
Distributed Places

Kevin Tew
Brigham Young University

tew@byu.edu

James Swaine
Northwestern University

JamesSwaine2010@u.northwestern.edu

Matthew Flatt
University of Utah

mflatt@cs.utah.edu

Robert Bruce Findler
Northwestern University

robby@eecs.northwestern.edu

Peter Dinda
Northwestern University

pdinda@northwestern.edu

Abstract
Distributed Places bring new support for distributed, message-
passing parallelism to Racket. This paper gives an overview of
the programming model and how we had to modify our existing,
runtime-system to support distributed places. We show that the
freedom to design the programming model helped us to make the
implementation tractable. The paper presents an evaluation of the
design, examples of higher-level API’s that can be built on top
of distributed places, and performance results of standard parallel
benchmarks.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors — Run-time environments

General Terms Parallelism, Languages, Design

1. Introduction
Dynamic, functional languages are important as rapid develop-
ment platforms for solving everyday problems and completing
tasks. As programmers embrace parallelism in dynamic program-
ming languages, the need arises to extend multi-core parallelism
to multi-node parallelism. Distributed places delivers multi-node
parallelism to Racket by building on top of the existing places [18]
infrastructure.

The right extensions to dynamic, functional languages enable
the introduction of a hierarchy of parallel programming abstrac-
tions. Language extension allows these parallel programming ab-
stractions to be concisely mapped to different hardware such as a
shared memory node or a distributed memory machine. Distributed
places are not an add-on library or a foreign function interface
(FFI). Instead, Racket’s places and distributed places are language
extensions on which higher-level distributed programming frame-
works can easily be expressed. An RPC mechanism, map reduce,
MPI, and nested-data parallelism are all concisely and easily built
on top of distributed places. These higher-level frameworks meld

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. . . $10.00

with the Racket language to create extended languages, which de-
scribe different types of distributed programming.

The distributed places API allows the user to spawn new exe-
cution contexts on remote machines. Distributed places reuse the
communication channel API for intra-process parallelism to build
a transparent distributed communication system over a underlying
sockets layer. Racket’s channels for parallel and distributed com-
munication are first-class Racket events. These channels can be
waited on concurrently with other Racket event objects such as
file ports, sockets, threads, channels, etc. Together, Racket’s intra-
process and distributed parallelism constructs form a foundation
capable of supporting higher-level parallel frameworks.

2. Design
Programming with parallelism should avoid the typical interference
problems of threads executing in a single address space. Instead,
parallel executions contexts should execute in isolation. Communi-
cation between execution contexts should use message-passing in-
stead of shared-memory in a common address space. This isolated,
message-passing approach positions the programmer to think about
the data-placement and communication needs of a parallel pro-
gram to enable sustained scalability. Distributed places extend our
existing implementation of isolated, message-passing parallelism
which, until now, was limited to a single node. As a program moves
from multi-core parallelism to multi-node parallelism latency in-
creases and bandwidth decreases; data-placement and communica-
tion patterns become even more crucial.

Much of a distributed programming API is littered with sys-
tem administration tasks that impede programmers from focusing
on programming and solving problems. First, programmers have
to authenticate and launch their programs on each node in the dis-
tributed system. Then they have to establish communication links
between the nodes in the system, before they can begin working on
the problem itself. The work of the distributed places framework
is to provide support for handling the problems of program launch
and communication link establishment.

Racket’s distributed places API design is centered around ma-
chine nodes that do computation in places. The user/programmer
configures a new distributed system using declarative syntax and
callbacks. By specifying a hostname and port number, a program-
mer can launch a new place on a remote host. In the simplest
distributed-places programs, hostnames and port numbers are hard-
wired. When programmers need more control, distributed places
permits complete programmatic configuration of node launch and
communication link parameters.

1 #lang racket/base
2 (require racket/place
3 racket/place/distributed)
4

5 (provide hello-world)
6

7 (define (hello-world ch)
8 (printf/f "hello-world received: ∼a\n"
9 (place-channel-get ch))

10 (place-channel-put ch "Hello World\n")
11 (printf/f "hello-world sent: Hello World\n"))
12

13 (module+ main
14 (define p (dynamic-place
15 (quote-module-path "..")
16 ’hello-world))
17

18 (place-channel-put p "Hello")
19 (printf/f "main received: ∼a\n"
20 (place-channel-get p))
21 (place-wait p))

Figure 1: Place’s Hello World

The hello world example in figure 1 demonstrates the key com-
ponents of a places program. Appearing first, the hello-world
procedure is called to create hello-world places. The main module
follows and contains the code to construct and communicate with a
hello-world place.

Looking closer at the main module, the hello-world place
is created using dynamic-place.

(dynamic-place module-path start-
proc) → place?

module-path : module-path?
start-proc : symbol?

The dynamic-place procedure creates a place to run the proce-
dure that is identified by module-path and start-proc. The
result is a place descriptor value that represents the new parallel
task; the place descriptor is returned immediately. The place de-
scriptor is also a place channel to initiate communication between
the new place and the creating place.

The module indicated by module-path must export a func-
tion with the name start-proc. The exported function must ac-
cept a single argument, which is a place channel that corresponds
to the other end of communication for the place channel that is re-
turned by dynamic-place.

The (quote-module-path "..") and ’hello-world
arguments on lines 17 and 18 of figure 2 specify the procedure
address of the new place to be launched. In this example, the
(quote-module-path "..") argument provides the module
path to the parent module of main, where the ’hello-world
procedure is located.

