
How to Interact with a HERMIT

(Draft Extended Abstract)

Andy Gill, Andrew Farmer, Neil Sculthorpe, Adam Howell, Robert F Blair,
Ryan Scott, Patrick G Flor, and Michael Tabone

ITTC / EECS
The University of Kansas

Lawrence, KS 66045

Abstract. To the user, compilers are often black-boxes. Even if a com-
piler can be configured with flags and parameters, the user typically only
sees the end-result of those configuration options. When and where those
optimizations are applied, and the changes that the intermediate repre-
sentation of the code goes through, remain mysterious. Sometimes a user
just wants to be able to view the intermediate code, or a particular in-
teresting fragment of that code, before and after the optimization pass
of interest, to see what changes are occurring. Sometimes it would be
helpful to be able to speculatively apply a transformation in isolation, to
visually see what effect that has on the intermediate code, and also what
effect it has on the performance of the generated code. And if a user is
designing a new optimization, it is helpful to be able to experiment with
that optimization before putting in the effort of implementing it.
The Haskell Equational Reasoning Model-to-Implementation Tunnel
(HERMIT) is a compiler plugin that provides transformations-as-a-service,
augmenting the Glasgow Haskell Compiler (GHC) to allow engineers to
login virtually into their compilation sessions, and view and manipulate
GHC’s core language. The HERMIT system looks after the details: what
transformations are feasible; binding issues; recording undischarged pre-
conditions; history; and other bookkeeping. An interactive language with
about 100 primitive commands is available for directing transformations.
This paper is about the interactive capabilities of HERMIT, and the
way it allows a user to view and manipulate GHC’s core language. In
this paper, we present and contrast in detail two different interfaces for
HERMIT: an Android-based interface designed for code viewing and
exploration, with the aim of allowing the user to understand what code
is being generated, and the effects of optimizations on that code; and
a shell-based interactive interface, designed to support the scripting of,
and experimentally applying, new transformations.

Keywords: Program Transformation, Shells, Tablets, Optimization

1 Introduction

How do you interact with a compiler? Typically, compilers are stream processors,
taking source code, and outputting machine code. You interact with a compiler

by saying something different in the source file (what you want to compile) or
changing a flag (how the compilation is done), or even by using source-level
pragmas that act as a hybrid between source and configuration option. We still
think about and use our compilers in fundamentally the same way as we have
been for 60 years, as a batch processors and black boxes.

Yet, inside the black box, there are many, many choices the compiler is mak-
ing for us, some allowing escape from tedium, some with profound execution
profile consequences. An example of the mundane is the layout of a stack frame;
an example of the profound is the choice of representation of data structures. As
compilers become more powerful and complicated, these choices, in particular
the poor ones, have higher impact.

In high level languages, like Haskell, there are many open choices for the
compiler to resolve. Immutability of structure in particular opens up many ad-
ditional compiler choices. Yet our compilers have been tuned using Appel’s full
employment theorem for compiler writers [2], and are still externally structured
like the original batch assemblers of old.

HERMIT is a compiler plugin that allows a user to freeze a batch compile
session midway, and then interact with it, in the same way as a SSH session
interacts with a remote machine. The internals of the program under compilation
can be altered, as well as the phase ordering, in a manner analogous to the way a
remote shell can alter a remote filesystem. Of course, unrestricted manipulation
of the compiler’s internal structures may result in next to useless output. This
paper is about the choices of interactions possible in HERMIT, and in particular,
channeling the choices to allow sensible exploration of options.

2 Designing a Haskell Rewriting System

We want to be able to transform functional programs, as we have been taught
when learning functional programming. This is our primary objective with in-
teracting with a compiler, and there are many useful things we can do, including
space and time optimizations, API retargeting, and informal proofs. However,
the pragmatics of the real world clash with this idealism from early functional
programming. We therefore make the following design decisions and compro-
mises:

– Real Haskell – We want to transform real Haskell programs, not simplifica-
tions of Haskell or toy examples. In particular, real world Haskell has type-
classes, GADTs and other advanced type-system extensions. As a design
decision, we therefore interact directly with Core, GHCs internal language,
rather than a source language. At this level, all the various GHC exten-
sions have been unified into a single language, based on System-FC [8]. This
decision has pervasive consequences, but is based on what Haskell hackers
actually do – they look at Core and understand Core semantics, and then
decide what to do.

