
A Comparison of Task Oriented Programming
with GUIs in Functional Languages

Peter Achten, Pieter Koopman, Steffen Michels, Rinus Plasmeijer

Institute for Computing and Information Sciences
Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{p.achten,pieter,s.michels,rinus}@cs.ru.nl

research paper

1 Introduction

Functional programming languages are known for allowing the concise specifica-
tion of advanced data structures and algorithms. Several excellent books explain
and illustrate this, consider for instance [1–7]. Although approaches differ, they
express clear ideas on how to go about programming the “functional way”. How-
ever, with respect to answering the question how to create GUI programs only
a few of these books (e.g. [5, 7]) have clear answers. This is in contrast with the
abundance of research that has been conducted during the past two decades in
this area. This research can roughly be grouped into three categories: widget-
based (e.g. [8–14]), web-based (e.g. [15–21]), and function-based (e.g. [22–25]).

Amongst this multitude of approaches we also find the Task Oriented Pro-
gramming (TOP) paradigm [26, 27]. This approach has emerged during the past
decade. During its evolution, it has taken its course via the above three cate-
gories and has developed and picked up core ideas in these areas. The first idea is
that types should drive the generation of GUIs, which was first tested on widget
based GUIs (graphical editor components) [28]. Second, functions should define
the relation between interactive components, which was tested on web based pro-
gramming (iData) [29]. Third, these functions should be combinators to specify
the flow of control and data between tasks (iTask) [30]. Tasks embody work that
has to be performed in a system, either by humans or computers, and during
their execution they can be continuously observed by other tasks to see whether
this should influence their own behavior.

In this paper we present the TOP approach to programming GUI applica-
tions. We illustrate this with a small case study for the well-known game of tic-
tac-toe. The simplicity of this game allows us to concentrate on how to program
its GUI. We compare the TOP specification with one written in Object I/O [31]
and a Clean version of Racket ’s big-bang approach [25, 7]. Object I/O is selected
because it is representative for the class of widget-based I/O approaches. Racket
big-bang is selected because it takes a more abstract, and simplified, approach.

The remainder of this paper is organized as follows. In Sect. 2 we identify
the data structures and functions that are used by all versions to implement the
game logic. The versions are presented in the following order: Object I/O, Racket

big-bang, and TOP iTask (Sections 3, 4, 5). We compare the versions in Sect. 6.
Related work is discussed in Sect. 7 and we conclude in Sect. 8. The versions
are too long to be included completely in this paper. Their specifications are
available at https://svn.cs.ru.nl/repos/TicTacToeCaseStudies/.

2 The Game Logic of Tic-tac-toe

In this section we present the tictactoemodule that contains the data structures
and computations that are used by all versions of the tic-tac-toe case study.

definition module tictactoe

import StdOverloaded
import StdMaybe

:: Game = { board :: TicTacToe // the current board
, names :: Players // the current two players
, turn :: TicTac // the player at turn
}

:: Players = { tic :: Name // the tic player takes even turns
, tac :: Name // the tac player takes odd turns
}

:: Name :== String

:: TicTacToe :== [[Tile]]

:: Tile = Clear | Filled TicTac

:: TicTac = Tic | Tac

:: Coordinate = {col :: Int, row :: Int}

instance ~ TicTac

instance == TicTac, Tile, Coordinate

name_of :: Players TicTac -> Name

initGame :: Players -> Game

emptyBoard :: TicTacToe

game_over :: TicTacToe -> Bool

it_is_a_draw :: TicTacToe -> Bool

winner :: TicTacToe -> Maybe TicTac

free_coordinates :: TicTacToe -> [Coordinate]

add_cell :: Coordinate TicTac TicTacToe -> TicTacToe

tiles :: TicTacToe -> [(Coordinate,Tile)]

The minimum information that is needed to guide a game of tic-tac-toe is col-
lected in the Game record: it contains the current board, the names of the two
players, and their turn. An initial game situation for two players names is created
by initGame names. A tic-tac-toe board is represented as a 3 × 3 matrix of tiles.
An initial board, in which all tiles are Clear, is defined by emptyBoard. Tiles can
be updated by the players in turns. The player taking the even turns fills it with
Tics and the other player with Tacs. The coordinates to indicate individual cells
are zero-based and run from left-to-right and top-to-bottom, so {col=0, row=0} is
at the left-top, and {col=2, row=2} is at the right-bottom. When player t updates

a cell at coordinate c in board b, then this results in a new board add_cell c t b.
The coordinates of all Clear cells in a board b are returned by free_coordinates b,
and the current status of all tiles is returned by tiles b. The first player who
succeeds in filling a horizontal or vertical or diagonal line of exclusively Tics or
Tacs wins, and is determined by the function winner b. When the board is entirely
filled but does not produce a winner, then the game has come to a draw, which
is computed by it_is_a_draw b. The function game_over computes whether a game
is over because somebody has won or the game has come to a draw.

