
A Language for Domain Specific Optimizations
in Haskell

Andrew Farmer and Andy Gill

Information and Telecommunication Technology Center
The University of Kansas

{afarmer,andygill}@ittc.ku.edu

Abstract. Haskell programmers, especially those writing reusable li-
braries, spend considerable effort on directing the Glasgow Haskell Com-
piler’s (GHC) optimizer in order obtain faster code. Many desired domain-
and-program-specific optimizations cannot be expressed by GHC’s cur-
rent means of directing the optimizer. This paper presents a domain-
specific language (DSL) for specifying these optimizations as custom
compiler plugins using the infrastructure provided by the recently de-
veloped HERMIT plugin for GHC. This optimization DSL is used to
implement an improved Stream Fusion deforestation optimization.

1 Introduction

The Glasgow Haskell Compiler (GHC) [GHC Team, 2013] offers an abundance
of compiler flags and source-level pragma directives that enable the programmer
to control the compilation of her program. Many of these “knobs and dials”
are for controlling GHC’s optimizer, allowing the programmer to try and direct
optimization toward a desired result.

The right compiler flags can offer dramatic performance improvements for
little cost to the programmer, but with the finesse of a sledgehammer. As an
example, aggressive tuning of GHC’s inliner can improve the performance of
generic programming libraries by an order of magnitude, yet can have an adverse
effect on other parts of the program, increasing code size and duplicating work
[Magalhães et al., 2010].

GHC also offers source-level pragma statements to direct inlining [Peyton Jones
and Marlow, 2002] and specialization [Peyton Jones, 2007], allowing functions
to be annotated to guide the optimizer. Additionally, the programmer can use
RULES pragmas [Peyton Jones et al., 2001] to extend GHC’s optimizer with
domain-specific rewrite rules, allowing the optimizer to make use of of the pro-
grammer’s high-level knowledge about the structure of the program. In general,
pragmas give the programmer more fine-grained control than flags, but with lim-
ited expressivity. Pragmas cannot be placed on bindings which are not present
in the source, such as those introduced by other compiler passes [Jones and
Launchbury, 1991, Peyton Jones, 2007]. The implementation of type classes us-
ing implicit dictionary arguments can lead to unexpected mutual recursion that
prevents desired inlining [Jones, 1995]. RULES pragmas are limited in the syntac-
tic constructs that can be matched, meaning many valid rules are inexpressible
in the system.

data ModGuts = ModGuts { _ :: [CoreBind], ... }

data CoreBind = NonRec Var CoreExpr | Rec [CoreDef]

data CoreDef = Def Var CoreExpr

data CoreExpr = Var Var | Lit Literal | Type Type

| App CoreExpr CoreExpr | Lam Var CoreExpr

| Let CoreBind CoreExpr | Case CoreExpr Var Type [CoreAlt]

| Cast CoreExpr Coercion | Coercion Coercion

| Tick CoreTickish CoreExpr

type CoreAlt = (AltCon, [Var], CoreExpr)

Fig. 1: GHC Core.

To summarize, attempting to guide the optimizer via command line flags or
source program annotations means that some optimization opportunities will be
missed, because the knowledge required to exploit them cannot be expressed.
This paper introduces a domain-specific language (DSL) for specifying custom
optimizer plugins for GHC, allowing the programmer to express new optimiza-
tions at a high level of abstraction.

Specifically, this paper makes the following contributions.

– A domain-specific language for manipulating and augmenting GHC’s opti-
mization pipeline. (Section 3)

– A principled set of strategic-programming combinators for pattern-matching
on and unfolding function calls. (Section 4)

– An implementation of Stream Fusion which optimizes concatMap using the
transformation suggested by Coutts [2010] (Section 5.1), then extended to
optimize more general uses (Section 5.2).

2 HERMIT and KURE

In this section we briefly overview HERMIT, KURE, and GHC’s intermediate
language, Core.

2.1 Core

GHC’s front end transforms Haskell source into an intermediate language called
Core (Fig. 1). The optimizer is written as a pipeline of Core-to-Core passes which

manipulate this Core program. Core is an implementation of System F↑
C [Sulz-

mann et al., 2007, Yorgey et al., 2012], which is System F [Pierce, 2002] extended
with let-bindings, constructors, type coercions and algebraic and polymorphic
kinds. Types in Core are explicitly passed as arguments, but never returned.

