
Using Rewriting to Synthesize Functional
Languages to Digital Circuits

Christiaan Baaij and Jan Kuper

Department of Electrical Engineering, Mathematics, and Computer Science,
University of Twente, Postbus 217, 7500AE Enschede, The Netherlands

{c.p.r.baaij,j.kuper}@utwente.nl

Abstract. A straightforward synthesis of functional languages to dig-
ital circuits transforms variables to wires. The type of these variables
determines the bit-width of the wires. Assigning a bit-width to polymor-
phic and function-type variables within this direct synthesis scheme is
impossible. Using a term rewrite system, polymorphic and function-type
binders can be completely eliminated from a circuit description given only
minor, reasonable, restrictions on the input. The presented term rewrite
system is used in the compiler for CλaSH: a polymorphic, higher-order,
functional hardware description language.

1 Introduction

This paper describes the use of a Term Rewriting System (TRS) in the compiler
for CλaSH [1, 2]. CλaSH is a polymorphic, higher-order, functional hardware
description language. The purpose of the CλaSH compiler is to transform a
description in a functional language to a format from which lithography machines
can build an actual chip. The CλaSH compiler actually only provides a part
of this transformation. It creates a low-level representation of the hardware,
called a netlist; industry-standard tools are used for further processing. The
translation from a (functional) description to a netlist is called synthesis in
hardware literature. And the set of rules/transformations that together describe
the conversion from description to netlist is called a synthesis scheme.

The synthesis scheme used by the CλaSH compiler produces a specific normal
form of the description. One aspect of this normal form is that the arguments
and results of functions must have a representable type: a type whose values can
be encoded by a fixed number of bits. This paper only describes the TRS that is
used by the CλaSH compiler to eliminate, in a meaning-preserving manner, non-
representable values from a functional description. The actual normal form, the
TRS used for simplification, and the complete synthesis scheme, are however not
described. These aspects will be described in a future paper. This paper focuses
on the TRS for non-representable value elimination, because it, among other
things, transforms higher-order descriptions to first-order descriptions. Because
first-order programs are susceptible to a greater range of analysis techniques [3],
the described TRS has value in a broader context.

The next subsection gives both a definition for netlists, and an introduction
to synthesis schemes by describing a specific instance for a small functional
language. The definition and introduction are both informal, but hopefully instil
an intuition for the process of transforming a functional description to actual
hardware.

1.1 Netlists & Synthesis

A netlist is a textual description of a digital circuit [4]. It lists the components that
a circuit contains, and the connections between these components. The connection
points of a component are called ports, or pins. The ports are annotated with the
bit-width of the values that flow through them. A netlist can either be hierarchical
or flattened. In a hierarchical netlist, sub-netlists are abstracted to appear as
single components, of which multiple instances can be created. By instantiating
these instances, a flattened netlist can be created.

A synthesis scheme defines the procedure that transforms a (functional)
description to a netlist. Synthesis schemes defined for different languages, which
nonetheless have common aspects, will be called a synthesis scheme family. The
CλaSH compiler uses a synthesis scheme, called TCλ, that is an instance of the
synthesis scheme family that will be referred to as T . The following aspects are
shared by all instances of T :

– It is completely syntax-directed.
– It will create a hierarchical netlist.
– Function definitions are translated to components, where the arguments

of the function become the input ports, and the result is connected to the
output port.

– Function application is translated to an instance of the component that
represents the corresponding function. The applied arguments are connected
to the input ports of the component instance.

To demonstrate T , a simple functional language, L, is introduced in Fig. 1. L
is a pure, simply-typed, first-order functional language. A program in L consists of
set of function definitions, which always includes the main function. Expressions
in L can be: variable references, primitives, or function application. Figure 2
shows a small example program defined in the presented functional language.

The synthesis scheme for L, called TL, is defined by two transformations:
J Kp and J Ke, in which J Kp is initially applied to the main function to create
the hierarchical netlist. A graphical, informal, definition of the J Kp and J Ke
transformations is depicted in Fig. 3. Again, the purpose of this subsection is to
give an intuition for the synthesis process, not to give a formal account of TL. J Kp
creates a component definition for a function f , where input ports correspond to
the argument of f . J Kp also creates an output port for the result of the expression
e, which is connected to the outcome of the J Ke transformation applied to e.