3 Tic-tac-toe in Object I/O

In this section we present the Object I/O version of tic-tac-toe. Object I/O [10,
12, 31] is a widget-based GUI library. It offers features that are quite common
with these kinds of libraries: a programmer has to concern herself with managing
widgets, callback functions, and programming their mutual effects via shared
state. In Object I/O this state is passed explicitly and in a hierarchical manner:
within an interactive process, the top-level GUI elements (windows, dialogs,
menus, timers, and receivers) share a common state, and every GUI element has
the opportunity to define state locally that is accessible only by its components.
Hence in Object I/O, a programmer has to decide how to use the state model.
In this case we use the Game defined in Sect. 2 as well as a dedicated record to
keep track of the identification values of the GUI components:

1:: GameSt = { game :: Game // the current game
2, ids :: GameIds // the GUI identification values
3}

4:: GameIds = { nameId :: Id // the name tag of the current player
5, turnId :: Id // the turn-indicator
6, tileIds :: [Id] // the tic-tac-toe tiles
7, nameIds :: (Id,Id) // the tic / tac player text fields
8}

The GameIds are created with the function openGameIds, the implementation of
which does not concern us right now. The initial state is given at the start:

1Start :: *World -> *World

2Start world

3# (ids,world) = openGameIds world

4= startIO SDI {ids = ids, game = initGame {tic="Mr.␣Tic",tac="Mrs.␣Tac"}}

5(startTicTacToe o getPlayerNames)

6[ProcessClose closeProcess]

7world

The Object I/O wrapper function startIO takes a number of arguments to get
started with a GUI application. The first argument, SDI, lets it create GUI infras-
tructure for a program that uses at most one window (we use the same option to
create the Racket big-bang function). The second argument identifies the shared
state of this application. The third argument initializes the GUI of the appli-
cation. In this case, its first task is to ask the user to enter more appropriate

names than the ones initially suggested, and then start the game. The fourth ar-
gument is an attribute of the interactive process that is created and contains the
callback function that must be evaluated whenever the user wishes to close the
interactive process. In this case the application terminates the entire interactive
process, and therefore also the evaluation of startIO.

Getting the player names is not a difficult task (Fig. 1 (left-top)), yet its
specification is very verbose. It takes 27 lines of code to specify the dialog,
create it, and close it after reading the names that are entered by the user.
When terminated, the game.names field contains the entered names.

Fig. 1. Three main screens in tic-tac-toe: view and enter player names (left-top), play-
ing the game (right), and congratulate winner (left-bottom).

The purpose of the startTicTacToe task is to create the main interface which
consists of a single window in which the current board is displayed as well as
an indication which player is currently playing (Fig. 1 (right)). This function
is even more verbose and requires 39 lines. Instead of rendering the board as a
single image, it is composed of 9 button controls with a customized look. With
these tile controls the player updates a single tile in the board. Therefore, it is
parameterized with the coordinate of that tile.

1TileControl :: Id Coordinate Size [ControlAttribute (ls,PSt GameSt)]

2-> CustomButtonControl ls (PSt GameSt)

3TileControl tid c size atts

4= CustomButtonControl size (tile_look Clear)

5[ControlResize (_ _ {w,h} -> {w=w/3, h=h/3})
6, ControlFunction (noLS (tileF tid c))

7, ControlId tid

8: atts

9]

The customized look is defined by the function tile_look. It is parameterized
with the value of the cell at coordinate c of the current board. The look function

performs rendering operations on an abstract canvas type *Picture. We include
its specification to illustrate the details one is concerned with despite the fact
that only very basic graphics need to be produced.

1tile_look :: Tile SelectState UpdateState -> *Picture -> *Picture

2tile_look tile selectSt {newFrame=rect}

3= seq [unfill rect, cell, setPenColour LightGrey, draw rect, setPenColour Black]

4where
5{x,y} = rect.corner1

6{w,h} = rectangleSize rect

7linewidth = min (w/5) (h/5)
8(mw,mh) = (w/2, h/2)
9cell = case tile of
10Clear = id

11Filled t = seq [setPenSize linewidth

12, if (t == Tic) cross nought

13, setPenSize 1

14]

