it into a primitive type test, annotated with
the blame label lb.

This tree structure is then simplified according to the normal logic formulas
for and and or: #t is removed from and conditions and and conditions with a
single element are replaced by that element. If the type of an application contains
no type tests, it is just #t. For example, the type (int ∼ (int ∨ string)) · int with
lb = + and lc = x becomes [check (int? x) +] after simplification.
After type test introduction, the inc-or-greet example looks like Listing 1.6.
Note that each [check] expression is an annotation on the expression after it.

(define (inc-or-greet mode y)
(if mode
[check (int? y) +] (+ y 1)
[check (string? y) string-append]
(string-append "Hello, " y)))

Listing 1.6. inc-or-greet example after type test insertion

4.3 Moving type tests upwards

The last step of the blame prediction transformation attempts to move the check
nodes as far up the evaluation tree as possible. This process (called “flotation”)
is applied to the expression tree in a bottom-up fashion; it is subject to a few
simple rules. Because the program is in ANF, there are only a few cases to
consider, listed in Figure 4. Flotation rules are of the form e 7→ e′ ↑ C, meaning
that expression e can be rewritten to expression e′, floating checks C upwards.
The expressions may also contain check nodes C of their own.

– Rules F-const and F-var are for completeness: as we only introduce check
nodes at function application sites, constants and variables will never give
rise to a type test.

– The F-apply rule simply floats its checks upwards.
– Rule F-if floats the disjunction of the checks performed by both nodes, while

still performing these checks in the branches themselves. This enables the
inc-or-greet example to predict blame if y variable contains something
not of type int or string.

– Rule F-let ensures that let-expressions only float checks upwards which do
not involve the bound variable. Checks that do are replaced by #t.

– Rule F-lambda stops checks from floating past lambda-expressions, as these
type tests would only be performed when the function is actually applied.

Remember from subsection 4.1 that trivially true type tests (eg. int? 5) are
eliminated as part of the simplification. However, type tests that always fail
remain present in generated types; they are introduced and floated upwards

11

together with the other constraints. Such type tests are not stopped by let-
expressions, so they have the potential to float all the way to the top of the
program. When the program is then executed, these type tests immediately
predict blame and stop, much like a static type system prevents an ill-typed
program from running.

c 7→ c ↑ #t (F-const) x 7→ x ↑ #t (F-var)

[C](e e1 . . . en) 7→ (e e1 . . . en) ↑ C (F-apply)

(if e [C1]e1 [C2]e2) 7→ (if e [C1]e1 [C2]e2) ↑ [or C1 C2] (F-if)

C′ = C with all checks involving x replaced by #t

(let (x [Cx]ex) [C]e) 7→ (let (x ex) [C]e) ↑ [and Cx C′]
(F-let)

(lambda (x1 . . . xn) [C]e) 7→ (lambda (x1 . . . xn) [C]e) ↑ #t (F-lambda)

Fig. 4. Rules for floating checks up the evaluation tree

Floating type tests in the inc-or-greet example finally yields the following
program, which is what we wanted to accomplish in section 3.

(define (inc-or-greet mode y)
[or [check (int? y) +] [check (string? y) string-append]]
(if mode

[check (int? y) +] (+ y 1)
[check (string? y) string-append]
(string-append "Hello, " y)))

Listing 1.7. inc-or-greet example after floating type tests up

We have also applied blame prediction to the guess example from the intro-
duction, the resulting program is shown in section A.

5 Related work

As mentioned in the introduction, there exists a huge body of work [1,2] on ever
more expressive type systems for dynamically typed programming languages,
with the ultimate goal of being able to statically type all dynamic programs.
These approaches limit themselves to a subset of the language they are studying,
resulting in an inability to type whole classes of programs that will never raise
a runtime error. The outcome of this body of work can be used to improve the
static capabilities of blame prediction, at least for programs that can successfully
be typed.

12

Soft typing [4] was among the first attempts at inserting type tests into
dynamically typed programs. Their type system featured guarded primitives like
CHECK-car and also marked subexpressions as “will always fail”. The primary
motivation for inserting these type tests is to allow type inference to proceed, but
errors will only be reported if faulty expressions are evaluated. Blame prediction
also floats these type tests up as much as possible, reporting errors earlier.

Recently, gradual typing [5] has acknowledged that programmers may want
to gradually convert their programs to static typing. In the cases where normal
type systems cannot reason over the entire program, gradual typing can at least
be used to statically type check parts of the program. Parts that cannot be
typechecked are assigned the unknown type ‘?’ and interactions with statically
typed code is guarded by a type conversion such as 〈x ⇐ τ〉. Gradual typing
was a big inspiration for this research, with the observation that the type tests
performed by a gradually typed program can be performed earlier in the control
flow.

Aside from primitive operations, explicit type tests can also be used to deduce
type information in a dynamically typed language. The work in [1] sidesteps the
“one variable, one type” restriction that is present in many type systems, instead
opting to make types flow-sensitive. We plan to incorporate manual type tests
in later versions of blame prediction to better estimate types, thus eliminating
more type tests and floating tests up even further.

A recent addition to the Glasgow Haskell Compiler has lead to deferred type
errors [6]. Rather than halting compilation when a type error is discovered, the
program is compiled as normal but the wrongly-typed expressions are replaced
by “holes”. When such a hole is accessed by the runtime system, an error is raised
as before. These errors are only raised as they are accessed however, even if the
compiler can predict that the hole must be entered.