Figure 3 shows that J Ke transforms an argument reference x to a connection
with an input port x. Function application of a function f is transformed to a

p ::= f x = e; p Function definitions
| ∅

e ::= x Argument reference
| ⊗ e Primitive
| f e Function application

Fig. 1. L: a simple functional language

double x = x ∗ x
main x y = (double x) + (double y)

Fig. 2. Example program in L

component instance of f . J Kp will be called for the definition of f in case there is
no existing component definition. Arguments to f are recursively transformed by
J Ke, and the outcome of these transformations are connected to the input ports of
the component f . The process for the transformations of primitives is analogous
to that of functions, except that J Kp will not be called for the definitions.

1.2 Synthesis of CλaSH

Applying the synthesis scheme TL to the example program given in Fig. 2 results
in the (graphical representation of the) netlists depicted in Fig. 4. The netlist
representation of main shows that synthesis schemes belonging to T exploit
the implicit parallelism present in (pure) functional languages: as there are no
dependencies between the operands of the addition, they are instantiated side-by-
side. During the actual operation of the circuit, electricity flows through all parts
simultaneously, and the instances of double will actually be operating in parallel.

CλaSH is a polymorphic, higher-order, functional hardware description lan-
guage. It has a syntax and a semantics similar to the programming language
Haskell [5] including some of language extensions of the Glasgow Haskell Compiler
(GHC) [6]. These extensions include higher-rank polymorphism and existential

JxKe

Jf eKe

J⊗ eKe

⇒

⇒

⇒

JfKpJe0Ke
JenKe

Je0Ke
JenKe

Jf x = eKp ⇒

f

JeKe
xn

x0

x

Fig. 3. TL: A synthesis scheme for L

double

x ∗

main

x

+

y

double

double

Fig. 4. Netlist of the example program in Fig. 2, created by TL

datatypes. CλaSH and Haskell are so similar that every valid CλaSH description
is also a valid Haskell program. Because CλaSH uses a synthesis transforma-
tion belonging to T , called TCλ, the reverse relation does not hold. There are
(many) Haskell programs that are not valid CλaSH descriptions. For example, a
large range of recursive functions are not valid CλaSH descriptions: under TCλ,
recursive application of a function f would lead to a recursive instance of the
component f. Flattening the netlist would lead to infinitely many instantiations
of the component f. Because such a netlist cannot be realized, the corresponding
recursive function is currently deemed an invalid CλaSH description.

CλaSH uses an instance of the T family of synthesis schemes because it
exploits the implicit parallelism of the functional descriptions, as shown earlier in
Fig. 4. An important aspect of T is that the arguments and results of functions
become the input and output ports of components. These ports are annotated with
a bit-width so that it is known how many wires are needed to make connections
between ports. Because CλaSH is a polymorphic, higher-order language, the
arguments and results can however contain polymorphic or function-typed values.
It is non-trivial, if at all possible, to determine a fixed bit-width for such values.

In order to run TCλ, all values that cannot be represented by a fixed bit-width,
will have to be eliminated from the functional description. The focus of this paper
is a TRS that transforms the functional description in a meaning-preserving
manner so that all non-representable values are eliminated. This is achieved using
both inlining and specialisation transformations [3].

The remainder of this paper is structured as follows: related work is described in
the next section. CλaSH is desugared to a smaller Core language, and it is the
Core language on which the TRS operates; Sect. 3 describes this Core language.
Section 4 defines the (data)types which are considered non-representable, and the
general process required for their meaning-preserving elimination. The rewrite
rules and strategy of the TRS are described in Sect. 4.1 and 4.2. Properties of the
TRS, including it’s non-termination, and the subsequent measures taken in the
CλaSH compiler are discussed in Sect. 5. Conclusions are presented in Sect. 6.

2 Related Work

Functional Hardware Description Languages. SAFL [7] is a first-order
hardware description language. As opposed to TCλ, which is used by CλaSH,

SAFL uses a synthesis scheme that does not create a new component instance
for every application of a function f . Instead, a component f is instantiated only
once, and additional control and scheduling logic is inferred to safely approximate
concurrent access.