15nought = drawAt {x=x+mw,y=y+mh} {oval_rx=mw,oval_ry=mh}

16cross = drawLine {x=x, y=y} {x=x+w,y=y+h}

17o drawLine {x=x+w,y=y} {x=x,y=y+h}

Whenever the player presses the thus customized tile button control its call-
back function tileF is evaluated:

1tileF :: Id Coordinate (PSt GameSt) -> PSt GameSt

2tileF tid c pSt=:{ls=gameSt=:{game=game=:{board,names,turn},ids},io}

3# io = disableControl tid io

4# io = setControlLook tid True (True,tile_look (Filled turn)) io

5# io = setControlText ids.nameId (name_of names (~turn)) io

6# game = { game & board = add_cell c turn board, turn = ~turn}

7# gameSt = {gameSt & game = game}

8# io = switch_turn gameSt io

9# pSt = {pSt & ls = gameSt, io = io}

10= check_game_over pSt

This function is a typical callback function because it must account for all pos-
sible effects that result from the player pressing this button. These effects are
to disable the control (line 3) in order to disallow the player to press it again; it
alters the current look of the control itself (line 4) to show the new content of the
cell; it alters the displayed name of the current player to the other player (line
5), and it stores the updated tic-tac-toe board and turn in the game state (line
6 and 7). Finally, the next player is told with which element she is playing (line
8). These values are stored in the state of the entire interactive process (line 9),
and it is checked if the game is over (line 10).

The final part that is to be discussed concerns termination of the game. The
function itself is straightforward:

1check_game_over :: (PSt GameSt) -> PSt GameSt

2check_game_over pSt=:{ls={game={board,names,turn}}}

3| game_over board = openNotice notice pSt

4| otherwise = pSt

5where
6won = winner board

7notice = Notice (accolade ++ ["","Do␣you␣want␣to␣play␣another␣game?"])

8(NoticeButton "Yes" (noLS new_game))

9[NoticeButton "No" (noLS closeProcess)]

10accolade = if (isNothing won)

11["It␣is␣a␣draw."]

12["Congratulations,␣" +++ name_of names (~turn) +++ "!","You␣won."]

Whenever the game happens to be over, a notice (Fig. 1 (left-bottom)) is opened
to congratulate the player. If the player presses the “No” button, then the entire
program is stopped (line 9). If she decides to play a new game, then the new_game
callback function takes care of the remaining details:

1new_game :: (PSt GameSt) -> PSt GameSt

2new_game pSt=:{ls=gameSt=:{ids={tileIds}}}

3# pSt = getPlayerNames pSt

4# (gameSt,pSt) = accPLoc (\gameSt -> let new = {gameSt & board = emptyBoard

5, turn = Tic

6} in (new,new)) pSt

7= appPIO (switch_turn gameSt

8o setControlLooks [(tid,True,(True,tile_look Clear)) \\ tid <- tileIds]

9o enableControls tileIds

10) pSt

The players can change their names, the board is cleared, and the first player
starts (lines 3-5). This information is ‘synced’ with the user interface (lines 7-10).

The complete Object I/O specification requires 177 lines of code. Even though
it is by no means a large program, it still demonstrates that it fails to be a concise
specification. We need to find better abstractions.

4 Tic-tac-toe in Racket’s big-bang

In this section we present the tic-tac-toe case using Racket’s big-bang approach.
Because we want to have an equal treatment of the approaches, we render the
required Racket API in Clean. The big-bang approach of Racket is part of its
Universe which was designed “to reconciling I/O with purely functional program-
ming, especially for a pedagogical setting” [25]. This results in an emphasis on
designing a proper state model that reflects the stages an interactive program
passes through. Rendering is handled completely by a single pure function that
maps a state to an image. State transitions are triggered by the user via the
keyboard or the mouse. Time can also be a source of state transitions. Termina-
tion is handled via a predicate that tests the current state value, again a pure
function. From this account it follows that a state should be designed first:

1:: GameSt = EnterNames Players TicTac | Play Game | Accolades Game | Stop

2

3initGameSt :: Players -> GameSt

4initGameSt players = EnterNames players Tic

This state model describes the subsequent stages of tic-tac-toe. First, the two
players can enter their names. Second, the game is played. Third, the appropriate
person receives her accolades. Fourth, the players can decide to start over again
or terminate the application.

An interactive application is started using the big_bang function.