Places communicate over place channels which allow structured
data communication between places. Supported structured data in-
cludes booleans, numbers, characters, symbols, byte strings, Uni-
code strings, filesystem paths, pairs, lists, vectors, and “prefab”
structures (i.e., structures that are transparent and whose types are
universally named). Place channels themselves can be sent in mes-
sages across place channels, so that communication is not limited
to the creator of a place and its children places; by sending place
channels as messages, a program can construct custom message
topologies.

13 (module+ main
14 (define n (create-place-node
15 "host2"
16 #:listen-port 6344))
17 (define p (dynamic-place
18 #:at n
19 (quote-module-path "..")
20 ’hello-world))
21 ...)

Figure 2: Distributed Hello World

(place-channel-put ch v) → void?
ch : place-channel?
v : place-message-allowed?

(place-channel-get ch) → place-message-
allowed?

ch : place-channel?

The place-channel-put function asynchronously sends a
message v on channel ch and returns immediately. The place-
channel-get function waits until a message is available from
the place channel ch.

(place-wait p) → void?
p : place?

Finally the place-wait procedure blocks until p terminates.
The distributed hello world example in figure 2 shows the two

differences between a simple places program and a simple dis-
tributed places program. The create-place-node procedure
uses ssh to start a new remote node on host2 and assumes that
ssh is configured correctly. Upon launch, the remote node listens
on port 6344 for incoming connections. Once the remote node is
launched, a TCP connection to port 6344 on the new node is es-
tablished. The create-place-node returns a node descriptor
object, n, which allows for administration of the remote node. The
remote place is created using dynamic-place. The new #:at
keyword argument specifies the node on which to launch the new
place.

Remotely spawned places are private. Only the node that
spawned the place can communicate with it through its descrip-
tor object. Named places allow programmers to make a distributed
place publicly accessible. Named places are labeled with a name
when they are created.

(define p (dynamic-place
#:at n
#:named ’helloworld1
(quote-module-path "..")
’hello-world))

Any node can connect to a named place by specifying the destina-
tion node and name to connect to. In this example, node is a node
descriptor object returned from create-place-node.

(connect-to-named-place node ’helloworld1)

3. Higher Level APIs
The distributed places implementation is a foundation that can sup-
port a variety of higher-level APIs and parallel processing frame-
works such as Remote Procedure Calls (RPC), Message Passing
Interface (MPI) [13], MapReduce [4], and Nested Data Paral-
lelism [2]. All of these higher-level APIs and frameworks can be
built on top of named places.

1 #lang racket/base
2 (require racket/place/distributed
3 racket/class
4 racket/place
5 racket/runtime-path
6 "tuple.rkt")
7 (define-runtime-path tuple-path "tuple.rkt")
8

9 (module+ main
10 (define remote-node (create-place-node
11 "host2"
12 #:listen-port 6344))
13 (define tuple-place
14 (dynamic-place
15 #:at remote-node
16 #:named ’tuple-server
17 tuple-path
18 ’make-tuple-server))
19

20 (define c (connect-to-named-place
21 remote-node
22 ’tuple-server))
23 (define d (connect-to-named-place
24 remote-node
25 ’tuple-server))
26 (tuple-server-hello c)
27 (tuple-server-hello d)
28 (displayln
29 (tuple-server-set c "user0" 100))
30 (displayln
31 (tuple-server-set d "user2" 200))
32 (displayln (tuple-server-get c "user0"))
33 (displayln (tuple-server-get d "user2"))
34 (displayln (tuple-server-get d "user0"))
35 (displayln (tuple-server-get c "user2")))

Figure 3: Tuple RPC Example

3.1 RPC via Named Places
Named places make a place’s interface public at a well-known
address: the host, port, and name of the place. They provide dis-
tributed places with a form of computation similar to the actor
model [10]. Using named places and the define-named-
remote-server form, programmers can build distributed places
that act as remote procedure call (RPC) servers. The example in fig-
ure 3 demonstrates how to launch a remote Racket node instance,
launch a remote procedure call (RPC) tuple server on the new re-
mote node instance, and start a local event loop that interacts with
the remote tuple server.

The create-place-node procedure in figure 3 connects
to "host2" and starts a distributed place node there that listens
on port 6344 for further instructions. The descriptor to the new
distributed place node is assigned to the remote-node variable.
Next, the dynamic-place procedure creates a new named place
on the remote-node. The named place will be identified in the
future by its name symbol ’tuple-server.

The code in figure 4 contains the use of the define-named-
remote-server form, which defines a RPC server suitable for
invocation by dynamic-place. The RPC tuple-server al-
lows for named tuples to be stored into a server-side hash table
and later retrieved. It also demonstrates one-way “cast” procedures,
such as hello, that do not return a value to the remote caller.

For the purpose of explaining the tuple-server implemen-
tation, figure 5 shows the macro expansion of the RPC tuple server.
Typical users of distributed places do not need to understand the

1 #lang racket/base
2 (require racket/match
3 racket/place/define-remote-server)
4

5 (define-named-remote-server tuple-server
6

7 (define-state h (make-hash))
8 (define-rpc (set k v)
9 (hash-set! h k v)

10 v)
11 (define-rpc (get k)
12 (hash-ref h k #f))
13 (define-cast (hello)
14 (printf "Hello from define-cast\n")
15 (flush-output)))

Figure 4: Tuple Server

expanded code to use the define-named-remote-server
macro. The define-named-remote-server form, in fig-
ure 5, takes an identifier and a list of custom expressions as its argu-
ments. A place function is created by prepending the make- prefix
to the identifier tuple-server. The make-tuple-server
identifier is the symbol given to the dynamic-place form in fig-
ure 3. The define-state custom form translates into a simple
define form, which is closed over by the define-rpc forms.