BlueSpec SystemVerilog [8] is a hardware description language with a syntax
similar to IEEE SystemVerilog standard. It has features also found in func-
tional languages, such as higher-order functions and parametric polymorphism.
The compilation from description to netlist is performed in two stages, which
corresponds to the static and dynamic semantics of the language:

– A description is partially evaluated according to the static semantics, this
includes the elimination/propagation of higher-order functions.

– The resulting description after partial evaluation is actually a set of rewrite
rules. The second synthesis transformation instantiates all these rules in
parallel, and adds scheduling logic in case there are conflicting preconditions
[9].

So where the CλaSH compiler uses a TRS to eliminate non-representable values
(such as those with a function type), the BlueSpec compiler uses a partial
evaluator.

Lava [10,11] is a domain specific language embedded in Haskell. A hardware
description in Lava is actually a Haskell program that uses combinators made
available by the Lava library. These combinators wrap constructors of a graph
datatype that represents a netlist. Synthesis of Lava descriptions is not performed
in the traditional sense of transforming a description to a netlist. By running
the Lava description, a Haskell program, the complete graph representing the
netlist is simply calculated/constructed. Consequently, Lava gets the synthesis of
higher-order, and recursive functions, for free: as long as the function calculating
the graph terminates, a netlist can be created. Being an embedded language,
Lava has disadvantages compared to a compiled language such as CλaSH:

– Because a program calculating the netlist graph cannot observe the individual
functions, there can be no intuitive function-to-component mapping. As a
result, only flattened netlists can be created.

– The rich set of choice-constructs in Haskell (also present in CλaSH), such as
pattern-matching, cannot be reflected down to the netlists. Haskell’s choice
construct can be used to guide the construction of the netlist graph, but they
cannot be observed. Consequently, a developer using Lava only has access to
choice-functions offered by the Lava library.

Verity is a higher-order functional hardware description language with sup-
port for recursion (using a fix-point combinator) and mutable reference-cells.
Verity uses a semantics-directed synthesis scheme called Geometry of Synthesis
(GoS) [12]. GoS assumes a linear type system, that restricts the use of iden-
tifiers to exactly once. That means that arguments with a function type need
to be instantiated only once, an aspect GoS exploits during synthesis. Given a
higher-order function f , which has a function-type argument g, the component

corresponding to f is given extra input and output ports. The extra output ports
correspond to the input ports for g, and the extra input ports correspond to the
output ports of g. When f is applied to a function h, an instance of both the f
and h component are created, and the components are correctly connected to
each other. CλaSH does not have a linear type-system, meaning an identifier
with a function type can be applied multiple times. Because of this, the CλaSH
compiler cannot use the synthesis approach for function-typed arguments as
promoted by GoS.

Higher-Order removal methods. Reynolds-style defunctionalisation [13] is
a well-known method for generating an equivalent first-order program from a
higher-order program. Reynolds’ method creates datatypes for arguments with
a function-type. Instead of applying a higher-order function to a value with a
function-type, it is applied to a constructor for the newly introduced datatype.
Application of the functional argument is replaced by the application of a mini-
interpreter. Given the following higher-order program:

uncurry f (a, b) = f a b
main x = (uncurry (+) x) + (uncurry (−) x)

Reynolds’ method creates the following behaviourally equivalent first-order pro-
gram:

data Function = Plus | Sub
apply Plus a b = (+) a b
apply Sub a b = (−) a b

uncurry f (a, b) = apply f a b
main x = (uncurry Plus x) + (uncurry Min x)

Reynolds’ method works on all programs, removes all functional arguments, and
preserves sharing (a subject that will be discussed later). Although commonly
defined and studied in the setting of the simply typed lambda calculus, there are
also variants [14,15] of Reynolds’ methods that are correct within a polymorphic
type system. The disadvantage of Reynolds’ method is the introduction of the
mini-interpreter (which takes on the form of the apply function in the example).
Due to the parallel nature of TCλ, this interpreter and all of its corresponding
functionality will be instantiated at the use sites of the interpreter. For the
above example it means that the interpreter will be instantiated twice; and so
will the included functionality: the adder and the subtracter. This method, in
combination with TCλ, thus creates a lot of redundant hardware; it is hence not
used by the CλaSH compiler.