1Start :: *World -> (GameSt,*World)

2Start world = big_bang (initGameSt {tic="Mr.␣Tic",tac="Mrs.␣Tac"})

3[Name "Tic␣Tac␣Toe"

4, To_draw (render wsize, Just (wsize.w,wsize.h))

5, On_key keys

6, On_mouse mice

7, Stop_when gameOver

8] world

9where wsize = {w=450,h=375}

Besides the initial state (line 2), big_bang needs to know the state transition
functions. These are keys and mice that handle keyboard and mouse input re-
spectively. The termination predicate gameOver :: GameSt -> Bool returns True only
for the Stop game state. The only mandatory clause of big_bang is the rendering
function, render, which is parameterized with the canvas size. This overloaded
operation renders the various components (GameSt, TicTacToe, Tile, and TicTac).

class render a :: Size a -> Image

Racket has a comprehensive drawing package, 2htdp/image, in which images are
specified in a compositional style rather than canvas-modifying operations. For
the sake of this case study we have implemented only a small part of the package:
basic images (empty_image, text, circle, rectangle, and square) and image combi-
nators (add_line, overlay(_align), beside(_align), and above(_align)). Rendering the
GameSt (see Fig. 2) covers a case for each stage of the game state:

Fig. 2. The main screens in tic-tac-toe: view and enter player names (left), the game
(middle), and congratulate winner (right).

1instance render GameSt where
2render size (EnterNames players turn)

3= overlay [above [text ("Player␣" <+ if (turn==Tic) 1 2) 24 Black

4,overlay [text (name_of players turn) 24 Black

5,rectangle size.w 30 Solid White

6]

7]

8,rectangle size.w size.h Solid LightGrey

9]

10render size (Play game)

11= beside_align TopY

12[render size game.board

13,render {w=16,h=16} game.turn

14,text (name_of game.names game.turn) 12 Black

15]

16render size (Accolades game)

17= above_align LeftX

18[render size game.board

19,case winner game.board of
20Just t = text ("The␣winner␣is␣" <+ name_of game.names t)

2124 Black

22nothing = text "It’s␣a␣draw..." 24 Black

23,text "Press␣Enter␣to␣play␣another␣game" 24 DarkGrey

24,text "Press␣Escape␣to␣stop." 24 DarkGrey

25]

26render size Stop

27= empty_image

For entering the player names, we have chosen to design a simple screen in which
the name of one player is entered (lines 2-9). When playing the game, the tic-
tac-toe board, the player glyph and name are displayed beside each other (lines
10-15). When receiving the accolades, the final board is shown above the name
of the winner, if any, and information how to proceed (lines 16-25). The final
state is rendered as the empty image (lines 26 and 27).

In order to make the rendering complete, the instances for the remaining
components need to be defined. These self-explanatory definitions are:

1instance render TicTacToe where
2render size board = above [beside [render {w=64,h=64} cell

3\\ cell <- row

4]

5\\ row <- board

6]

7instance render Tile where
8render {w,h} Clear = square (min w h) Outline Black

9render {w,h} (Filled turn) = overlay [square (min w h) Outline Black

10,render {w=w-2,h=h-2} turn

11]

12instance render TicTac where
13render {w,h} Tic = add_line (add_line empty_image

140 0 w h Black ((min w h)/5))
15w 0 0 h Black ((min w h)/5)

16render {w,h} Tac = overlay [circle (3*(min w h)/10) Solid White

17,circle ((min w h)/2) Solid Black

18]

The keyboard plays a role in the EnterNames and Accolades stage of tic-tac-toe.

1keys :: GameSt KeyEvent -> GameSt

2keys (EnterNames players turn) key

3| key == "\\r" = if (turn==Tic) (EnterNames players Tac)

4(Play (initGame players))

5| key == "\\b" = EnterNames (alterName initStr players turn) turn

6| key == "␣" || alpha = EnterNames (alterName (flip (+++) key) players turn) turn

7| otherwise = EnterNames players turn

8where alpha = isAlpha (hd (fromString key))

9keys (Accolades game) key

10| key == "\\r" = EnterNames game.names Tic

11| key == "escape" = Stop

12keys state _ = state

13

14alterName :: (String -> String) Players TicTac -> Players

15alterName f players Tic = {players & tic = f players.tic}

16alterName f players tac = {players & tac = f players.tac}

For entering the player names a simplified text-input element is created (lines
2-8). When the user enters the return key, the next name should be entered (line
3) or the game commences (line 4). The only ‘edit’ key that is handled is the
backspace key (line 5). The name gets extended with the current key if it is
a letter or a space (line 6). All other keys do not alter the state (line 7). The
only role of the keys handler in case of the accolades (lines 9-11) is to allow the
players to choose to either play again (line 10) or stop the program (line 11).

The mouse only plays a role in the Play stage of tic-tac-toe.