The define-rpc form is expanded into two parts. The first
part is the client stubs that call the RPC functions. The stubs can be
seen at the top of figure 5. The client function name is formed by
concatenating the define-named-remote-server identi-
fier, tuple-server, with the RPC function name, set, to form
tuple-server-set. The RPC client functions take a desti-
nation argument which is a remote-connection% descriptor
followed by the RPC function’s arguments. The RPC client func-
tion sends the RPC function name, set, and the RPC arguments to
the destination by calling an internal function named-place-
channel-put. The RPC client then calls named-place-
channel-get to wait for the RPC response.

The second part of the expansion part of define-rpc is the
server implementation of the RPC call. The server is implemented
by a match expression inside the make-tuple-server func-
tion. Messages to named places are placed as the first element of a
list where the second element is the source or return channel to re-
spond on. For example, in (list (list ’set k v) src)
the inner list is the message while src is the place-channel to send
the reply on. The match clause for tuple-server-set matches
on messages beginning with the ’set symbol. The server executes
the RPC call with the communicated arguments and sends the re-
sult back to the RPC client. The define-cast form is similar to
the define-rpc form except there is no reply message from the
server to client

The named place, shown in the tuple server example, follows
an actor-like model by receiving messages, modifying state, and
sending responses. Racket macros enables the easy construction of
RPC functionality on top of named places.

3.2 Racket Message Passing Interface
RMPI is Racket’s implementation of the basic MPI operations. A
RMPI program begins with the invocation of the rmpi-launch
procedure, which takes two arguments. The first is a hash from
Racket keywords to values of default configuration options. The
rmpi-build-default-config helper procedure takes a list
of Racket keyword arguments and forms the hash of optional con-

1 (module named-place-expanded racket/base
2 (require racket/place racket/match)
3 (define/provide
4 (tuple-server-set dest k v)
5 (named-place-channel-put
6 dest
7 (list ’set k v))
8 (named-place-channel-get dest))
9 (define/provide

10 (tuple-server-get dest k)
11 (named-place-channel-put
12 dest
13 (list ’get k))
14 (named-place-channel-get dest))
15 (define/provide
16 (tuple-server-hello dest)
17 (named-place-channel-put
18 dest
19 (list ’hello)))
20 (define/provide
21 (make-tuple-server ch)
22 (let ()
23 (define h (make-hash))
24 (let loop ()
25 (define msg (place-channel-get ch))
26 (match
27 msg
28 ((list (list ’set k v) src)
29 (define result (let ()
30 (hash-set! h k v)
31 v))
32 (place-channel-put src result)
33 (loop))
34 ((list (list ’get k) src)
35 (define result
36 (let ()
37 (hash-ref h k #f)))
38 (place-channel-put src result)
39 (loop))
40 ((list (list ’hello) src)
41 (define result
42 (let ()
43 (printf
44 "Hello from define-cast\n")
45 (flush-output)))
46 (loop)))
47 loop)))
48 (void))

Figure 5: Macro Expansion of Tuple Server

figuration values. The second argument is a list of configurations,
one for each node in the distributed system. A configuration is made
up of a hostname, a port, a unique name, a numerical RMPI pro-
cess id, and an optional hash of additional configuration options.
An example of rmpi-launch follows.

(rmpi-launch
(rmpi-build-default-config

#:racket-path "/tmp/mplt/bin/racket"
#:distributed-launch-path

(build-distributed-launch-path
"/tmp/mplt/collects")

#:rmpi-module "/tmp/mplt/kmeans.rkt"
#:rmpi-func ’kmeans-place
#:rmpi-args

(list "/tmp/mplt/color100.bin"
#t 100 9 10 0.0000001))

(list (list "n1.example.com" 6340 ’kmeans_0 0)
(list "n2.example.com" 6340 ’kmeans_1 1)
(list "n3.example.com" 6340 ’kmeans_2 2)
(list "n4.example.com" 6340 ’kmeans_3 3

(rmpi-build-default-config
#:racket-path "/bin/racket"))))

The rmpi-launch procedure spawns the remote nodes first
and then spawns the remote places named with the unique name
from the config structure. After the nodes and places are spawned,
rmpi-launch sends each spawned place its RMPI process id, the
config information for establishing connections to the other RMPI
processes, and the initial arguments for the RMPI program. The last
function of rmpi-launch is to rendezvous with RMPI process 0
when it calls rmpi-finish at the end of the RMPI program.

The rmpi-init procedure is the first call that should occur in-
side the #:rmpi-func place procedure. The rmpi-init proce-
dure takes one argument ch, which is the initial place-channel
passed to the #:rmpi-func procedure. The rmpi-init proce-
dure communicates with rmpi-launch over this channel to re-
ceive its RMPI process id and the initial arguments for the RMPI
program.
(define (kmeans-place ch)

(define-values (comm args tc) rmpi-init ch)
;;; kmeans rmpi computation ...
(rmpi-finish comm tc))

The rmpi-init procedure has three return values: an opaque
communication structure which is passed to other RMPI calls,
the list of initial arguments to the RMPI program, and a typed
channel wrapper for the initial place-channel it was given. The
typed channel wrapper allows for the out of order reception of
messages. Messages are lists and their type is the first item of the
list which must be a racket symbol. A typed channel returns the
first message received on the wrapped channel that has the type
requested. Messages of other types that are received are queued for
later requests.

The rmpi-comm structure, returned by rmpi-init, is the
communicator descriptor used by all other RMPI procedures. The
RMPI informational functions rmpi-id and rmpi-cnt return
the current RMPI process id and the total count of RMPI processes
respectively.