Haskell
Compiler

HERMIT
Stack

Glasgow
Haskell

Compiler

Haskell
Module

Haskell
Binary

HERMIT
Kernel

KURE

GHC Core
Support

Rewrite
Primitives

Command
Support

HERMIT

RESTful
Server

HERMIT
Applications

GHC
Plugin

API

Android
HERMIT

Application

Users

Scotty

Warp

Command
Line + Tab
Complete

HERMIT
Script

Reader

HERMIT
Shell

HERMIT
Scripts

Plugin
DSL

Custom
GHC

Plugins

Fig. 2: Architecture of HERMIT

2.2 HERMIT

HERMIT is a GHC plugin that allows the programmer to interact with the GHC
Core representation of their program during compilation. Fig. 2 presents the
architecture of the HERMIT system. More details of HERMIT’s implementation
and use can be found in [Farmer et al., 2012] and [Sculthorpe et al., 2013b],
respectively.

A key contribution of this paper is to develop HERMIT’s capabilities for
non-interactive use. Specifically, in the diagram in Fig. 2, the component la-
beled “Plugin DSL” is new, and the topic of this paper. This DSL operates at
two levels. The first, outer level is concerned with specifying HERMIT’s behav-
ior in the context of the GHC optimization pipeline. That is, when and where
transformations are applied. It is introduced in Section 3. The second level is
concerned with manipulating Core itself. For this, we use HERMIT’s existing
strategic rewriting facility provided by KURE.

2.3 KURE

KURE is a strongly-typed strategic rewriting DSL [Gill, 2009, Sculthorpe et al.,
2013c]. HERMIT transformations are implemented as KURE transformations
parameterized over a specific context and monad, targeting a sum type which
contains the mutually recursive types that make up the Core language. The
two principal types for HERMIT transformations are TranslateH a b, which
transforms a value of type a into one of type b, and RewriteH a, which is
equivalent to TranslateH a a.

HERMIT comes with an existing set of KURE transformations implementing
common rewrites, such as β-reduction and let floating. It also implements a set
of congruence combinators, which allow for concise pattern matching on, and
transformation of, syntactic constructs. As an example, the following transfor-
mation returns a list of dead let bindings.

deadBinders :: TranslateH CoreExpr [Var]

deadBinders = letT bindVarsT freeVarsT (\\)

bindVarsT :: TranslateH CoreBind [Var]

freeVarsT :: TranslateH CoreExpr [Var]

(\\) :: Eq a => [a] -> [a] -> [a]

The letT congruence combinator pattern matches on a let(rec) binding ex-
pression. Applying deadBinders to a non-let expression will cause the trans-
lation to fail. The bindVarsT transformation is applied to the binding group,
returning a list of bound variables. The freeVarsT transformation is applied to
the let body, returning a list of free variables. These two lists are combined using
Haskell’s list-difference function, removing all the free variables from the list of
bound variables and returning the result.

3 Controlling the Optimizer

To date, HERMIT has primarily been developed as an interactive tool for per-
forming transformations on Core. As such, HERMIT runs at the front of the
optimization pipeline (as the very first Core-to-Core pass), where the Core rep-
resentation of a program is more easily related to the source program.

The goal of this section is to develop HERMIT’s capabilities to express trans-
formations that can be run in an automated manner. Much work can be saved by
allowing existing GHC passes to do their work, only invoking a HERMIT trans-
formation at the right moment. As a practical first step, HERMIT was modified
to run both before and after each Core-to-Core pass. Each time a HERMIT pass
is invoked, it determines whether to perform any transformations.

In order to specify what HERMIT should do each time it runs, we developed
a deeply embedded monadic DSL. A single top-level function called optimize

lifts a computation expressed using this DSL into a custom GHC plugin. As a
first example, the existing HERMIT plugin, which runs the interactive HERMIT
shell, is specified using:

plugin :: Plugin

plugin = optimize $ \ options -> phase 0 $ interactive [] options

Briefly, optimize takes a callback function which accepts per-module command-
line options specified when HERMIT is invoked and returns a monadic descrip-
tion of the desired plugin behavior. The plugin above runs the interactive shell
in phase zero, which is at the front of the pipeline. The type of optimize is:

optimize :: ([CommandLineOption] -> OM ()) -> Plugin

OM is a normalized deep embedding of a monadic computation by way of
the operational package [Apfelmus, 2010a,b]. operational uses the monad
laws to normalize the structure of the computation, resulting in a sequence of
primitive operations terminated by a single return. Writing an interpreter for
the language consists of defining an appropriate action for each primitive, and
operational guarantees that the resulting monad obeys the monad laws. The
primitives for OM are specified by the OInst generalized abstract data-type.

data OInst :: * -> * where

RR :: RewriteH Core -> OInst ()

Query :: TranslateH Core a -> OInst a

Shell :: [External] -> [CommandLineOption] -> OInst ()

Guard :: (PhaseInfo -> Bool) -> OM () -> OInst ()

Focus :: TranslateH Core Path -> OM () -> OInst ()

Primitives can either be rewrites or translations, a call to the interactive shell,
a guard which uses a predicate to determine whether to run an inner computa-
tion, or a means applying an inner computation at a specific point in the AST.
A current limitation is that calls to the shell never return, so subsequent actions
are silently ignored. This limitation can be lifted with a significant redesign of
the interactive shell, which remains future work.