1mice :: GameSt Int Int MouseEvent -> GameSt

2mice (Play game) x y mouse

3| mouse == "button-down" && isMember c (free_coordinates game.board)

4# game = {game & board = add_cell c game.turn game.board, turn = ~game.turn}

5= if (game_over game.board) Accolades Play game

6where c = {col = x / 64, row = y / 64}

7mice state _ _ _

8= state

The definition clearly states that only if the mouse is pressed in a free cell of
the current tic-tac-toe board (line 3) that the board gets updated and the next
player can proceed (line 4). If the game happens to be over, then the program
moves on to the Accolades stage, otherwise it remains in the Play stage (line 5).

The entire big-bang style specification consists of 85 lines, which is a reduc-
tion of 52% of the Object I/O version. The profit is gained mainly due to the
automatic syncing of the program state with its rendering. It comes at a price
though: we must implement GUI elements such as text-edit boxes and buttons
ourselves. We need to find an abstraction in which this price is not paid.

5 Tic-Tac-Toe in Task Oriented Programming

In this section we present the TOP iTask approach to specify tic-tac-toe. In the
TOP approach work is analyzed in terms of tasks that must be performed in
order to get the work done. Another key property of TOP is the strong coupling
of data and visualization: instead of keeping track of data and controlling the
way it is rendered and altered, in TOP you are usually only concerned with
maintaining the data. Just like in the other cases, we start with modeling the
game state which is identical to the Game record defined in Sect. 2:

:: GameSt :== Game

The GameSt is shared by all components to keep track of the game logic. This
is specified by means of the withShared combinator:

1play_tictactoe :: Task Void

2play_tictactoe

3= withShared (initGame {tic="Mr.␣Tic",tac="Mrs.␣Tac"})

4(\sharedGameSt

5-> viewSharedInformation "Tic␣Tac␣Toe" [ViewWith show_board] sharedGameSt

6||-

7(new_names sharedGameSt >>| play sharedGameSt)

8)

At the top-level, the components are a view task on the current value of the
shared game state (line 5) and, in parallel (line 6), the task that coordinates
the player actions (line 7). The view task merely expresses that at all times
the current value of the game state is rendered as specified by the show_board

function. We discuss this function after the task that coordinates the player
actions. This task consists of two other tasks that are performed in sequence:
first, the new_names task allows the players to alter their names, and second, the
play task controls one tic-tac-toe game.

In contrast with a view task, the new_names task uses an update task that not
only views a data model, but also provides the user with means to alter it in a
type-safe way (Fig. 3 (left-top)).

1new_names :: ((Shared GameSt) -> Task GameSt)

2new_names = updateSharedInformation

3"Enter␣names" [UpdateWith (\{names} -> names) (const initGame)]

In this case, the users can only view and update their names. Any update results
in a new initial game state.

The play task is liberated of keeping the rendering of the game state in sync
with the actual game state value.

1play :: (Shared GameSt) -> Task Void

2play sharedGameSt

3= watch sharedGameSt

4>>* [WhenValid (\gameSt -> game_over gameSt.board)

5(\gameSt -> viewInformation "The␣winner␣is:" []

6(name_winner gameSt)

Fig. 3. The main tasks in tic-tac-toe: view and enter player names (left-top), play game
(right), and congratulate winner (left-bottom).

7>>* [Always (Action "New␣Game" [])

8(new_names sharedGameSt

9>>| play sharedGameSt

10)

11, Always (Action "Stop" []) (return Void)

12]

13)

14, AnyTime ActionNext (make_a_move sharedGameSt)

15]

16where
17name_winner {board,names}

18= if (isNothing (winner board)) "nobody"

19(name_of names (fromJust (winner board)))

It keeps inspecting the current game state value (line 3). Whenever it is detected
that the game is over (line 4), the winner is displayed, again using a view task
(lines 5 and 6). The players are offered the two options to either start a new
game (lines 7-10) or stop (line 11) (see Fig. 3 (left-bottom)). The current player
can decide to make a move (line 14). This task is specified as follows:

1make_a_move :: (Shared GameSt) (Maybe GameSt) -> Task Void

2make_a_move sharedGameSt (Just gameSt=:{board,turn})

3= enterChoice "Choose␣coordinate:"

4[ChooseWith ChooseFromComboBox toString]

5(free_coordinates board)

6>>= \new -> set {gameSt & board = add_cell new turn board, turn = ~turn}

7sharedGameSt

8>>| play sharedGameSt

The current player chooses one of the currently free cells in the board (lines 3-5).
For this purpose the enterChoice task is used which creates a user interface with

which one value from a list of values can be chosen. This selected value, new, is
used to update the board, as well as the next player (lines 6-7).