Many of the rewrite rules used by the TRS described in this paper can also
be found in optimizing compilers for functional languages, such as GHC [16]. The

TRS presented in this paper has many commonalities with the TRS presented in
the work of Mitchell and Runciman [3]. The purpose of Mitchell and Runciman’s
TRS is transforming higher-order programs to a first-order equivalent, and is also
based on a combination of specialisation and inlining. Unlike Mitchell and Runci-
man’s TRS, the TRS presented in this paper works in a typed setting, eliminates
higher-rank polymorphic arguments, and eliminates existential datatypes.

3 Core Language

The syntactically rich CλaSH language is desugared to a smaller Core language,
called CoreHW (Fig. 5), by the CλaSH compiler. It is a Church-style polymorphic
lambda-calculus extended with primitives, algebraic datatypes in combination
with case-decomposition, and recursive let-bindings. Case-decompositions are
either exhaustive in the constructors of the matched datatype, or include the
default pattern. Figure 5 gives the language definition of CoreHW, and uses, just
like the rest of this paper, the notation described in Fig. 6.

Local variables: x, y, z Data Constructors:

Global Variables: f, g K : ∀α.∀β.τ → T α
Type Variables: α, β

Types
τ, σ ::= α Type variable references

| τ → σ Function Types
| T Datatype Constructors
| τ σ Type application
| ∀α.σ Polymorphic types

Expressions
e, u ::= x | f Variable reference

| K | ⊗ Data Constructor / Primitive Function
| Λα.e | e τ Type abstraction / application
| λx : σ.e | e u Term abstraction / application
| let x : σ = e in u Recursive let-binding
| case e of p→ u Case decomposition

Patterns
p ::= Default case

| K β x : σ Match data constructor

Fig. 5. The CoreHW calculus

CλaSH supports existential datatypes, and this aspect of the language is
reflected in CoreHW. A data constructor K, for an existential datatype T α, is
first abstracted over the universally quantified type-variables α, followed by the
existentially quantified type-variables β. The type variables β brought into scope
by a pattern in a case-decomposition correspond to the existentially-quantified
type-variables of the datatype.

T σ ≡ T σ1 ... σn e u ≡ e u1 ... un
τ → σ ≡ τ1 → ...→ τn → σ λx : σ.e ≡ λx1 : σ1. ... λxn : σn.e
∀α.σ ≡ ∀α1. ... ∀αn.σ x : σ = e ≡ {x1 : σ1 = e1, ... , xn : σn = en}

p→ u ≡ {p1 → u1, ... , pn → un}
K β x : σ ≡ K β1 ... βn (x1 : σ1) ... (xm : σm)

Fig. 6. Notation

3.1 Synthesis of CoreHW using TCλ

The synthesis scheme TCλ exploits all the implicit parallelism available in the
CoreHW language. It does this by instantiating all expressions in a let-binding,
and all alternatives of a case-decomposition side-by-side (Fig. 7). TCλ creates
anchor points for let-bindings so that variable references can be synthesized to
connections to these anchor points.

Jlet x : σ = e in uK ⇒
Je1K
JenK

x1

xn

JuK

Jcase e of p→ uK
Ju1K
JunK

JeK

⇒

Fig. 7. Synthesis of let and case

λx : Bool.λy : Int.let
z : Int = y ∗ y

in case x of
True → z + 1
False → z − 1

Fig. 8. Example program using let and case

Completely elaborating TCλ falls outside of the scope of this paper. To at least
convey an intuition for the synthesis performed by TCλ, an example program, and
the corresponding netlist are shown in Fig. 8 and 9. The simultaneous presence
of all alternatives in a case decomposition, and all bindings in let-binding, has
consequences for the sharing behaviour of expressions.