Making the interactive shell a primitive in our DSL is the key feature that
allows users to extend HERMIT with new primitive transformations without
recompiling HERMIT itself. To add a new transformation, one provides a list
of Externals to the interactive function. The External type is defined by
HERMIT, and is used to associate a transformation with a name and metadata
such as help text and tags. The interactive function is the user-facing wrapper
around the Shell primitive.

myRewrite :: RewriteH Core

myRewrite = ...

cmds :: [External]

cmds = [external "my-rewrite" myRewrite ["help text for my rewrite"]]

plugin :: Plugin

plugin = optimize $ \ options -> phase 0 $ interactive cmds options

In addition to the small examples in this section, this facility has been used
to develop a custom optimization for the Scrap Your Boilerplate [Lämmel and
Peyton Jones, 2003, 2004] generics library [Adams et al., 2013]. It will also be
used in Section 5 to develop a custom Stream Fusion optimization.

The Guard primitive enables the ability to write HERMIT plugins which op-
erate in multiple phases of the optimization pipeline. It accepts a predicate which
can examine information about the current phase in order to signal whether the
inner computation should be run. Note that the return type of Guard is always
(), since the possible failure of the guard condition means there can be no return
value.

Primitives

run Apply a KURE Rewrite.
query Apply a KURE Translation, returning the result.

interactive Start the HERMIT interactive shell.
display Dump the currently focused AST using HERMIT’s pretty printer.

Guards

guard Use a predicate on current phase information to enable/disable actions
in certain phases.

phase Only run action in given phase.
after Run action directly after named phase.

before Run action directly before named phase.
allPhases Run action in all phases (default).

Focusing

at Use a path-generating translation to focus actions in the Core AST.
when Apply an action to all places in the AST where a given translation

succeeds.

Fig. 3: Plugin pass domain-specific language.

A summary of the capabilities of this DSL is in Fig. 3. Each GHC pass is
named using an enumeration type, allowing transformations to be scheduled
before or after a named pass. As a small example, the following plugin runs
directly after GHC’s constructor specialization pass, displaying the definitions
of functions whose names have been specified on the command line.

plugin :: Plugin

plugin = optimize $ \ fns -> after SpecConstr $

forM_ fns $ \ fn -> at (considerName fn) display

Plugins implemented with optimize can be packaged as normal Cabal pack-
ages which depend on the HERMIT library. The HERMIT driver program has
been modified to support loading these custom plugins. (Note that, as before,
the HERMIT driver simply calls GHC with appropriate arguments. It is merely
provided for convenience.) Here is an example call to HERMIT using a custom
plugin.

hermit Sum.hs -opt=HERMIT.Optimization.SYB +Main mapIntM

This invokes HERMIT on Sum.hs, targeting the Main module, using the
plugin found in the HERMIT.Optimization.SYB module. Values after the target
module (+Main) are passed as command-line options to the callback given to
optimize. In this case, they are interpreted as the names of functions to target
with the optimization. Note that multiple target modules may be specified.

4 Rewriting Function Calls

It is often the case that one wishes to rewrite function calls. HERMIT provides a
traversal strategy called anyCallR to locate function calls in a topdown manner.

It offers no support, however, for pattern matching and deconstructing them in
the spirit of congruence combinators such as letT, described in Section 2.3. In
the course of this work, we discovered a pleasing set of combinators for this task,
which we describe in this section.

The motivating example is a rewrite which unfolds a definition. While inlining
simply replaces a variable occurence with its definition, unfolding attempts to
substitute the arguments of the application into the body of the inlined function.
The inline rewrite only needs to pattern match on a single variable occurence,
which it does with the varT congruence combinator. The resulting variable is
then found in HERMIT’s context, which maps binders to their right-hand sides.
HERMIT’s inlining rewrite is called inlineR.