– HERMIT is therefore a plugin into GHC, and interacts with the internals
directly.

– We want to make the reading of Core, real Core, as easy as possible. Because
of this we have a flexible Core pretty printer, with various visual abstraction
options to help understand a program at different levels.

– The basic model of interaction is based on interacting with a filesystem
like object, with the current AST being presented using our pretty printer.
Commands can be issued that will change this structure; other commands
can ask questions; and compound commands can be run to perform complex
operations.

– Given the underlying ability to display and change an AST, how are com-
mands communicated? This is the open question we are exploring. Currently,
a command-like shell is the primary mechanism; we elaborate this in the next
section.

– There needs to be commands for common rewriting operations, such as β-
reduction, and inlining.

– We want compound commands, and the ability to search for suitable deriva-
tions. For this we build on strategic programming [9], and our domain-specific
language for generic programming, KURE [4, 7].

– We are editing a structure, and as such we want the abilities of a editor
(navigation, undo, reply, history, etc). The model we use is one of a tree
of read-only AST, and we can navigate between these trees (like version
controlled source code), as well as place focus inside specific AST nodes (like
a cursor inside a file editor).

– Correctness – In what sense is a file system change or a database update
correct? In the context of HERMIT, we want a exploration tool that keeps
track of what we do, but does not stop us being “economical” with the
original semantics. The line of reasoning goes that if we can not manipu-
late a program to the desired target even without formal restrictions, then
adding restrictions will only make things harder. HERMIT is therefore has
a design with three modes: reading, writing, and recording. Reading is read
only, writing can change anything, as the interactor requests, and recording
adds an audit-trail of what has been changed, in context, to be discharged
externally.

Given these decisions, Fig. 1 gives the high-level architecture of HERMIT.
The main change since [3], at the block diagram level, is that the shell is now
a integral part of HERMIT, with three clients: the command line shell, the
scripting shell, and the web-based RESTful API, all of which share a common
API into the HERMIT shell.

Haskell
Compiler

HERMIT
Stack

Glasgow
Haskell

Compiler

Haskell
Module

Haskell
Binary

HERMIT
Kernel

KURE

GHC Core
Support

Rewrite
Primitives

Command
Support

HERMIT

RESTful
Server

HERMIT
Applications

GHC
Plugin

API

Android
HERMIT

Application

Users

Scotty

Warp

Command
Line + Tab
Complete

HERMIT
Script

Reader

HERMIT
Shell

HERMIT
Scripts

Plugin
DSL

Custom
GHC

Plugins

Fig. 1: Architecture of HERMIT

3 Interacting with an Intermediate Form

What commands and options do we want to give the user? What would be useful
in practice, and what might be useful though not initially obvious? This paper
documents our ideas, experiments, and experiences here.

We want to change how people write functional programs for the better.
Specifically, how might you write a functional program if you know that a usable,
mechanized, post-hoc system for improving programs existed. There is also some
play between the architecture decisions, and the commands offered, and we are
focused on the experienced users, who know Haskell well, and want to improve
their programs. We leave aside much of the detail about how many of these
commands are implemented, as the user does not concern themselves with these
detail, and much of this has already been discussed. A previous paper documents
the initial architecture [3]; another documents a successful attempt to mechanize
a number of well-known transformations [6]. Neither paper focused on interactive
nature of HERMIT.

We make heavy use of a shell-style command line. This was partly the vintage
of the authors, who prefer command-line tools, and that shells naturally lead
into a scripting languages. The intention always was to replace our shell with a
recursive invocation of the GHCi prompt, but the shell has taken on a life of its
own. The big breakthrough was the inclusion of tab-complete, with necessary
contextual lookups, which turned a clunky interface into something remarkably
useable overnight.