Sharing is normally defined as the re-use of the result of a computation by
other expressions. In a digital circuit, sharing means connecting the output port
of one component to the input ports of multiple other components. This aspect
can be observed in Fig. 9, where the result of the multiplication is shared by the
addition and the subtraction. Results that can be shared, instead of recomputed,
will reduce the total size of the circuit. The rewrite rules of the TRS should

z∗
+

−
1

1

x

y

Fig. 9. Netlist of the example program in Fig. 8, created by TCλ

thus take the effects of sharing under TCλ into account, as any loss in sharing
increases the size of the circuit.

4 Eliminating Non-representable Types

TCλ can only synthesize functional descriptions if arguments and results of
expressions can be given a fixed bit-encoding. There are straightforward encodings
for certain primitive datatypes, and certain algebraic datatypes. Deriving a fixed
bit-encoding for the following types is either not desired, or not possible:

– Function types
– (Higher-rank) polymorphic types
– Datatypes that are composed of the above, non-representable, types.

Given the following circumstances:

– All arguments and the result of the main function are representable.
– All arguments and results of primitives are representable.

a combination of inlining and specialisation (and dead-code elimination) can
completely eliminate non-representable values from the function hierarchy. Spe-
cialisation in this case takes on two forms:

– Specialisation of a function on one of its arguments.
– Elimination of a case-decomposition based on a known constructor.

The next two subsection describe the rewrite rules and strategy for a TRS that
achieves the specified specialisation and inlining.

4.1 Rewrite rules

The rewrite rules in this paper are presented using the format depicted in Fig. 10.
In all of these rewrite rules, the expression above the horizontal bar is the
expression that has to be matched before performing the rewrite rule, and the
expression below the horizontal bar is the result after applying the rewrite rule.
Some rewrite rules have additional preconditions, and the rewrite is only applied
when these preconditions hold. Other rewrite rules have additional definitions
which they use in the resulting expressions. All rewrite rules always have access

Name of the Rewrite Rule

Matched Expression 〈Additional Preconditions〉

Resulting Expresson 〈Additional Definitions〉
〈Updated Environment〉

Fig. 10. Format for Rewrite Rules

to the global environment, Γ , which holds all function bindings. There are some
rewrite rules that create new top-level binders, and therefore update the global
environment.

The rewrite rules have access to the following functions:

FV e Calculates the free variables; works for types and terms.
e [x := u] A capture-free substitution of a variable reference x, by

the expression or
type u, in the expression e.

Γ@f The expression e belonging to a global binder f in the
environment Γ .

NONREP τ Determines if τ is a non-representable type.

Before the TRS starts, all variables are made unique, and all variable references
are updated accordingly. Any new variables introduced by the rewrite rules will
be unique by construction. Having hygienic expressions prevents accidental free-
variable capture, and makes it easier to define meaning-preserving rewrite rules.

The first three rewrite rules, τ-reduction, LetTyApp, and CaseTyApp,
propagate type information downwards into an expression. By either removing
type-variables, propagating type-information to a location for specialisation, or
propagating type information to a primitive or constructor, these rewrite rules
aid in the elimination of polymorphism.

τ-Reduction (Λα.e) τ

e [α := τ]

LetTyApp (let x : σ = e in u) τ

let x : σ = e in (u τ)

CaseTyApp (case e of p→ u) τ

case e of p→ (u τ)

The next three rewrite rules, LamApp, LetApp, and CaseApp, propagate
values, including non-representable ones, downwards into the expression. LamApp

is preferred over β-reduction to preserve sharing. CaseApp introduces a let-
binding, instead of propagating the expression towards all alternatives, to preserve
sharing. The next two rewrite rules, BindNonRep and LiftNonRep, remove
the let-bindings introduced by LamApp and CaseApp in case they bind non-
representable values.

LamApp (λx : σ.e) u

let {x = u} in e

LetApp (let x : σ = e in u) e0

let x : σ = e in (u e0)

CaseApp (case e of p→ u) u0

let {x = u0} in (case e of p→ (u x))

The BindNonRep rewrite rule removes let-bindings with non-representable
types that are not self-referencing (recursive), and substitutes the bound expres-
sions in the rest of the let-expression. LiftNonRep removes a self-referencing
let-binding with a non-representable type, and substitutes the binder in the rest
of the let-expression with an application of a newly created global binder. The
new global binder binds the original expression, abstracted over its free local
(type) variables; all self-references are replaced by references to the new global
binder. Substituting the reference by the bound expression, such as done in Bind-
NonRep, is unsound for a self-referencing binder. A removal and substitution of
the binder would in this case create a free variable in all substitutions.