An unfold rewrite must pattern match on both a single variable and a tree
of application nodes. The former case occurs when unfolding functions with
no arguments. When encountering a tree of applications, the left-most deepest
leaf should be inlined (as application is left associative), then the tree should
be maximally β-reduced. Assuming the existence of the β-reducing rewrite, the
unfold rewrite can be defined as:

unfoldR :: RewriteH CoreExpr

unfoldR = leftmostDeepest >>> betaReduceStarR

where leftmostDeepest :: RewriteH CoreExpr

leftmostDeepest = inlineR <+ appAllR leftmostDeepest idR

This definition first inlines the left-most leaf of the application tree, then
fully β-reduce the result. To inline the left-most leaf, we first try inlineR on
the current node, in case it is a variable. If inlineR succeeds, we are done. If
it fails, we try pattern matching on an application node with appAllR. If the
node is not an application, this will fail, causing the entire unfoldR rewrite
to fail. If it is an application node, we recursively apply leftmostDeepest to
the left child and the identity rewrite idR to the right child. The only way for
leftmostDeepest to succeed is if a left child can eventually be inlined. When
this occurs, betaReduceStarR is called on the transformed application tree at
location where unfoldR was originally called, giving it access to the arguments
necessary for β-reduction.

The definition of unfoldR is pleasingly concise; a testament to the power of
strategic programming. However, it is also rather indescriminate about what it
unfolds. In practice, we likely want to only unfold a call to a certain function,
or all calls with certain properties. HERMIT provides a function for inlining a
specific variable:

inlineNameR :: Name -> RewriteH CoreExpr

It is tempting to create the following additional unfold rewrite, putting
inlineNameR to use:

unfoldNameR :: Name -> RewriteH CoreExpr

unfoldNameR nm = leftmostDeepest >>> betaReduceStarR

where leftmostDeepest :: RewriteH CoreExpr

leftmostDeepest = inlineNameR nm <+ appAllR leftmostDeepest idR

However, this seems like unnecessary code duplication. We need a means of
pattern matching on function calls before calling unfoldR. To do so, we de-
fine the following primitive, which deconstructs applications using the GHC
collectArgs function. The first component of the returned pair is the func-
tion being called, and the second component is a list of argument expressions.

callT :: TranslateH CoreExpr (CoreExpr, [CoreExpr])

callT = contextfreeT $ \ expr ->

case expr of

Var {} -> return (expr, [])

App {} -> return (collectArgs expr)

_ -> fail "not an application or variable occurence."

Using callT, we can now build translations which only deconstruct certain
function calls. Note the use of guardMsg, which accepts as arguments a boolean
and a string. If the boolean is False, the entire translation fails with the message
contained in the string.

callPredT :: (Id -> [CoreExpr] -> Bool)

-> TranslateH CoreExpr (CoreExpr, [CoreExpr])

callPredT p = do

call@(Var i, args) <- callT

guardMsg (p i args) "predicate failed."

return call

callNameT :: Name -> TranslateH CoreExpr (CoreExpr, [CoreExpr])

callNameT nm = callPredT (const . compareNameToId nm)

callSaturatedT :: TranslateH CoreExpr (CoreExpr, [CoreExpr])

callSaturatedT = callPredT (\ i args -> idArity i == length args)

We can combine these transformations with unfoldR to obtain a variety of
unfold rewrites.

unfoldPredR :: (Id -> [CoreExpr] -> Bool) -> RewriteH CoreExpr

unfoldPredR p = callPredT p >>= \ _ -> unfoldR

unfoldNameR :: Name -> RewriteH CoreExpr

unfoldNameR nm = callNameT nm >>= \ _ -> unfoldR

specializeR :: RewriteH CoreExpr

specializeR = unfoldPredR (const (all isTyCoArg))

In summary, two primitive rewrites (unfoldR and callT) form the basis of
a rich set of combinators for inspecting and transforming function calls. Com-
bined with HERMIT’s existing traversal combinator anyCallR, they allow for
the concise specification of unfolding transformations. Fig. 4 lists some of the
newly available transformations.

unfoldR Unfold a function call.
unfoldPredR Unfold a function call which passes a predicate test.

unfoldNameR Unfold a call to a named function.
unfoldAnyR Unfold a call to a function present in a list of names.

unfoldInlinableR Unfold a call if GHC considers the function ‘inlinable’
unfoldSaturatedR Unfold a completely saturated call.

specializeR Specialize an application to its type and coercion arguments.

Fig. 4: New Unfolding Transformations

5 Case Study: concatMap

In functional languages, it is often natural to implement sequence-processing
pipelines by gluing together reusable combinators such as foldr and zip which
encapsulate a specific recursion pattern. These combinators communicate their
results to the next function in the pipeline by means of intermediate data struc-
tures. Näıvely compiled, these intermediate structures adversely affect perfor-
mance as they must be allocated and subsequently garbage collected.

Fusion is the process of transforming these combinator pipelines in order to
eliminate as many intermediate structures as possible. Intuitively, rather than
allow each combinator to transform the entire sequence in turn, the resulting
code processes sequence elements in an assembly-line fashion. In many cases,
after fusion, no sequence structure need be allocated at all.