The final part of the specification defines the rendering of the tic-tac-toe
board (Fig. 3 (right)). Recall that this was specified with the function show_board

which transforms a game state to a rendering in html :

1show_board :: GameSt -> [HtmlTag]

2show_board {board,names,turn}

3= [H3Tag [] [Text (name_of names turn)], TileTag (16,16) turn, tictactoe]

4where
5tictactoe = TableTag [BorderAttr "0"]

6[TrTag [] [cell {col=x,row=y} \\ x <- [0..2]]

7\\ y <- [0..2]

8]

9cell c = case lookup1 c (tiles board) of
10Filled t = TdTag [] [TileTag (64,64) t]

11clear = TdTag [AlignAttr "center"] [Text (toString c)]

12

13TileTag (w,h) t = ImgTag [SrcAttr ("/" <+++ t <+++ ".png")

14, WidthAttr (toString w)

15, HeightAttr (toString h)

16]

The rendering displays the current player, the glyph she is playing with, and
the board (line 3). Instead of programming the rendering, image files are used
("Tic.png" and "Tac.png").

In order to make this specification complete the generic machinery must be
invoked to keep the used data models in sync with their rendering:

1derive class iTask Game, Coordinate, Tile, TicTac, Players

2instance toString Coordinate

3where toString {col,row} = "(" <+ col <+ "," <+ row <+ ")"

The TOP specification is 57 lines, which is a reduction of 68% and 33%
compared with the Object I/O and Racket big-bang versions respectively.

6 Comparison

In this section we compare and discuss the versions of the tic-tac-toe case study.
We start with the specification of the GUI. 56% of the Object I/O specification
defines the modal dialogs, the main window and its components. This imme-
diately explains why the Racket big-bang version is proportionally shorter: it
already implements the infrastructure for a single-document application. Both
in Object I/O and Racket big-bang the three separate stages of the application
(entering names, playing the game, giving the accolades) need to be rendered
explicitly. This explains why the TOP version is proportionally shorter than the
other two versions: only the game playing screen is rendered explicitly, and the
other screens are derived automatically from the model types.

In order to make a fair comparison, the three tic-tac-toe versions should pro-
vide identical user interfaces. This has not succeeded. The Racket big-bang version
re-invents text-edit functionality in the entering names screen and refrains from
re-inventing buttons in the accolades screen, and instead takes an escape route
by using the keyboard to allow the players to choose whether or not to continue
playing. The TOP iTask version fails to implement direct manipulation of the
board in which the players can click the tiles to have them filled with their glyph.
Instead it resorts to provide a choice between the available tiles which results in
a less intuitive and somewhat disconnected user experience.

If we compare the rendering of the game then we see that both the Object
I/O and Racket big-bang versions use pure functions (tile_look and the render

functions respectively). However, in Object I/O this is a *Picture transformer
function, whereas in Racket big-bang it computes an Image in a compositional
way. The required graphics for rendering a board are simple: a rectangle that is
either empty or filled with a circle or two lines. Only the Racket big-bang version
is proportional to this simple task: the Tile and TicTac instances of the render

function formulate the above characterization of the graphics in a concise way.
In the TOP version we were forced to ‘cheat’ by rendering these pictures by
means of pre-rendered bitmaps. It should be mentioned that we could have done
this in Racket as well because bitmaps are first-class Images.

To understand the operational behavior of the Object I/O version, the call-
back functions and their effect on the logical state and GUI state need to be
analyzed. The Object I/O version ‘switches off’ tiles after being pressed, and
uses this to its advantage because it does not have to check whether a clear tile
has been selected. In the Racket big-bang version this test is required because the
state transition must be defined for any possible mouse event. The TOP version
mimics the behavior of the Object I/O version by limiting the user’s choice to
the empty tiles of the board. In this way, it makes explicit what is implicit in the
Object I/O version, and what is tested afterwards in the Racket big-bang version.

The effort required to ‘distill’ the application behavior varies greatly for the
three versions. In Object I/O we must unravel the rendering and logical opera-
tions and keep track of their effects on both the GUI state and logical state. In
Racket big-bang it is clear that we only need to study the mouse and keyboard
handler. This amounts to discovering the underlying logical state machine and
its transitions. Because TOP is all about tasks and their evaluation order, un-
derstanding the behavior of the application requires the least effort.

7 Related Work – draft

The Racket 2htp/image approach of defining graphics in a compositional way
fits in a long tradition that can be traced back to Peter Henderson’s Functional
Geometry [32]. In a follow-up paper [33] he comments: “This idea is not new. It
was published in 1982, but even then it was based on contemporary views of what
was good practice in declarative systems.”. The widget-based GUI library Haggis
[9] uses a similar compositional approach and extends it to build the entire GUI

of an application. In this paper we have not studied the brand of functional
programming that is known as reactive animation. This paradigm was started
by the seminal paper by Elliot and Hudak [34] and spawned a number of related
approaches which are enumerated elsewhere [23]. It is interesting to compare
their approach to those described in this paper.