BindNonRep

let {b1; ...; bi−1;xi : σi = ei; bi+1; ...; bn} in u Preconditions: NONREP(σi)

(let {b1; ...; bi−1; bi+1; ...; bn} in u) [xi := ei] ∧ xi 6∈ FV(ei)

LiftNonRep

let {b1; ...; bi−1;xi : σi = ei; bi+1; ...; bn} in u Preconditions: NONREP(σi)

(let {b1; ...; bi−1; bi+1; ...; bn} in u) [x := f α z] ∧ x ∈ FV(ei)

Definitions: (α, y) = FV(ei); z = y − {xi}
New Environment: Γ ∪ {(f, Λα.λz.ei[xi := f α z])}

The previous rewrite rules either propagated non-representable values down-
wards into the expression, or lifted those values out of the expression. The next
two sets of rewrite rules remove non-representable values by specialisation. The
TypeSpec and NonRepSpec provide function argument specialisation. Case-
Let, CaseCase, InlineNonRep, and CaseCon, together achieve specialisation
by eliminating case-decompositions of known constructors (of non-representable
datatypes).

The TypeSpec rewrite rule matches a type application of global variable
reference, f . The application is replaced by a reference to the newly created
global function f ′. The new binder f ′ is defined in terms of the body of f
specialized on the type τ . TypeSpec uses the ∪s operator to indicate that the
global environment is only updated with a new binder if the specialization of f
on τ has not been seen before. In case the specialisation has been seen before,
the previously created f ′ variable is used in the new expression.

The NonRepSpec rewrite rule uses the ∪α operator to indicate that the global
environment is only updated with a new binder if an α-equivalent specialization
has not been seen before. In case the specialisation has been seen before, the
previously created f ′ variable is used in the new expression.

TypeSpec (f e) τ Preconditions: FV(τ) ≡ ∅
f ′ e

New Environment: Γ ∪s {(f ′, λx.(Γ@f) x τ)}

NonRepSpec (f e) (u :σ) Preconditions: NONREP(σ) ∧ FV(σ) ≡ ∅
f ′ e y Definitions: y = FV u

New Environment: Γ ∪α {(f ′, λx.λy.(Γ@f) x u)}

The CaseLet is required in specialising expressions that have a non-represen-
table datatype. Taking the let-binders out of the case decomposition does not
affect the sharing behaviour so can be applied blindly. There is no free variable
capture in the alternatives because all variables are made unique before running
the TRS.

The CaseCase rewrite rule is only applied if the subject of a case decom-
position has a non-representable datatype. CaseCase is not applied blindly
because the alternatives in a case-decomposition are evaluated in parallel in
the eventual circuit. So the CaseCase rewrite rule generates a larger number
of alternatives than present in the matched expression. A larger number of
alternatives means a larger circuit. Even though CaseCase makes the circuit
larger, the intention of CaseCase is to eventually expose the constructor of
the non-representable datatype to CaseCon. CaseCon eliminates the case-
decomposition, and subsequently amortizes the increase in circuit size induced
by CaseCase.

InlineNonRep is only applied if the subject of a case expression is of a
non-representable datatype, as inlining breaks down the component hierarchy. All
bound variables in the inlined expression are regenerated, and variable references
updated accordingly. This preserves the assumptions made by the other rewrite
rules that all variables are unique.

The CaseCon rule comes in three variants:

– A case-decomposition with a constructor application as the subject, and a
matching constructor pattern.

– A case-decomposition with a constructor application as the subject, with no
matching constructor pattern.

– A case-decomposition with a single alternative, where the corresponding
pattern is the default pattern.

CaseCon only creates a let-binding if the constructor in the subject exactly
matches the constructor of an alternative. When the default pattern is matched,
the case decomposition is simply replaced by the expression belonging to the
default alternative. Case decompositions in CoreHW are exhaustive, either by
enumerating all the constructors, or by including the default pattern. This means
that when a constructor applications is the subject of a case-decomposition,
CaseCon removes that case-decomposition.