> (rmpi-id comm)
3

> (rmpi-cnt comm)
8

The rmpi-send and rmpi-recv procedures provide point-to-
point communication between two RMPI processes.

> (rmpi-send comm dest-id ’(msg-type1 "Hi"))

Map Reduce Program
P

Map Reduce Workers

worker pool

1 2 3 4

1 3 2 4

1 3 2 4

1 2

1

P program node

worker nodes

mapping step

reducing step

Figure 6: MapReduce Program

> (rmpi-recv comm src-id)
’(msg-type1 "Hi")

With the rmpi-comm structure the programmer can also use any
of the RMPI collective procedures: rmpi-broadcast, rmpi-
reduce, rmpi-allreduce, or rmpi-barrier to communi-
cate values between the nodes in the RMPI system.

The (rmpi-broadcast comm 1 (list ’a 12 "foo"))
expression broadcasts the list (list ’a 12 "foo") from
RMPI process 1 to all the other RMPI processes in the comm
communication group. Processes receiving the broadcast execute
(rmpi-broadcast comm 1) without specifying the value
to send. The (rmpi-reduce comm 3 + 3.45) expression
does the opposite of broadcast by reducing the local value 3.45
and all the other procesess local values to RMPI process 3 using
the + procedure to do the reduction. The rmpi-allreduce ex-
pression is similar to rmpi-reduce except that the final reduced
value is broadcasted to all processes in the system after the reduc-
tion is complete. Synchronization among all the RMPI processes
occurs through the use of the (rmpi-barrier comm) expres-
sion, which is implemented internally using a simple reduction
followed by a broadcast.

Distributed places are simply computation resources connected
by socket communications. This simple design matches MPI’s
model and makes RMPI’s implementation very natural. The RMPI
layer demonstrates how distributed places can provide the founda-
tions of other distributed programming frameworks such as MPI.

3.3 Map Reduce
Our MapReduce implementation is patterned after the Hadoop [1]
framework. Key value pairs are the core data structures that pass
through the map and reduce stages of the computation. In the
following example the number of word occurrences is counted
across a list of text files. The files have been preprocessed so that
there is only one word per line.

Figure 6 shows the different actors in the MapReduce paradigm.
The program node P creates the MapReduce workers group. When
a map-reduce call is made the program node serves as the
controller of the worker group. It dispatches mapper tasks to each

node and waits for them to respond as finished with the mapping
task. Once a node has finished its mapping task it runs the reduce
operation on its local data. Given two nodes in the reduced state,
one node can reduce to the other; freeing one node to return to the
worker pool for allocation to future tasks. Once all the nodes have
reduced to a single node, the map-reduce call returns the final
list of reduced key values.

The first step in using distributed place’s MapReduce imple-
mentation is to create a list of worker nodes. This is done by call-
ing the make-map-reduce-workers procedure with a list of
hostnames and ports to launch nodes at.
(define config (list (list "host2" 6430)

(list "host3" 6430)))
(define workers (make-map-reduce-workers config))

Once a list of worker nodes has been spawned, the programmer
can call map-reduce supplying the list of worker nodes, the
config list, the procedure address of the mapper, the procedure
address of the reducer, and a procedure address of an optional result
output procedure. Procedure addresses are lists consisting of the
quoted-module-path and the symbol name of the procedure being
addressed.
(map-reduce

workers
config
tasks
(list (quote-module-path "..") ’mapper)
(list (quote-module-path "..") ’reducer)
#:outputer (list (quote-module-path "..")

’outputer))

Tasks can be any list of key value pairs. In this example the keys
are the task numbers and the values are the input files the mappers
should process.
(define tasks (list (list (cons 0 "/tmp/w0"))

(list (cons 1 "/tmp/w1"))
...))

The mapper procedure takes a list of key value pairs as its
argument and returns the result of the map operation as a new list of
key value pairs. The input to the mapper, in this example, is a list of
a single pair containing the task number and the text file to process,
(list (cons 1 "w0.txt")). The output of the mapper is a
list of each word in the file paired with 1, its initial count. Repeated
words in the text are repeated in the mappers output list. Reduction
happens in the next step.
;;(->
;; (listof (cons any any))
;; (listof (cons any any)))
(define/provide (mapper kvs)

(for/first ([kv kvs])
(match kv

[(cons k v)
(with-input-from-file

v
(lambda ()

(let loop ([result null])
(define l (read-line))
(if (eof-object? l)

result
(loop (cons (cons l 1)

result))))))])))

After a task has been mapped, the MapReduce framework
sorts the output key value pairs by key. The framework also co-
alesces pairs of key values with the same key into a single pair
of the key and the list of values. As an example, the framework
transforms the output of the mapper ’(("house" 1) ("car"

1) ("house" 1)) into ’(("car" (1)) ("house" (1
1)))

The reducer procedure takes, as input, this list of pairs, where
each pair consists of a key and a list of values. For each key, the
reducer reduces the list of values to a list of a single value. In the
word count example, An input pair, (cons "house" ’(1 1
1 1)) will be transformed to (cons "house" ’(4)) by the
reduction step.
;;(->
;; (listof (cons any (listof any)))
;; (listof (cons any (listof any))))
(define/provide (reducer kvs)

(for/list ([kv kvs])
(match kv

[(cons k v)
(cons k (list (for/fold ([sum 0])

([x v])
(+ sum x))))])))

Once each mapped task has been reduced the outputs of the
reduce steps are further reduced until a single list of word counts
remains. Finally an optional output procedure is called which prints
out a list of words and their occurrence count and returns the total
count of all words.
(define/provide (outputer kvs)

(displayln
(for/fold ([sum 0]) ([kv kvs])

(printf "∼a - ∼a\n" (car kv) (cadr kv))
(+ sum (cadr kv)))))

3.4 Nested Data Parallelism
The last parallel processing paradigm implemented on top of dis-
tributed places is nested data parallelism [9]. In this paradigm re-
cursive procedure calls create subproblems that can be parallelized.
An implementation of parallel quicksort demonstrates nested data
parallelism built on top of distributed places.