8 Conclusions

In this paper we have presented a case study of a GUI application, tic-tac-toe,
expressed in three different formalisms: Object I/O, Racket big-bang, and TOP
iTask. The purpose of this case study is to compare the different formalisms with
respect to their ability to concisely and clearly specify a GUI application. All
versions use the same tictactoe module for the game logic which consists of 76
lines. None of the approaches result in large specifications: the largest, Object
I/O, is 177 lines. Their relative sizes vary greatly: in comparison with the Object
I/O version (100%) the size of the Racket big-bang version is 48% and the TOP
iTask version is 32%. These numbers should not be interpreted in a very strict
manner because the line count is very dependent on the layout of the code. We
have attempted to define the versions in the style that is conventional for the
approaches. Nevertheless, the line count gives an indication of the conciseness of
the formalism.

In comparison with Object I/O, the Racket big-bang version offers a similar
user-experience with respect to playing the game. However, we are ‘forced’ to
solve the task of entering player names and choosing how to continue after the
end of a game in a somewhat ad hoc way. The TOP iTask version does not suffer
from this issue but instead offers an awkward user experience in playing the game
because the current version lacks facilities to define manipulatable graphics.

Of the three versions, the application behavior is hardest to distill in the
Object I/O version because the callback functions need to concern themselves
with the details of manipulating the shared GUI state as well as the logical state.
This is less of an issue in the Racket big-bang version because the rendering of
the GUI is synced automatically with the logical state. In this approach the
application is modeled as a state machine. The transitions are defined by the
event handlers. The advantage of this approach is that it is clear for the modeler
where to define the transitions, and where to look for when uncovering the state
machine. The disadvantage is that the application flow of control is present
only implicitly. The TOP iTask version makes the application flow of control
explicit. The generic abstractions take care of the automatic synchronisation of
the application state with respect to its rendered GUI.

References

1. Bird, R., Wadler, P.: Introduction to functional programming. Prentice Hall (1988)
2. Okasaki, C.: Purely Functional Data Structures. Cambridge Univ. Press (1998)

3. Bird, R.: Introduction to functional programming using Haskell (second edition).
Prentice Hall (1998)

4. Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.: How to Design Programs:
An introduction to programming and computing. MIT Press (2001)

5. Hudak, P.: The Haskell school of expression: learning functional programming
through multimedia. Cambridge University Press, New York, NY, USA (2000)

6. Hutton, G.: Programming in Haskell. Cambridge University Press (2007)
7. Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.: How to Design Programs,

Second Edition. MIT Press (2012)
8. Dwelly, A.: Functions and dynamic user interfaces. In: Proceedings of the 4th

International Conference on Functional Programming Languages and Computer
Architecture, FPCA ’89. (September 1989) 371–381

9. Finne, S., Peyton Jones, S.: Composing Haggis. In: Eurographics Workshop on Pro-
gramming Paradigms in Graphics, Maastricht, the Netherlands, Springer (1995)
85–101

10. Achten, P., Plasmeijer, R.: The ins and outs of Concurrent Clean I/O. Journal of
Functional Programming 5(1) (1995) 81–110

11. Claessen, K., Vullinghs, T., Meijer, E.: Structuring graphical paradigms in Tk-
Gofer. In: Proceedings of the 2nd International Conference on Functional Pro-
gramming, ICFP ’97. Volume 32(8)., Amsterdam, The Netherlands, ACM Press
(9-11, June 1997) 251–262

12. Achten, P., Plasmeijer, R.: Interactive functional objects in Clean. In Clack, C.,
Hammond, K., Davie, T., eds.: Selected Papers of the 9th International Workshop
on the Implementation of Functional Languages, IFL ’97. Volume 1467 of LNCS.,
Springer-Verlag (September 1998) 304–321

13. Leijen, D.: wxHaskell: a portable and concise GUI library for Haskell. In: Pro-
ceedings of the 2004 ACM SIGPLAN workshop on Haskell, Snowbird, Utah, USA,
ACM (2004) 57–68

14. Courtney, A., Elliott, C.: Genuinely functional user interfaces. In: Proceedings of
the 5th Haskell Workshop, Haskell ’01. (September 2001)

15. Hanus, M.: High-level server side web scripting in Curry. In: Proceedings of the 3rd
International Symposium on the Practical Aspects of Declarative Programming,
PADL ’01, Springer-Verlag (2001) 76–92

16. Graunke, P., Findler, R., Krishnamurthi, S., Felleisen, M.: Modeling web inter-
actions. In Degano, P., ed.: Proceedings of the 12th European Symposium on
Programming, ESOP ’03. Volume 2618 of Lecture Notes in Computer Science.

