
Sunroof: A Monadic DSL to Generate JavaScript

Jan Bracker1,2 and Andy Gill1

1 ITTC / EECS
The University of Kansas

Lawrence, KS 66045

2 Institut für Informatik
Christian-Albrechts-Universität

Kiel, Germany

Abstract. Sunroof is a Haskell-hosted Domain Specific Language (DSL)
for generating JavaScript. Sunroof is build on top of the JavaScript
monad, which, like the Haskell IO-monad, allows access to external re-
sources, but specifically JavaScript resources. As such, Sunroof is pri-
marily a feature-rich foreign-function API to the browser’s JavaScript
engine, and all the browser-specific functionality, including HTML-based
rendering, event handling, and drawing to the HTML5 canvas.
In this paper, we give the design and implementation of Sunroof. Using
monadic reification, we generate JavaScript from the a deep embedding
of the JavaScript monad. The Sunroof DSL has the feel of native Haskell,
with a simple Haskell-based type schema to guide the Sunroof program-
mer. Furthermore, because we are generating code, we can offer Haskell-
style concurrency patterns, such as MVars and Channels. In combination
with a web-services package such as Scotty, the Sunroof compiler offers a
robust platform to build interactive web applications, giving the ability
to interleave Haskell and JavaScript computations with each other as
needed.

Keywords: DSLs, JavaScript, Web Technologies, Cloud Computing

1 Introduction

JavaScript is an imperative language with access to a wide range of established
and useful services, e.g. graphical canvases and event handling. It also provides
features that are associated with functional languages, such as first-class func-
tions. We want to express JavaScript in Haskell, adding use of Haskell’s static
typing, and gaining access to JavaScript services in the browser from Haskell.

Sunroof was developed to tackle this goal. The small example in Fig. 1 shows
how Sunroof feels. The expected JavaScript output is shown on the right. But
what makes this useful? We produced code that is shorter than the Sunroof code
on the left and can easily be written by hand.

Sunroof’s approach has several advantages. It introduces a threading model
and abstraction similar to Haskell’s. This allows programmers to use common

jsCode :: JS t ()

jsCode = do

name <- prompt "Your name?"

alert ("Your name: " <> name)

var v0 = prompt("Your name?");

alert("Your name: " + v0);

Fig. 1: Sunroof program and the expected JavaScript on the left.

Expr

JSI
Type Wrappers

JSA / JSB

Threading Model API FFI

Fig. 2: The structure of Sunroof.

Haskell techniques when writing JavaScript. We also utilize the static type sys-
tem to support us when writing code, e.g. the functions in Fig. 1 have the
following signatures:

prompt :: JSString -> JSString -> JS t JSObject

alert :: JSString -> JS t ()

This allows the type checker to detect a wide class of malformed JavaScript
programs. Using a deep embedding gives opportunity for optimizations when
producing the actual JavaScript. At the same time, Sunroof offers an interface
that is close to actual JavaScript making it easy to use. The interface is easily
extendable through a foreign-function interface. We use a monad [22] to reflect
the imperative nature of JavaScript.

Fig. 2 shows Sunroof’s structure. We will cover each of the layers throughout
the paper:

– The semantics and implementation of the JS-monad is explained in Section 2,
along with a description of how we solved the problem of constraining types
involved in the monadic computations.

– Section 3 will discuss how we annotate JavaScript objects with types using
wrappers and offer the possibility to add custom types later on.

– The special role of functions, continuations and how we model them as first-
class values in Haskell and JavaScript will be covered in Section 4.

– The two threading models offered by Sunroof are explained in Section 5.
– Section 6 introduces Sunroof’s foreign-function interface.
– Translation of Sunroof to JavaScript is handled in Section 7. We will explain

the compilation of selected language constructs. This is especially interesting
in the light of our use of continuations and their translation to JavaScript.

– The ability to interleave Haskell and JavaScript computations as needed
through the Sunroof server will be highlighted in Section 8.