The distributed places, nested data parallelism API – ndp-
get-node, ndp-sendwork, ndp-get-result, and ndp-
return-node – is built on top of the RMPI layer. The main
program node, depicted as P in figure 7, creates the ndp-group.
The ndp-group consists of a coordinating node, 0, and a pool
of worker nodes 1, 2, 3, 4. The coordinating node receives a
sort request from ndp-sort and forwards the request to the first
available worker node, node 1. Node 1 divides the input list in half
and requests a new node from the coordinator to process the second
half of the input. The yellow bars on the right side of figure 7 show
the progression as the sort input is subdivided and new nodes are
requested from the coordinator node. Once the sort is complete, the
result is returned to the coordinator node, which returns the result
to the calling program P.

Like the previous two examples, the nested data parallel quick-
sort example begins by spawning a group of worker processes.
(define config

(list (list "host2" 6340)
(list "host3" 6340)
(list "host4" 6340)
(list "host5" 6340)
(list "host6" 6340)))

(define ndp-group (make-ndp-group config))

Next the sort is performed by calling ndp-qsort.
(displayln (ndp-qsort (list 9 1 2 8 3 7 4 6 5 10)

ndp-config))

The ndp-qsort procedure is a stub that sends the procedure
address for the ndp-parallel-qsort procedure and the list

NDP Quicksort Program
P

NDP Group
ndp coordinator node

0

ndp worker pool

1 2 3 4

1

1 2

1 3 2 4

P program node

coordinator node

worker nodes

divide progression

Figure 7: NDP Program

to sort to the ndp-group. The work of the parallel sort occurs
in the ndp-parallel-sort procedure in figure 8. First the
partit procedure picks a pivot and partitions the input list into
three segments: less than the pivot, equal to the pivot, and greater
than the pivot. If a worker node can be obtained from the ndp-
group by calling ndp-get-node, the gt partition is sent to
the newly obtained worker node to be recursively sorted. If all the
worker nodes are taken, the gt partition is sorted locally using the
ndp-serial-qsort procedure. Once the lt partition is sorted
recursively on the current node, the gt-part is check to see if
it was computed locally or dispatched to a remote node. If the
part was dispatched to a remote node, its results are retrieved from
the remote node by calling ndp-get-result. After the results
are obtained the remote node node can be returned to the ndp-
group for later use. Finally the sorted parts are appended to form
the final sorted list result.

4. Implementation
A key part of the distributed place implementation is that dis-
tributed places is a layer over places, and parts of the places layer
are exposed through the distributed places layer. In particular, each
node, in figure 9, begins life with one initial place, the message
router. The message router listens on a TCP port for incoming con-
nections from other nodes in the distributed system. The message
router serves two primary purposes: it multiplexes place messages
and events on TCP connections between nodes and it services re-
mote spawn requests for new places.

There are a variety of distributed places commands which
spawn remote nodes and places. These command procedures re-
turn descriptor objects for the nodes and places they create. The
descriptor objects allow commands and messages to be commu-
nicated to the remote controlled objects. In Figure 10, when node
A spawns a new node B, A is given a remote-node% object
with which to control B. Consequently, B is created with a node%
object that is connected to A’s remote-node% descriptor via a
TCP socket connection. B’s node% object is the message router
for the new node B. A can then use its remote-node% descrip-
tor to spawn a new place on node B. Upon successful spawning
of the new place on B, A is returned a remote-place% de-
scriptor object. On node B, a place% object representing the

(define (ndp-parallel-qsort l ndp-group)
(cond

[(< (length l) 2) l]
[else

(define-values (lt eq gt) (partit l))

;; spawn off gt partition
(define gt-ref

(define node (ndp-get-node ndp-group))
(cond

[node
(cons #t (ndp-send-work

ndp-group
node
(list

(quote-module-path)
’ndp-parallel-qsort)

gt))]
[else

(cons #f (ndp-serial-qsort gt))]))

;; compute lt partition locally
(define lt-part

(ndp-parallel-qsort lt ndp-group))

;; retrieve remote results
(define gt-part

(match gt-ref
[(cons #t node-id)

(begin0
(ndp-get-result ndp-group node-id)
(ndp-return-node

ndp-group
node-id))]

[(cons #f part) part]))

(append lt-part eq gt-part)]))

Figure 8: NDP Parallel Sort

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Figure 9: Distributed Places Nodes

Machine A Machine B
remote-node% node%

remote-place% place%

remote-connection% connection%

Figure 10: Descriptor (Controller) - Controlled Pairs

newly spawned place is attached to B’s node% message-router.
The remote-connection% descriptor object represents a con-
nection to a named place. At the remote node, B, a connection%
object intermediates between the remote-connection% and
its destination named-place.

To communicate with remote nodes, a place message must be
serializable. As a message-passing implementation, places send
a copy of the original message when communicating with other
places. Thus the content of a place message is inherently serializ-
able and transportable between nodes of a distributed system.