In order to help explain our possible commands, we categorize our commands
into the following groups. Note that they are not mutually exclusive.

Eval . The arrow of evaluation (reduces a term)
KURE . Commands that directly reflect the KURE DSL
Loop . Command may operate multiple times
Deep . Command may make a deep change, can be O(n)
Shallow . Command operates on local nodes only, O(1)
Navigation . Navigate via focus, or directional command
Query . Questions we ask
Predicate .Something that passes or fails
Introduce . Introduce something, like a new name
Commute . Commute is when you swap nested terms
PreCondition .Operation has a precondition
Debug .Commands specifically to help debugging
VersionControl . Version Control for Core Syntax
Bash .Commands that run as part of the bash command
Context .Commands that use their context, like inlining

We focus on three major classifications: Navigation, Shallow/Deep, and Ver-
sion Control.

3.1 Navigation

Navigation lets you get to where you want to go. These commands are the arrow
keys of a traditional editor, but instead move around a read-only syntax tree.
One important command is consider, which takes a binder-name argument,
transporting the cursor to this binder. There are also commands to move up and
down the tree, stash return points, reset to the root, and other navigation aids.
In each case, after the commands is executed, the overall tree remains the same,
just the location changes. After each navigation event, the pretty printer display
the content of everything beneath the cursor, letting the user see the focus point.

3.2 Shallow and Deep

Most commands that change the tree are either Shallow or Deep rewrites. The
Shallow commands make local changes at or near the cursor node, and the deep
commands make changes that can scope into the entire sub-tree (though not
above the cursor, only below). An example of a shallow command is η-reduction.
Shallow commands are simple to explain using rewrite rules.

(λv → e v) =⇒ e

An example of a Deep command is α-renaming. Deep commands need some form
of special syntax; in this case substitution.

e =⇒ e[v1/v2]

Rewrites can fail, and in which case no effect is recorded, and an error message
is given to the user.

3.3 Version Control

A rewrite creates a entirely new AST for the Haskell program in question, raising
the issue of version control. In order to facilitate experimentation, HERMIT
provides quite a rich set of version control commands. Specifically, every time a
transformation or navigation is done, a new labelled AST is created, with a link
from its parent AST. This AST contains the whole program, and the location
of the cursor.

We use a simple ASCII representation to show the nodes, and the transitions
between them.

0 o

| consider ’fib

1 o

| down

2 *

From here the user can move to any node (think git checkout), replay steps,
and backup through old nodes. If a new command is used on any non-leaf node,
a branch is created. The shell also provides a way to pre-load commands from a
file, for execution or stepping through. This branch-centric version control has
turned out to be really useful in practice!

4 Android HERMIT

Given much of value-added of HERMIT is presentation and background book-
keeping, we wanted to consider an Android interface into HERMIT. We are
specifically interested in tablets, like the Nexus 7 or 10, not phones, which would
be too small for reading code fragements. Navigation could be done using ges-
tures, rewrites could be buttons and menus, and version control could be a
second-level navigation, again using tablet-native operations. Towards this we
are implementing Armatus, an Android port of the HERMIT shell API. We are
starting with a port of the shell, communicating with a remote HERMIT in-
stance via HTTP and RESTful commands, and from there we are introducing
experiments with gestures. Currently, the system is prototyped, but the con-
nection with the server is not yet operational. We give a short overview of the
prototype here.

Designing a HERMIT shell that works on a typical Android tablet computer
interface requires consideration of screen size constraints, touch-based interac-
tion, and lack of a robust keyboard. Unlike the desktop HERMIT shell, where a
keyboard is sufficient for all tasks, Android devices use soft keyboards that limit
typing speeds and typically lack advanced features such as arrow keys (to access
previously used commands). To remedy these problems, we introduced several
visual shortcuts that reduce the amount of typing needed. One such approach
is Armatus’s command menu. The command menu can be opened by swiping
to the right, contains some basic HERMIT commands grouped into different

categories that can be expanded or closed as needed. Each command icon can
be dragged after being held down with one finger.