Stream Fusion [Coutts et al., 2007] is known as a short-cut fusion system.
An excellent and thorough overview of Stream Fusion and rival systems, such as
GHC’s foldr/build, can be found in Coutts [2010]. The foldr/build system fuses
concatMap well, but cannot fuse combinators which consume more sequences
than they produce (or vice versa), such as zip and unzip. An alternative sys-
tem, known as unfoldr/destroy (alternatively unfoldr/unbuild), exists which can
properly fuse zip, but cannot fuse filter.

Stream Fusion, on the other hand, excels at fusing zip and filter, but
cannot fuse concatMap. As concatMap is the combinator underlying nested list
comprehensions, this is a major drawback to the system. Stream Fusion relies
on a conversion to the eponymous Stream representation type, with a rewrite
rule to eliminate redundant conversions. To see why concatMap cannot be fused
requires understanding this type.

data Stream a = forall s. Stream (s -> Step a s) s

data Step a s = Done | Skip s | Yield a s

A stream is a pair of generator function and state. The key to the problem is
that the state of a stream is existentially quantified. Consider the type of Stream
Fusion’s version of concatMap.

concatMapS :: (a -> Stream b) -> Stream a -> Stream b

The state of the inner stream is existentially quantified, meaning an entirely
new state and generator function could be returned each time the function is
given a value of the outer stream. To draw a parallel to loops, concatMapS has
the ability to express this computation.

for (int i = 1; i <= 10; i++)

switch i {

case 1: for (int j = 1; j < 10; j++) { ... }

case 2: for (int k = 100; k > 0; k = k/2) { ... }

...

}

There is obviously no hope of fusing the case where each value of the outer se-
quence selects a different inner sequence. A less powerful combinator, sometimes
called flattenS [Höner zu Siederdissen, 2012], can be fused, however.

flattenS :: (s -> Step b s) -> (a -> s) -> Stream a -> Stream b

flattenS makes explicit that the state and generator function are statically
known, regardless of the value present in the outer stream. The disadvantage is
that flattenS is more difficult to use. Whereas the rest of the Stream Fusion
system hides the complexity of state and generator functions from the program-
mer, providing familiar sequence combinators, flattenS requires one to think
in terms of generator functions and state. A call to concatMapS with a compli-
cated inner stream pipeline can make use of existing stream combinators, while
flattenS requires the programmer to write a hand-fused, potentially complex
generator function.

Proposed Solution In his dissertation, Coutts [2010] proposes the following trans-
formation for optimizing common uses of concatMapS by transforming them into
calls to flattenS.

∀ g s strm. concatMapS (λx→ Stream g s) strm ≡ flattenS g (λx→ s) strm

This transformation is subject to certain restrictions. First, x cannot be
free in g, as it would become unbound in the resulting code; a side condition
which is inexpressible in GHC RULES rewrites. Second, the function passed to
concatMapS must return the same inner stream regardless of the value of x. For
instance, the following call to concatMapS could not be transformed with this
rule.

concatMapS (\x -> case odd x of

True -> Stream g1 s1

False -> Stream g2 s2) strm

The fact that one cannot pattern match against case expressions in RULES
pragmas means that even with a scheme for combining generator functions and
states in a suitable way, the rewrite cannot be expressed. Expressing this trans-
formation and applying it automatically during compilation is the topic of the
remainder of this paper.

5.1 Implementing concatMap Optimization

Expressing the proposed transformation rule as a HERMIT primitive is straight-
forward. First, we use callNameT from Section 4 to pattern match on a call to

concatMapS, extracting its arguments. It is important to remember that univer-
sally quantified types in Core are passed as explicit arguments, so they must be
included in the pattern match. We then use an auxiliary transformation that we
name exposeInnerStreamT to extract relevant information from the function
argument to concatMapS. After checking the side condition that x is not free in
the generator function, we use this information, the identifier for flattenS, and
some GHC functions to build the resulting expression.

concatMapSR :: RewriteH CoreExpr

concatMapSR = do

(_, [aTy, bTy, f, outerStream]) <- callNameT (TH.mkName "concatMapS")

(x, gen, st) <- applyInContextT exposeInnerStreamT f

fvs <- applyInContextT freeVarsT gen

guardMsg (x ‘notElem‘ fvs) "x would become unbound in generator."

flattenSid <- findIdT $ TH.mkName "flattenS"

return $ mkCoreApps (varToCoreExpr flattenSid)

[Type (exprType st), bTy, aTy

, gen, Lam x st, outerStream]

exposeInnerStreamT uses the lamT congruence combinator to pattern match
on an explicit lambda, examining its body. If the body is an application of the
Stream constructor, it extracts and returns the relevant information.

exposeInnerStreamT

:: TranslateH CoreExpr (CoreBndr -- the ’x’ in ’concatMap (\x -> ...)’