To make place channels distributed, place-socket-bridge%
proxies need to be created under the hood. The place-socket-
bridge%s listen on local place channels and forward place mes-
sages over TCP sockets to remote place channels. Each node in a
Racket distributed system must either explicitly pump distributed
messages by registering each proxy with sync or bulk register
the proxies, via the remote-node% descriptor, with a message
router which can handle the pumping in a background thread.

Figure 11 shows the layout of the internal objects in a simple
three node distributed system. The node at the top of the figure
is the original node spawned by the user. Early in the instantia-
tion of the top node, two additional nodes are spawned, node 1
and node 2. Then two places are spawned on each of node 1 and
node 2. The instantiation code of the top node ends with a call
to the message-router form. The message-router con-
tains the remote-node% instances and the after-seconds
and every-seconds event responders. Event responders exe-
cute when specific events occur, such as a timer event, or when mes-
sages arrive from remote nodes. The message router de-multiplexes
events and place messages from remote nodes and dispatches them
to the correct event responder.

Finally, function overloading is used to allow place- func-
tions, such as place-channel-get, place-channel-put,
and place-wait, to operate transparently on both place and dis-
tributed place instances. To accomplish this, distributed place de-
scriptor objects are tagged as implementing the place<%> inter-
face using a Racket structure property. Then place- functions
dynamically dispatch to the distributed place version of the func-
tion for distributed place instances or execute the original function
body for place instances.

5. Distributed Places Performance
Two of the NAS Parallel Benchmarks, IS and CG, are used to test
the performance of the Racket distributed places implementation.
The Fortran/C MPI version of the benchmarks were ported to
Racket’s distributed places. Performance testing occurred on 8
quad-core Intel i7 920 machines. Each machine was equipped with
at least 4 gigabytes of memory and a 1 gigabit Ethernet connection.

node% - top
message-router

remote-node% - 1
spawned-process%

socket-connection%

remote-places

remote-place%
parent-node

place-socket-bridge%

remote-place%
parent-node

place-socket-bridge%

after-seconds

every-seconds

remote-node% - 2
spawned-process%

socket-connection%

remote-places

remote-place%
parent-node

place-socket-bridge%

remote-place%
parent-node

place-socket-bridge%

node% - 1
socket-connection%

superivised places

place%

place-socket-bridge%

place%

place-socket-bridge%

node% - 2
socket-connection%

superivised places

place%

place-socket-bridge%

place%

place-socket-bridge%

Figure 11: Three Node Distributed System

Performance numbers are reported for both Racket and For-
tran/C versions of the benchmarks in figure 12. Racket’s compu-
tational times scaled appropriately as additional nodes were added
to the distributed system. Computational times are broken out and
graphed in isolation to make computational scaling easier to see.

Racket communication times were larger than expected. There
are several factors, stacked on top of one another, that explain the
large communication numbers. First, five copies of the message oc-
cur during transit from source to destination. In a typical operation,
a segment of a large flonum vector needs to be copied to a des-
tination distributed place. The segment is copied out of the large
flonum vector into a new flonum vector message. The message vec-
tor’s length is the length of the segment to be sent. Next, the newly
constructed vector message is copied over a place channel from the
computational place to the main thread which serializes the mes-
sage out a TCP socket to its destination. When the message ar-
rives at its destination node the message is deserialized and copied
a fourth time over a place channel to the destination computational
place. Finally the elements of the message vector are copied into
the mutable destination vector.

Racket’s MPI implementation, RMPI, is not as sophisticated as
the standard MPICH [14] implementation. MPICH has nonblock-
ing sends and receives that allow messages to flow both directions

simultaneously. Both the NAS Parallel Benchmarks used, IS and
CG, use non-blocking MPI receives. RMPI on the other hand, al-
ways follows the typical protocol design of sending data in one
direction and then receiving data from the opposite direction.

The largest contributor to Racket’s excessive communication
times is the serialization costs of the Racket primitive write. On
Linux, serialization times are two orders of magnitude larger than
the time to write raw buffers. One solution would be to replace
distributed place’s communication subsystem with FFI calls to an
external MPI library. This solution would bypass the expensive
write calls currently used in distributed places. Another viable
solution would be to recognize messages that are vectors of flonums
and use a restricted-form of write that could write flonum vectors
as efficiently as raw buffers. Finally, it should be noted that using
Racket’s write is advantageous in cases where the message to be
sent is a complex object graph instead of a simple raw buffer.

6. Related Work
Erlang [16] Erlang’s distributed capabilities are built upon its pro-
cess concurrency model. Remote Erlang nodes are identified by
name@host identifiers. New Erlang processes can be started us-
ing the slave:start procedure or at the command line. Erlang
uses a feature called links to implement fault notification. Two pro-

Fortran Wall-clock Time
Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Processes

Se
co

nd
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Total Time Compute Time Communication Time
Fortran Compute Wall-clock time

Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S 1 2 3 4 5 6 7 8

Processes
Se

co
nd

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Racket Wall-clock time
Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0
10
20
30
40
50
60
70
80
90

S 1 2 3 4 5 6 7 8

Processes

Se
co

nd
s

0
2.5
5
7.5
10
12.5
15
17.5
20
22.5
25
27.5
30

S 1 2

Total Time Compute Time Communication Time
Racket Compute Wall-clock time

Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0

2

4

6

8

10

12

14

S 1 2 3 4 5 6 7 8

Processes

Se
co

nd
s

3

3.5

4

4.5

5

5.5

6

6.5

S 1 2

Figure 12: IS, CG, and MG class A results

cesses establish a link between themselves. Links are bidirectional;
if either process fails the other process dies also. Erlang also pro-
vides monitors which are unidirectional notifications of a process
exiting. Distributed Places and Erlang share a lot of similar fea-
tures. While Erlang’s distributed processes are an extension of its
process concurrency model, Distributed Places are an extension of
Racket’s places parallelism strategy. Erlang provides a distributed
message passing capability that integrates transparently with its
inter-process message passing capability. The Disco project imple-
ments map reduce on top of a Erlang core. User level Disco pro-
grams, however, are written in Python, not Erlang. In contrast, the
implementation and user code of distributed places’ map reduce
are both expressed as Racket code. Erlang has a good foundation
for building higher-level distributed computing frameworks, but in-
stead Erlang programmers seem to build customized distributed so-
lutions for each application.