In addition, Armatus has several other visual shortcuts. Armatus features
a command history menu (that can be accessed through swiping) that stores a
command icon corresponding to every previously used command (either typed
out or used via drag and drop) during the session. Armatus also allows for
selecting individual entries in the shell and can apply specific transformations.
One transformation that lends itself well to Android is rearranging words in
an entry, which can be accomplished through methods similar to dragging and
dropping command icons. Extra functionality is also possible through finger
gesture.s Finger gestures are linear patterns that the user traces in some path
(e.g., a circle or a question mark) that could trigger specific Armatus functions
(e.g., tracing a question mark could pull up help documentation).

Some parts of Armatus were designed to account for hardware restrictions of
Android tablet computers (in particular, the Asus Nexus 7, which was used for
testing purposes). Screen real estate is severely limited when using a keyboard in
landscape mode. This provided motivation for grouping command icons into col-
lapsible menus in the command menu. We also attempted to add some Bluetooth
communication functionality in the event that an Internet connection was not
available. However, Android devices vary greatly in their support of Bluetooth
standards, and in particular, the Nexus 7 experiences difficulty with transferring
data to a desktop computer over Bluetooth, so such functionality may not be
feasible.

5 Conclusion

We have outlined the interactive nature of HERMIT, and how choices are pre-
sented to the user. The act of experimenting with the internals of functional
programs is even more interactive that we envisaged, and the adoption of the
version-control style approach to rewriting allows recording and replay. However,
the interactions are quite low-level. We want to take these same ideas, and ap-
ply them to higher-level transformations. Already, strategic programming can be
used for implementing searches, and has been used by others in this way [1]. We
want to see if the worker/wrapper transformation [5] can be used as a framework
for a meta-rewrite that will allow program refinement on a larger scale, but keep
the interactive nature.

The final paper will include a detailed literature survey, as well as more com-
plete overview of the Android system, and a section with observations on the
usage of interactions in HERMIT.

6 Acknowledgment

This material is based upon work supported by the National Science Foundation
under Grant No. 1117569.

References

1. Adams, M., Farmer, A., Magalhes, J.P.: Optimizing syb is easy! (2013),
http://www.ittc.ku.edu/csdl/fpg/files/Adams-13-OSIE.pdf, submitted to the Inter-
national Conference on Functional Programming

2. Appel, A.W.: Compiling with Continuations. Cambridge University Press (1992)
3. Farmer, A., Gill, A., Komp, E., Sculthorpe, N.: The HERMIT in the machine:

A plugin for the interactive transformation of GHC core language programs. In:
Proceedings of the ACM SIGPLAN Haskell Symposium. pp. 1–12. Haskell ’12, ACM
(2012), http://doi.acm.org/10.1145/2364506.2364508

4. Gill, A.: A Haskell hosted DSL for writing transformation systems. In: Proceedings
of the IFIP TC 2 Working Conference on Domain-Specific Languages. pp. 285–309.
DSL ’09, Springer-Verlag (July 2009)

5. Gill, A., Hutton, G.: The worker/wrapper transformation. Journal of Functional
Programming 19(2), 227–251 (March 2009)

6. Sculthorpe, N., Farmer, A., Gill, A.: The HERMIT in the tree: Mechanizing pro-
gram transformations in the GHC core language. In: Proceedings of the 24th
Symposium on Implementation and Application of Functional Languages (2013),
http://www.ittc.ku.edu/csdl/fpg/files/Sculthorpe-13-HERMITinTree.pdf

7. Sculthorpe, N., Frisby, N., Gill, A.: KURE: A Haskell-embedded
strategic programming language with custom closed universes (2013),
http://www.ittc.ku.edu/csdl/fpg/files/Sculthorpe-13-KURE.pdf, submitted to
the Journal of Functional Programming

8. Sulzmann, M., Chakravarty, M.M.T., Peyton Jones, S., n Donnelly, K.: System F
with type equality coercions. In: Types in Language Design and Implementaion. pp.
53–66. ACM (2007)

9. Visser, E.: A survey of strategies in rule-based program transformation systems.
Journal of Symbolic Computation 40(1), 831–873 (2005)

