
Running Probabilistic Programs Backwards

Neil Toronto and Jay McCarthy

PLT @ Brigham Young University, Provo, Utah, USA
neil.toronto@gmail.com and jay@cs.byu.edu

Abstract. All probabilistic languages are limited in some critical way.
Languages created by statisticians for their own use lack semantics, and
their implementations almost certainly compute wrong values on large
classes of programs. Almost all languages defined by semantics lack prob-
abilistic conditioning, making them useless for probabilistic inference.
We first define an uncomputable semantics that gives all programs a
theoretically sound, exact meaning. We then derive and implement a
computable, approximate semantics and prove that its approximations
approach the values calculated using the exact semantics.
The uncomputable semantics is based on measure theory, so the derived
implementation handles probabilistic conditioning naturally, as well as
programs for which other implementations compute wrong values.

Keywords: Semantics, Domain-specific languages, Probability theory

1 Introduction

All probabilistic languages to date are limited in some critical way.
Languages defined by statisticians for their own use lack a semantics; there is

thus no standard for correct behavior or convergence. Further, because of their
implicit reliance on density models, these languages cannot behave correctly in
the presence of mixed-type arithmetic, nonlinear probabilistic conditions, and
unbounded recursion.

On the other hand, almost all probabilistic languages defined by a semantics
lack a critical feature: probabilistic conditioning. While such languages are use-
ful for studying probabilistic algorithms and implementing reliable probabilistic
simulations, they are mostly useless for inference.

In short, there are languages for inference that statisticians cannot trust, and
reliable languages for simulation that statisticians cannot use.

2 The Preimage Arrow

We interpret probabilistic programs as measure-theoretic models so that
mixed-type arithmetic, nonlinear conditions, and unbounded recursion can be
given meanings consistent with theoretical expectations.



Our measure-theoretic models consist of 1) a universe of first-order values
V; 2) a Borel σ-algebra B(V) containing measurable subsets of V (a measure-
theoretic analogue of a topology); 3) a probability measure P : B(V) ⇒ [0, 1];
and 4) the interpretation of a program, a function F : V ⇒ V. The probability
of a set B ∈ B(V) of program outputs is P(F −1(B)), where F −1(B) denotes
calculating the preimage of B under F .

For P(F −1(B)) to be sensible, F −1(B) must be in B(V); i.e. F must be B(V)-
B(V) measurable, a property analogous to topological continuity but weaker. In
fact, constructing F using the combinators that define the measurable func-
tion arrow and a small selection of lifted primitives is enough to ensure F
is measurable. The proofs are structural and follow from the measurability of
the combinators and primitives. Further, the measurability proofs give simple
formulas for calculating preimages compositionally.

Because these preimage formulas operate on arbitrary uncountable sets, they
are generally unimplementable. We therefore define the measurable function ar-
row in λZFC [1], an untyped, super-computational λ-calculus that gives precise
meaning to terms that operate on uncountable sets. The goal now is to define
a compositional process for computing approximate preimages that are in some
sense equivalent—even if only in the limit—to the exact preimages calculated
under measurable function arrow instances.

First, we use the preimage formulas to define the preimage arrow, whose
instances calculate exact preimages under their corresponding measurable func-
tion. That is, if F : V ⇒ V is a measurable function, and G : B(V) ⇒ B(V) is
constructed the same way but in the preimage arrow, then G(B) = F −1(B) for
all B ∈ B(V).

Second, we replace the σ-algebra B(V) with an algebra C(V) of finitely rep-
resentable rectangles. We also relax the requirement that the preimage arrow
compute exact preimages, and settle for conservative overapproximations. The
result is the approximate preimage arrow. Though it is defined in λZFC, it is
directly implementable. We have sketched a proof that, as long as its combinators
have certain properties, it can be used to generate disjoint preimage coverings
that, in the limit, overapproximate exact preimages only by a set of measure 0.
Therefore, probabilities computed using the approximate preimage arrow con-
verge to the probabilities calculated using the preimage arrow or measurable
function arrow.

We have implemented the approximate preimage arrow and a semantic func-
tion that transforms first-order let-calculus terms into arrow instances. We have
used this language, along with a novel, self-adjusting, divide-and-conquer sam-
pler that searches for nonempty preimage subsets, to carry out statistical infer-
ence. This includes inference on programs with mixed-type arithmetic, nonlinear
probabilistic conditions, and unbounded recursion.

References
1. Toronto, N., McCarthy, J.: Computing in Cantor’s paradise with λ-ZFC. In: Func-

tional and Logic Programming Symposium (FLOPS). pp. 290–306 (2012)