, CoreExpr -- inner stream stepper function

, CoreExpr) -- inner stream state

exposeInnerStreamT =

lamT (callDataConNameT $ TH.mkName "Stream")

(\ x (_dc, _univTys, [_sTy, gen, st]) -> (x, gen, st))

5.2 The Stream Within

The transformation in the previous section is subject to a number of limitations.
As previously mentioned, the generator for the inner stream cannot depend on
the value of the outer stream. Additionally, exposeInnerStreamT requires a very
specific syntactic form for the function it examines. In this section, we improve
our transformation to lift these restrictions. The entire transformation, after the
these modifications, can be found in Fig. 5.

Non-Constant Inner Streams The biggest limitation is the free variable
check on the generator function. For any interesting use of concatMapS, this will
fail. Consider the following call, where the generator for the inner enumFromToS
will necessarily depend on x in order to know when to stop generating additional
values.

concatMapS (\x -> enumFromToS 1 x) (enumFromToS 1 100)

concatMapSR :: RewriteH CoreExpr

concatMapSR = do

(_, [aTy, bTy, f, outerStream]) <- callNameT (TH.mkName "concatMapS")

(x, gen@(Lam s _), st) <- applyInContextT exposeInnerStreamT f

flattenSid <- findIdT $ TH.mkName "flattenS"

fixStepid <- findIdT $ TH.mkName "fixStep"

let st’ = mkCoreTup [varToCoreExpr x, st]

stId <- constT $ newIdH "st" (exprType st’)

wild <- constT $ cloneVarH ("wild_"++) stId

let fixApp = mkCoreApps (varToCoreExpr fixStepid)

[aTy, bTy, Type $ exprType st

, varToCoreExpr x, mkCoreApp gen (varToCoreExpr s)]

genFn = mkCoreLams [stId] $

mkSmallTupleCase [x,s] fixApp wild (varToCoreExpr stId)

return $ mkCoreApps (varToCoreExpr flattenSid)

[Type (exprType st’), bTy, aTy

, genFn, Lam x st’, outerStream]

exposeInnerStreamT

:: TranslateH CoreExpr (CoreBndr -- the ’x’ in ’concatMap (\x -> ...)’

, CoreExpr -- inner stream stepper function

, CoreExpr) -- inner stream state

exposeInnerStreamT =

(lamR exposeStreamConstructor >>>

lamT (callDataConNameT $ TH.mkName "Stream")

(\ x (_dc, _univTys, [_sTy, gen, st]) -> (x, gen, st)))

<+ (unfoldR >>> exposeInnerStreamT)

exposeStreamConstructor :: RewriteH CoreExpr

exposeStreamConstructor = tryR $ extractR $ repeatR $

onetdR (promoteExprR $ rules ["stream/unstream", "unstream/stream"]

<+ letUnfloat <+ letElim <+ caseUnfloat)

<+ simplifyR <+ promoteExprR unfoldR

Fig. 5: The final concatMapS transformation.

To lift this restriction, we stash x in the state. This involves changing the
state type of the inner stream, which makes generating code for the resulting
call to flattenS significantly more complicated. In essence, we tuple the value
of the outer stream (x) with the original inner stream state. Then we build a new
generator function using a new binder of the appropriate type. This generator
cases on the new state to expose the original state, which it passes to the original
generator. It then places x back into the resulting state using a helper function
called fixStep.

fixStep :: a -> Step b s -> Step b (a,s)

fixStep _ Done = Done

fixStep a (Skip s) = Skip (a,s)

fixStep a (Yield b s) = Yield b (a,s)

The definition of fixStep is required to be in scope in the target program.
This may seem curious, but currently we find building arbitrary Core expressions
to be error-prone and time-consuming. It is easier to build a simple function
application than to modify arbitrary code to properly tuple the state.

The resulting transformation can dispense with the free variable check, as
now x is bound by scrutinizing the new state with a case expression.

Non-Explicit λs The exposeInnerStreamT transformation is limited to match-
ing explicit lambda expressions. If the function passed to concatMapS is a par-
tially applied function, there will be no explicit lambda manifest. Consider:

concatMapS (enumFromToS 1) (enumFromToS 1 100)

We could attempt to η-expand the function, but find it better to attempt to
unfold instead, since we eventually also need an explicit Stream constructor.

Unfloating The final challenge is to get the Stream constructor to the head of
the body of the lambda expression. Often, there are let bindings wrapping the
constructor. We can push these into the arguments of the constructor (unfloat
them). Unfloating into arguments necessarily duplicates let bindings. This loss of
sharing could result in duplicated computation. In practice, it appears rare that
a let binding is used in both the generator and the state (the two arguments to
the Stream constructor), so at least one will usually be eliminated by dead code
removal. However, we would like to examine this consequence in future work.