CaseLet case (let x : σ = e in e1) of p→ u

let x : σ = e in (case e1 of p→ u)

CaseCase Preconditions: NONREP(σ)

case (case e of {p1 → u1; ... ; pn → un} : σ) of p→ u

case e of{p1 → case u1 of p→ u; ... ; pn → case un of p→ u}

InlineNonRep Preconditions: NONREP(σ)

case (f e) : σ of p→ u

case ((Γ@f) e) of p→ u

CaseCon

case Ki τ∀ τ∃ y of {...;Ki β x : σ → e; ...} case u of { → e}

(let x : σ = y in e) [β := τ∃] e

case Ki τ∀ τ∃ y of {pj 6=i → u; → e}
e

4.2 Strategy

All rewrite rules, except TypeSpec, NonRepSpec, and InlineNonRep, are
exhaustively applied using a top-down traversal on an expression. InlineNonRep
is applied using a bottom-up traversal, because a top-down traversal could lead to
non-termination when inlining a recursive function. After all the rewrite rules, with
the exception of TypeSpec and NonRepSpec have been applied exhaustively,
TypeSpec is applied using a bottom-up traversal. This is followed by a bottom-
up traversal with the NonRepSpec rewrite rule. Bottom-up traversals are used
so that the fewest number of lambda-abstraction is introduced in the specialized
expressions. The argument-specialisation rewrite rules are applied last, so that the
fewest number of new functions is introduced, and the original function hierarchy
is preserved as much as possible. Because TypeSpec and NonRepSpec do not
create expressions on which the other rewrite rules match, all rewrite rules have
been applied exhaustively after the traversal with NonRepSpec.

5 Discussion

5.1 Completeness

The first set of rewrite rules (τ-Reduction - LiftNonRep) propagates or
removes non-representable values for those syntactical elements on which the spe-
cialisation rewrite rules do not match. The second set of rewrite rules (TypeSpec
- CaseCon) remove the non-representable values through specialisation. All
rewrite rules together hence remove all non-representable values from the func-
tion hierarchy, given the restrictions in Section 4.

The restrictions on primitives are needed because those cannot be specialized
on their argument. The restriction that the result type of main cannot be a
non-representable datatype, ensures that either:

– An expression calculating a non-representable datatype is always the subject
of a case-decomposition, which will be removed by the TRS.

– An expression calculating a non-representable datatype is unreachable, and
can be removed by dead-code elimination.

5.2 Termination

There are several (combinations) of rewrite rules that induce non-termination
of the unconstrained TRS. This subsection highlights those rewrite rules, and
discusses what measures are taken in the CλaSH compiler to prevent non-
termination. When one of the termination measures is triggered, non-representable
values remain present in the description. TCλ will not be able to transform the
description to a netlist when that happens.

InlineNonRep Although the precondition of InlineNonRep already limits
the locations where inlining is applied, exhaustive application of this rewrite
rule can still induce non-termination when dealing with recursive functions. To
prevent this from happening, a function f, can only be inlined once at all use
sites within a function g, for every pair of f and g.

β-Reduction Although the TRS does not contain β-reduction as one of the
rewrite rules, LamApp, CaseCon, and BindNonRep together behave like
β-reduction. This means that the typed version of (λx .x x) (λx .x x) induces
non-termination. To ensure termination, BindNonRep is only applied n number
of times within a function body, where n can be set by the user of the CλaSH
compiler. When a function body is changed by InlineNonRep, the counter is
reset. The limitation on the number of applications of BindNonRep is not a
real problem in practice: the number of non-representable let-bindings in the
average expression is usually limited.

NonRepSpec Specialization performed by NonRepSpec can induce non-
termination when a recursive function f has an argument that accumulates
non-representable values. To ensure termination, a NonRepSpec is only applied
to a function m number of times, where m can be set by the user of the CλaSH
compiler. This restriction has not posed any problems in practice.