17. Elsman, M., Hallenberg, N.: Web programming with SMLserver. In: Proceed-
ings of the 5th International Symposium on the Practical Aspects of Declarative
Programming, PADL ’03, New Orleans, LA, USA, Springer-Verlag (January 2003)

18. Elsman, M., Friis Larsen, K.: Typing XHTML web applications in ML. In: Proceed-
ings of the 6th International Symposium on the Practical Aspects of Declarative
Programming, PADL ’04. Volume 3057 of Lecture Notes in Computer Science.,
Dallas, TX, USA, Springer-Verlag (June 2004) 224–238

19. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: web programming without
tiers. In: Proceedings of the 5th International Symposium on Formal Methods
for Components and Objects, FMCO ’06. Volume 4709., CWI, Amsterdam, The
Netherlands, Springer-Verlag (7-10, November 2006)

20. Hanus, M.: Type-oriented construction of web user interfaces. In: Proceedings of
the 8th International Conference on Principles and Practice of Declarative Pro-
gramming, PPDP ’06, ACM Press (2006) 27–38

21. Loitsch, F., Serrano, M.: Hop client-side compilation. In: Proceedings of the 7th
Symposium on Trends in Functional Programming, TFP ’07, New York, NY, USA,
Interact (2-4, April 2007) 141–158

22. Carlsson, M., Hallgren, T.: Fudgets - a graphical user interface in a lazy func-
tional language. In: Proceedings of the 6th International Conference on Functional
Programming Languages and Computer Architecture, FPCA ’93, Kopenhagen,
Denmark (1993)

23. Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, robots, and functional
reactive programming. In: Proceedings of the 4th International Summer School on
Advanced Functional Programming, AFP ’03, Oxford, UK

24. Elliot, C.: Tangible functional programming. In: Proceedings of the 12th Inter-
national Conference on Functional Programming, ICFP ’07, Freiburg, Germany,
ACM Press (1-3, October 2007) 59–70

25. Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.: A Functional I/O Sys-
tem * or, Fun for Freshman Kids. In: Proceedings International Conference on
Functional Programming, ICFP ’09, Edinburgh, Scotland, UK, ACM Press (2009)

26. Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., Koopman, P.: Task-Oriented
Programming in a Pure Functional Language. In: Proceedings of the 2012 ACM
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming, PPDP ’12, Leuven, Belgium, ACM (September 2012) 195–206

27. Lijnse, B.: TOP to the Rescue – Task-Oriented Programming for Incident Response
Applications. PhD thesis, Radboud University Nijmegen (2013)

28. Achten, P., van Eekelen, M., Plasmeijer, R.: Generic graphical user interfaces. In
Michaelson, G., Trinder, P., eds.: Revised Papers of the 15th International Work-
shop on the Implementation of Functional Languages, IFL ’03. Volume 3145 of
LNCS., Edinburgh, UK, Springer-Verlag (8-10, September 2004) 152–167

29. Plasmeijer, R., Achten, P.: iData for the world wide web - Programming intercon-
nected web forms. In: Proceedings of the 8th International Symposium on Func-
tional and Logic Programming, FLOPS ’06. Volume 3945 of LNCS., Fuji Susone,
Japan, Springer Verlag (24-26, April 2006) 242–258

30. Plasmeijer, R., Achten, P., Koopman, P.: iTasks: executable specifications of inter-
active work flow systems for the web. In Hinze, R., Ramsey, N., eds.: Proceedings
of the International Conference on Functional Programming, ICFP ’07, Freiburg,
Germany, ACM Press (2007) 141–152

31. Achten, P., Wierich, M.: A tutorial to the Clean Object I/O library (version 1.2).
Technical report CSI-R0003, Radboud University Nijmegen (2000)

32. Henderson, P.: Functional geometry. In Friedman, D., Wise, D., eds.: Confer-
ence Record of the 1982 ACM Symposium on Lisp and Functional Programming,
Pittsburgh, Pennsylvania, ACM Press (1982) 179–187

33. Henderson, P.: Functional geometry. Higher-Order and Symbolic Computation 15
(2002) 349–365

34. Elliott, C., Hudak, P.: Functional reactive animation. In: Proceedings of the sec-
ond ACM SIGPLAN international conference on Functional Programming, Ams-
terdam, The Netherlands, ACM (1997) 263–273