More interestingly, it turns out we can unfloat case expressions into the
arguments of the Stream constructor. Normally this sort of transformation affects
termination properties of the program, as case expressions perform evaluation
in Core. In this case, our transformation is discarding the Stream constructor of
the inner stream anyway, so termination behavior is preserved.

Unfloating case expressions effectively merges multiple streams (one from
each case alternative) into a single stream with a more complicated genera-
tor function and state. While unfloating case expressions enables the overall
concatMapS transformation, more examples need to be studied to determine
how this affects the resulting Core. Preliminary examination shows that all Step
constructors are fused away for simple examples.

If the pipeline for the inner stream involved multiple stream combinators,
there may be residual stream/unstream pairs to eliminate. This can also happen
if a pair of stream and unstream were previously separated by let bindings or a
case statement which have now been unfloated.

These transformations are implemented by exposeStreamConstructor, which
can be thought of as exposing a view of the function body that is more useful to
exposeInnerStreamT.

5.3 The Plugin

The overall structure of the optimization is simple. We repeatedly apply GHC
RULES pragmas, lifted into HERMIT, to replace normal sequence processing
combinators with their stream counterparts; fuse pairs of stream and unstream;
and simplify the expression with HERMIT’s bash command, which is akin to
GHC’s simplifier. Next we apply our custom concatMapS transformation. Fi-
nally, we inline all Stream Fusion combinators and simplify, handing the result
back to GHC for further optimization.

plugin :: Plugin

plugin = optimize $ \ opts -> phase 0 $ run $ tryR $

repeatR (anybuR (rules ["stream/unstream", "unstream/stream"

, ... list of Stream Fusion rules ...])

<+ bash)

>>> tryR (anybuR concatMapSR)

>>> repeatR (anyCallR

(unfoldAnyR ["fixStep", "flattenS"

, ... list of combinators ...]))

>>> bash

6 Conclusion and Future Work

In this paper, we introduced a monadic DSL for controlling when and where
transformations are applied to GHC’s intermediate representation for Haskell
programs. We also present a principled set of strategic-programming combina-
tors for transforming function calls. Putting these two contributions to use, we
implemented a custom GHC plugin for optimizing the concatMap combinator.
This plugin was then extended to increase optimization opportunities.

The plugin DSL, though currently small, allows optimization algorithms to
be expressed naturally and concisely. It remains to be seen how it will fare in the
presence of the ability to rearrange other optimization passes, which is something
we desire for HERMIT in the future.

The strategic programming combinators for function calls are lightweight and
effective. As the specializeR example in Section 4 demonstrates, they enable
terse encodings of complex transformations.

The experience of building a custom optimization for concatMap was illumi-
nating. It revealed several aspects of HERMIT that are still painful, including
debugging large transformations and building well-typed Core expressions. One
insidious bug, where the first two type arguments to the application of flattenS
built by the concatMapSR rewrite were reversed, kept one author occupied for
hours. A safer means for constructing expressions is clearly needed.

Our next step is to apply our Stream Fusion optimization to large programs
to measure its effectiveness in the wild. An enticing candidate is the ADPfusion

library, which goes to elaborate lengths to make using the flattenS combinator
on nested multi-dimensional vectors less painful [Höner zu Siederdissen, 2012].
It would be interesting to replace the flattenS machinery with more natural

calls to concatMap, optimize, then compare the results, both by examining the
Core and by benchmarking.

So far, we are only interpreting the monadic DSL, but the deep embed-
ding permits future opportunities to optimize the computation, or compile it
[Sculthorpe et al., 2013a]. One could, for instance, compile a computation of
type OM a into a KURE translation of type TranslateH Core a.

Acknowledgements

We thank Nicolas Frisby and Neil Sculthorpe for feedback on drafts of this paper.
This material is based upon work supported by the National Science Foundation
under Grant No. 1117569.

References

M. Adams, A. Farmer, and J. P. Magalhes. Optimizing syb is easy! URL http://

www.ittc.ku.edu/csdl/fpg/files/Adams-13-OSIE.pdf. Submitted to the
International Conference on Functional Programming, 2013.

H. Apfelmus. The Operational monad tutorial. The Monad.Reader, 15:37–55,
2010a.

H. Apfelmus, 2010b. URL http://hackage.haskell.org/package/

operational.
D. Coutts. Stream Fusion: Practical Shortcut Fusion for Coinductive Sequence

Types. PhD thesis, University of Oxford, 2010.
D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: from lists to streams

to nothing at all. In Proceedings of the 12th ACM SIGPLAN international
conference on Functional programming, pages 315–326, Freiburg, Germany,
2007. ACM.