6 Conclusions

The CλaSH compiler uses a synthesis scheme, TCλ, that produces a description
that has specific normal from. One aspect of this normal form is that arguments
and results of expressions do not have a non-representable value. For TCλ, non-
representable values are those values for which no fixed bit-encoding can be
determined. The TRS presented in this paper removes all non-representable
values from a function hierarchy while preserving the behaviour, given only
minor restrictions on this function hierarchy. These restrictions are: that neither
the main function nor the primitives of CλaSH, can have arguments or results
of a non-representable type. These restrictions do however not limit the use
polymorphism or higher-order functionality in the rest of the description. We,
the authors of this paper, deem these restrictions reasonable for the application
domain of CλaSH: building hardware.

The (ideas behind the) presented TRS can also be applied in a broader
context. One example is the application of first-order analysis techniques on
higher-order programs [3]. Because function-type values are non-representable,
the TRS transforms a higher-order program to a behaviourally equivalent first-
order program. Any first-order analysis technique can be subsequently applied to
the transformed program.

References

1. Baaij, C.P.R., Kooijman, M., Kuper, J., Boeijink, W.A., Gerards, M.E.T.: CλaSH:
Structural Descriptions of Synchronous Hardware using Haskell. In: Proceedings
of the 13th Conference on Digital System Design, USA, IEEE Computer Society
(September 2010) 714–721

2. Gerards, M.E.T., Baaij, C.P.R., Kuper, J., Kooijman, M.: Higher-Order Abstraction
in Hardware Descriptions with CλaSH. In: Proceedings of the 14th Conference on
Digital System Design, USA, IEEE Computer Society (August 2011) 495–502

3. Mitchell, N., Runciman, C.: Losing Functions without Gaining Data. In: Proceedings
of the second Symposium on Haskell, ACM (September 2009) 49–60

4. Frankau, S.: Hardware Synthesis from a Stream-Processing Functional Language.
PhD thesis, University of Cambridge (July 2004)

5. Jones, S.P., ed.: Haskell 98 Language and Libraries. Volume 13 of Journal of
Functional Programming. (2003)

6. The GHC Team: The GHC Compiler, version 7.6.1. http://haskell.org/ghc

(January 2013)
7. Mycroft, A., Sharp, R.: A Statically Allocated Parallel Functional Language. In:

Proceedings of the 27th International Colloquium on Automata, Languages and
Programming, Springer-Verlag (2000) 37–48

8. Nikhil, R.S.: Bluespec: A General-Purpose Approach to High-Level Synthesis Based
on Parallel Atomic Transactions. In Philippe Coussy and Adam Morawiec, ed.:
High-Level Synthesis - From Algorithm to Digital Circuit. Springer Netherlands
(2008) 129–146

9. Hoe, J.C., Arvind: Hardware Synthesis from Term Rewriting Systems. In: Proceed-
ings of the tenth International Conference on VLSI. (1999) 595–619

10. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware Design in Haskell.
In: Proceedings of the third International Conference on Functional Programming
(ICFP), ACM (1998) 174–184

11. Gill, A.: Type-Safe Observable Sharing in Haskell. In: Proceedings of the second
Haskell Symposium, ACM (Sep 2009) 117–128

12. Ghica, D.R.: Geometry of Synthesis: A structured approach to VLSI design. In:
Proceedings of the 34th annual Symposium on Principles of Programming Languages
(POPL), ACM (2007) 363–375

13. Reynolds, J.C.: Definitional Interpreters for Higher-Order Programming Languages.
In: Proceedings of the 25’th ACM National Conference, ACM Press (1972) 717 –
740

14. Pottier, F., Gauthier, N.: Polymorphic Typed Defunctionalization. In: Proceedings
of the 31st Symposium on Principles of Programming Languages (POPL), ACM
(2004) 89–98

15. Bell, J.M., Bellegarde, F., Hook, J.: Type-Driven Defunctionalization. In: Proceed-
ings of the second International Conference on Functional Programming (ICFP).
(1997) 25–37

16. Jones, S.P., Santos, A.: Compilation by Transformation in the Glasgow Haskell
Compiler. In: Functional Programming Workshops in Computing, Springer-Verlag
(1994) 184–204