MapReduce [4] is a specialized functional programming model,
where tasks are automatically parallelized and distributed across a
large cluster of commodity machines. MapReduce programmers
supply a set of input files, a map function and a reduce function.
The map function transforms input key/value pairs into a set of
intermediate key/value pairs. The reduce function merges all in-
termediate values with the same key. The framework does all the
rest of the work. Google’s MapReduce implementation handles
partitioning of the input data, scheduling tasks across distributed
computers, restarting tasks due to node failure, and transporting in-
termediate results between compute nodes. The MapReduce model
can be applied to problems such as word occurance counting, dis-
tributed grep, inverted index creation, and distributed sort.

[8] Termite is a distributed concurrent scheme built on top of
Gambit-C Scheme. Direct mutation of variables and data structures
is forbidden in Termite. Instead mutation is simulated using mes-
sages and suspended, lightweight processes. Lookup in Termite’s
global environment is a node relative operation and resolves to the
value bound to the global variable on the current node. Termite sup-
ports process migration via serializable closures and continuations.
Termite follows Erlang’s style of failing hard and fast. Where Er-
lang has bidirectional links, Termite has directional links that com-
municate process failure from one process to another. Failure de-
tection only occurs in one direction from the process being moni-
tored to the monitoring process. Termite also has supervisors which
like supervisors in Erlang, restart child processes which have failed.
Distributed Places could benefit from Termites superior serializa-
tion support, where nearly all Termite VM objects are serializable.
Akka [19] is a concurrency and distributed processing framework
for Scala and Java. Like Erlang, Akka is patterned after the Ac-
tor model. Akka supports Erlang like supervisors and monitors for
failure and exit detection. Like Erlang, Akka leaves the creation of
higher-level distributed frameworks to custom application develop-
ers.

Kali [3] is a distributed version of Scheme 48 that efficiently
communicates procedures and continuations from one compute
node to another. Kali’s implementation lazily faults continuation
frames across the network as they are needed. Kali’s proxies are
really just address space relative variables. Proxies are identified
by a globally unique id. Sending a proxy involves sending only its
globally unique id. Retrieving a proxies value returns the value for
the current address space. Kali allow for retrieval of the proxy’s
source node and spawning of new computations at the proxy’s
source.

Distributed Functional Programming in Scheme (DFPS) [17]
uses futures semantics to build a distributed programming platform.
DFPS employs the Web Server collection’s serial-lambda
form to serialize closures between machines. Unlike Racket fu-
tures, DFPS’ touch form blocks until remote execution of the

future completes. DFPS has a distributed variable construct called
a dbox. For consistency, a dbox should only be written to once
or a reduction function for writes to the dbox should be provided.
Once a dbox has be set, the DFPS implementation propagates the
dbox value other nodes that reference the dbox,

Cloud Haskell [5, 6] is a distributed programming platform
built in Haskell. Cloud Haskell has two layers of abstraction. The
lowest layer is the process layer, which is a message-passing dis-
tributed programming API. Next comes the tasks layer which pro-
vides a framework for failure recovery and data locality. Communi-
cation of serialized closures requires explicit specification from the
user of what parts of environment will be serialized and sent with
the code object.

On top of its message-passing process layer, Cloud Haskell
implements typed channels that allow only messages of a specific
type to be sent down the channel. A Cloud Haskell channel has a
SendPort and a ReceivePort. ReceivePorts are not serializable and
cannot be shared, which simplifies routing. SendPorts, however, are
serializable and can be sent to multiple processes, allowing many
to one style communication.

High-level Distributed-Memory Parallel Haskell (HdpH) [12]
builds upon Cloud Haskell’s work by adding support for polymor-
phic closures and lazy work stealing. HdpH does not require a
special language kernel or any modifications to the vanilla GHC
runtime. It simply uses GHC’s Concurrent Haskell as a systems
language for building a distributed memory Haskell.

Dryad [11] is an infrastructure for writing coarse-grain data-
parallel distributed programs on the Microsoft platform. Dis-
tributed programs are structured as a directed graph. Sequential
programs are the graph vertices and one-way channels are the
graph edges. Unlike Distributed Places, Dryad is not a program-
ming language. Instead it provides a execution engine for running
sequential programs on partitioned data at computational vertices.
Although Dryad is not a parallel database, the relational algebra
can be mapped on top of a Dryad distributed compute graph. Unlike
distributed places which is language centric, Dryad is infrastructure
piece, which doesn’t extend the expressiveness of any particular
programming language.

Jade [15] is a implicitly parallel language. Implemented as a
extension to C, Jade is intended to exploit task-level concurrency.
Like OpenMP, Jade consists of annotations that programmers add
to their sequential code. Jade uses data access and task granularity
annotations to automatically extract concurrency and parallelize the
program. A Jade front end then compiles the annotated code and
outputs C. Programs parallelized with Jade continue to execute de-
terministically after parallelization. Jade’s data model can interact
badly with the programs that write to disjoint portions of a single
aggregate data structure. In contrast, Distributed Places is an explic-
itly parallel language where the programmer must explicitly spawn
tasks and explicitly handle communication between tasks.