6 Discussion & Future Work

As blame prediction is still research in progress, in this section we discuss some
of the areas that are still being worked on. Our implementation can be found at
https://github.com/botje/crystal.

Recursive functions The mechanism for inferring types for functions currently
cannot cope with recursive functions, as substitution would produce infinite type
terms. For example, consider the following function:

(define (count n)
(if (= n 0)
"done"
(count (- n 1))))

Listing 1.8. Recursive counting function

The inferred type would be count = Πn.(int ∼ n) · (string ∨ (count n)).
In the implementation of blame prediction we infer recursive functions in two

13

steps: first we infer the type with the recursive function name bound to a dummy
function type. This function type accepts the same number of arguments, but
only has a fresh type variable as body. After this inference step, we analyze
the leaves of the function’s type to determine which types are produced by non-
recursive paths through the body. A second round of type inference is then done,
with the recursive function’s name bound to a function that returns this new
return type. If all leaves are equal to the dummy type variable, the function
never returns anything, so its type is left as “any”. If only some leaves match
this dummy type variable, the other (concrete) types in the union type are the
return type. Finally, if none of the leaves match the dummy type variable, we
use the return type as is.

For the count function above, the derivation goes as follows, where count1 is
the type of count after the first inference, and count2 the type after the second
inference.

count1 = Πn.(int ∼ n) · (string ∨ αdummy)
Leaves(count1) = string ∨ αdummy

count2 = Πn.(int ∼ n) · (string ∨ string)

This process can be performed analogously for groups of mutually recursive
functions.

Redundant tests The algorithm as-is generates a lot of redundant tests: for ex-
ample, if a variable is used as a number multiple times, each use gives rise to
a type test with a different blame label. These tests will float to the top of the
function they are in, clustering at the top. If a type test can refer to multiple
blame labels, instead of only referring to one blame label, these clusters can be
avoided.

Applying blame prediction to other type systems In this paper we used blame
prediction to perform type tests in advance in order to improve early error de-
tection. However, blame prediction can be used for other purposes as well. For
example, languages sometimes offer “unsafe” variants of operators that promise
a performance increase. Programmers are allowed to use these unsafe operators
if they verify certain conditions up front. Using a mechanism similar to blame
prediction, safe operators can automatically be split into unsafe operators plus
tests to verify these conditions. These tests can then be floated upwards and
combined with other tests, yielding a faster program without sacrificing safety.

Another technique that can be ported to blame prediction is tainting [7],
where input from the user or the filesystem is considered as “tainted”. Applying
a function to a tainted value produces a value that is itself again tainted. Some
primitive functions, like system or open raise a fatal error if they are invoked
with tainted input. This flow of taint is easily described using type rules; a “taint
predicted” program can point out areas where the developer overlooked tainting.

14

7 Conclusion

In this paper, we presented a novel typing discipline called blame prediction.
The key insight of this research is that dynamically typed programs perform
type tests on expressions only at the call site of primitive operations, while these
tests could be performed considerably earlier. We have formalised this insight
into a type system that makes type tests an integral part of expressions’ types.
These types are used to steer a program transformation that makes type tests
explicit in code. The end result is a program that performs dynamic type tests
well before they are needed, with pointers to the failing expression and the code
that needs it. This in turn helps developers debug their applications faster and
structure their program better.

References

1. Guha, A., Saftoiu, C., Krishnamurthi, S.: Typing Local Control and State Using
Flow Analysis. In: Proceedings of the 20th European Symposium on Programming.
(2011) 256–275

2. Furr, M., An, J., Foster, J., Hicks, M.: Static type inference for Ruby. Proceedings
of the ACM Symposium on Applied Computing (2009) 1859–1866

3. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. (1993) 237–247

4. Wright, A.K., Cartwright, R., Wright, A.K., Cartwright, R.: A practical soft type
system for Scheme. ACM (1994)

5. Siek, J., Taha, W.: Gradual typing for functional languages. Workshop on Scheme
and Functional Programming (2006)

6. Peyton Jones, S., Vytiniotis, D., Magalhães, J.P.: Equality proofs and deferred type
errors: A compiler pearl. Proceedings of the International Conference on Functional
Programming (2012) 1–12

7. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: Proceedings of the International Symposium on Software testing and Analysis.
(2007)

15

A Blame prediction applied to guess

This section showcases how the guess example from the introduction is trans-
formed by our current blame prediction implementation. It is not part of the
main article because guess is recursive, which is still work in progress. Brack-
eted code denotes a type test annotation for the code after it. To keep the
example brief, type tests are written as (test cause blame).
The type of guess is Πα.symbol ∨ ((int ∼ α) · symbol).

(letrec ((guess (lambda (target)
[or #t [and (number? target <) [or #t (number? target >)]]]
(let ((input (read)))

[or #t
[and (number? input <) (number? target <)

[or #t
[and (number? input >) (number? target >)]]]]

(if (eq? input 'quit)
'quit
[and (number? input <) (number? target <)

[or #t [and (number? input >) (number? target >)]]]
(if (< input target)

(begin (display "Too low!\n") (guess target))
[and (number? input >) (number? target >)]
(if (> input target)

(begin (display "Too high!\n") (guess target))
(begin (display "You win!\n") 'done))))))))

(guess 4))

Listing 1.9. guess after blame prediction