A. Farmer, A. Gill, E. Komp, and N. Sculthorpe. The HERMIT in the machine:
A plugin for the interactive transformation of GHC core language programs.
In 2012 ACM SIGPLAN Haskell Symposium, pages 1–12, New York, 2012.
ACM.

GHC Team. The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 7.6.2, 2013. URL http://www.haskell.org/ghc.

A. Gill. A Haskell hosted DSL for writing transformation systems. In Proceedings
of the IFIP TC 2 Working Conference on Domain-Specific Languages, DSL
’09, pages 285–309. Springer-Verlag, July 2009.

C. Höner zu Siederdissen. Sneaking around concatmap: efficient combinators
for dynamic programming. In Proceedings of the 17th ACM SIGPLAN inter-
national conference on Functional programming, pages 215–226, Copenhagen,
Denmark, 2012. ACM.

M. P. Jones. Dictionary-free overloading by partial evaluation. Lisp Symb.
Comput., 8(3):229–248, Sept. 1995. ISSN 0892-4635.

S. L. P. Jones and J. Launchbury. Unboxed values as first class citizens in a
non-strict functional language. In Proceedings of the 5th ACM conference on
Functional programming languages and computer architecture, pages 636–666.
Springer-Verlag New York, Inc., 1991.

http://www.ittc.ku.edu/csdl/fpg/files/Adams-13-OSIE.pdf
http://www.ittc.ku.edu/csdl/fpg/files/Adams-13-OSIE.pdf
http://hackage.haskell.org/package/operational
http://hackage.haskell.org/package/operational
http://www.haskell.org/ghc

R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. In Types in Languages Design and Imple-
mentation, pages 26–37. ACM, 2003.

R. Lämmel and S. Peyton Jones. Scrap more boilerplate: reflection, zips, and
generalised casts. In International Conference on Functional Programming,
pages 244–255. ACM, 2004.

J. P. Magalhães, S. Holdermans, J. Jeuring, and A. Löh. Optimizing generics
is easy! In Proceedings of the 2010 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, pages 33–42. ACM, 2010.

S. Peyton Jones. Call-pattern specialisation for haskell programs. In Proceedings
of the 12th ACM SIGPLAN international conference on Functional program-
ming, ICFP ’07, pages 327–337. ACM, 2007.

S. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler inliner.
Journal of Functional Programming, 12(4&5):393–433, 2002.

S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: Rewriting as
a practical optimisation technique in GHC. In Haskell Workshop 2001, pages
203–233, 2001.

B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
N. Sculthorpe, J. Bracker, G. Giorgidze, and A. Gill. The constrained-

monad problem. URL http://www.ittc.ku.edu/csdl/fpg/files/

Sculthorpe-13-ConstrainedMonad.pdf. Submitted to the International
Conference on Functional Programming, 2013a.

N. Sculthorpe, A. Farmer, and A. Gill. The HERMIT in the tree: Mech-
anizing program transformations in the GHC core language. In Proceed-
ings of the 24th Symposium on Implementation and Application of Func-
tional Languages, 2013b. URL http://www.ittc.ku.edu/csdl/fpg/files/

Sculthorpe-13-HERMITinTree.pdf.
N. Sculthorpe, N. Frisby, and A. Gill. KURE: A Haskell-embedded strategic pro-

gramming language with custom closed universes. URL http://www.ittc.

ku.edu/csdl/fpg/files/Sculthorpe-13-KURE.pdf. Submitted to the Jour-
nal of Functional Programming, 2013c.

M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Donnelly. System
F with type equality coercions. In Types in Language Design and Implemen-
taion, pages 53–66. ACM, 2007.

B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P.
Magalhães. Giving Haskell a promotion. In Types in Language Design and
Implementation, pages 53–66. ACM, 2012.

http://www.ittc.ku.edu/csdl/fpg/files/Sculthorpe-13-ConstrainedMonad.pdf
http://www.ittc.ku.edu/csdl/fpg/files/Sculthorpe-13-ConstrainedMonad.pdf
http://www.ittc.ku.edu/csdl/fpg/files/Sculthorpe-13-HERMITinTree.pdf
http://www.ittc.ku.edu/csdl/fpg/files/Sculthorpe-13-HERMITinTree.pdf
http://www.ittc.ku.edu/csdl/fpg/files/Sculthorpe-13-KURE.pdf
http://www.ittc.ku.edu/csdl/fpg/files/Sculthorpe-13-KURE.pdf

	A Language for Domain Specific Optimizations in Haskell