Dreme [7] is a distributed Scheme. All first-class language
objects in Dreme are mobile in the network. Dreme describes
the communication network between nodes using lexical scope
and first class closures. Dreme has a network-wide distributed
memory and a distributed garbage collector. By default, Dreme
sends objects by reference across the network, which can lead to
large quantities of hidden remote operations. In contrast, distributed
places copies all objects sent across the network and leaves the
programmer responsible for communication invocations and their
associated costs.

7. Conclusion
Building distributed places as a language extension allows the com-
pact and clean construction of higher level abstractions such as
RPC, MPI, map reduce and nested data parallelism. Distributed

places programs are more compact and easier to write than tradi-
tional C MPI programs. A Racket MPI implementation of parallel
k-means was written with distributed places using less than half the
lines of code of the original C and MPI version. With distributed
places, messages can be heterogeneous and serialization is handled
automatically by the language.

In addition to distributed parallel computing, Racket has many
features that make it a great coordination and control language.
Rackets provides a rich FFI (foreign function interface) for invok-
ing legacy C code. Racket also includes extensive process exec
capabilities for launching external programs and communicating
with them over standard IO pipes. Racket’s FFI, process exec ca-
pabilities, and distributed places gives programmers a powerful dis-
tributed coordination and workflow language.

With distributed places, programmers can quickly develop par-
allel and distributed solutions to everyday problems. Developers
can also build new distributed computing frameworks using dis-
tributed places as common foundation. The distributed extension
of places augments the Racket programmer’s toolbox and provides
a road map for other language implementers to follow.

Bibliography
[1] Apache Software Foundation. Hadoop. , 2012. http://

hadoop.apache.org

[2] Guy E. Blelloch. Programming Parallel Algorithms. Commu-
nications of the ACM, 1996.

[3] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey.
Higher-Order Distributed Objects. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 1995.

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. OSDI’04: Sixth Sympo-
sium on Operating System Design and Implementation, 2004.

[5] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones.
Haskell for the Cloud. In Proceedings of the 4th ACM sym-
posium on Haskell (Haskell ’11), 2011.

[6] Jeffrey Epstein. Functional programming for the data centre.
MS thesis, University of Cambridge, 2011.

[7] Matthew Fuchs. Dreme: for Life in the Net. PhD dissertation,
New York University, 1995.

[8] Guillaume Germain, Marc Feeley, and Stefan Monnier. Con-
currency Oriented Programming in Termite Scheme. In Proc.
Scheme and Functional Programming, 2006.

[9] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chat-
terjee, Jay Sipelstein, and Marco Zagha. Implementation of
a portable nested data-parallel lang. In Proceedings of the
fourth ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming (PPOPP ’93), 1993.

[10] Carl Hewitt, Peter Bishop, and Richard Steiger. A Univer-
sal Modular ACTOR Formalism for Artificial Intelligence. In
Proceedings of the 3rd International Joint Conference on Ar-
tificial Intelligence (IJCAI’73), 1973.

[11] Michael Isard, Mihai Budiur, Yuan Yu, Andrew Birrell, and
Dennis Fetterly. Dryad: Distributed Data-Parallel Programs
from Sequential Building Blocks. European Conference on
Computer Systems (EuroSys), 2007.

[12] Patrick Maier, Phil Trinder, and Has-Wolgang Loidl. High-
level Distributed-Memory Parallel Haskell in Haskell. Sym-
posium on Implementation and Application of Functional
Languages, 2011.

[13] Message Passing Interface Forum. MPI-2: Extensions
to the Message-Passing Interface. http://www.mpi-
forum.org/docs/mpi2-report.pdf, 2003. http://www.
mpi-forum.org/docs/mpi2-report.pdf

[14] MPICH. MPICH. http://www.mcs.anl.gov/mpich2, 2013.

[15] M. C. Rinard and M. S. Lam. The Design, Implementation,
and Evaluation of Jade. ACM Transactions on Programming
Languages and Systems 20(1), pp. 1–63, 1998.

[16] Konstantinos Sagonas and Jesper Wilhelmsson. Efficient
Memory Management for Concurrent Programs that use Mes-
sage Passing. Science of Computer Programming 62(2), pp.
98–121, 2006.

[17] Alex Schwendner. Distributed Functional Programming in
Scheme. MS thesis, Massachusetts Institute of Technology,
2010. http://groups.csail.mit.edu/commit/
papers/2010/alexrs-meng-thesis.pdf

[18] Kevin Tew, James Swaine, Matthew Flatt, Robert Bruce Find-
ler, and Peter Dinda. Places: Adding Message-Passing Par-
allelism to Racket. Dynamic Language Symposium 2011,
2011.

[19] Typesafe Inc. Akka. http://akka.io, 2012.

http://hadoop.apache.org
http://hadoop.apache.org
http://www.mpi-forum.org/docs/mpi2-report.pdf
http://www.mpi-forum.org/docs/mpi2-report.pdf
http://groups.csail.mit.edu/commit/papers/2010/alexrs-meng-thesis.pdf
http://groups.csail.mit.edu/commit/papers/2010/alexrs-meng-thesis.pdf

	1 Introduction
	2 Design
	3 Higher Level APIs
	3.1 RPC via Named Places
	3.2 Racket Message Passing Interface
	3.3 Map Reduce
	3.4 Nested Data Parallelism

	4 Implementation
	5 Distributed Places Performance
	6 Related Work
	7 Conclusion
	Bibliography