– Section 9 will cover a small application written in Sunroof to survey how
usable Sunroof is in the context of application development.

data JSI :: T -> * -> * where

JS_Invoke :: (SunroofArgument a, Sunroof r)

=> a -> JSFunction a r -> JSI t r

JS_Function :: (SunroofArgument a, Sunroof b)

=> (a -> JS A b) -> JSI t (JSFunction a b)

JS_Branch :: (SunroofThread t, SunroofArgument a, Sunroof bool)

=> bool -> JS t a -> JS t a -> JSI t a

JS_Assign_ :: (Sunroof a) => Id -> a -> JSI t ()

...

Fig. 3: Parts of the JavaScript instruction data type (JSI).

2 The JavaScript Monad

The imperative nature and side-effects of JavaScript are modeled through the
JS-monad. It resembles the IO-monad, but has an extra phantom argument [18]
to decide which threading model is used. For now we can ignore this extra
argument. It will be discussed in Section 5.

The basic idea is that a binding in the JS-monad becomes an assignment to a
fresh variable in JavaScript. This allows the results of previous computations are
passed on to later ones. Fig. 1 gives an example. The binding name is translated
to the freshly generated variable v0.

This simple example displays a challenging problem. Where does v0 come
from? The bind inside the monadic do is fully polymorphic over a.

(>>=) :: JS t a -> (a -> JS t b) -> JS t b

Thus we do not know how to create a value of type a. What we want is:

(>>=) :: (Sunroof a) => JS t a -> (a -> JS t b) -> JS t b

where Sunroof constrains the bind to arguments for which we can generate a
variable. It turns out that a specific form of normalization allows the type a to be
constrained and JS to be an instance of the standard monad class [26]. Through
this keyhole of monadic reification, the entire Sunroof language is realized.

The normalization is done through Operational [3, 2]. It provides the Program-
monad that can be equipped with custom primitives. We represent these primi-
tives with the JavaScript instruction (JSI) type shown in Fig. 3. It represents the
abstract instructions that are sequenced inside the Program-monad. The param-
eter t in JSI t a again represents the threading model and can be ignored up
to Section 5. The type a represents the primitive’s return value. JS Invoke calls
a function that has been created with JS Function. Branches are represented
with JS Branch. Assignments to a variable are represented by JS Assign .

Without the alternative threading model, the normalization through Opera-
tional would be enough to offer a monad suitable for Sunroof. Due to our thread-
ing plans, there is more than just normalization going on behind the scenes. The
JS-monad is a continuation monad over the Program-monad.

data JS :: T -> * -> * where

JS :: ((a -> Program (JSI t) ()) -> Program (JSI t) ()) -> JS t a

...

The monad instance used is the standard implementation of a continuation
monad.

3 JavaScript Object Model

One goal of Sunroof is to use Haskell’s type system to increase the correctness
of expressed JavaScript. At the same time we cannot characterize all different
types of objects in JavaScript, since users can create their own objects. Thus our
system to type JavaScript needs to be extensible.

Our solution is to provide a basic Expression language to construct JavaScript
expressions that have no associated type information. Simplified slightly, we
have:

data Expr

= Lit String -- Precompiled (atomic) JavaScript literal

| Var Id -- Variable

| Apply Expr [Expr] -- Function application

...

In reality, we abstract Expr over the recursive type, to facilitate the usage of
observable sharing [15] and allow sub-expression computations to be shared.

This core expression type is then wrapped to represent a more specific type.
Each of these wrappers implements the Sunroof type class.

class SunroofArgument a => Sunroof a where

box :: Expr -> a

unbox :: a -> Expr

...

It marks these types as possible values in JavaScript. The SunroofArgument

prerequisite permits them to be function arguments (Section 4).
An example of this is JSString, the representation of JavaScript strings.

data JSString = JSString Expr

instance Sunroof JSString where

box = JSString

unbox (JSString e) = e

But what do we gain through a wrapper? We can provide specific functional-
ity for each distinct type. Our example type JSString has a Monoid and an
IsString instance that are not provided for other wrappers, e.g. JSBool or
JSNumber. This approach was first introduced by Svenningsson [29].

Table 1 gives a summary of the prominent Sunroof types. Some types involve
phantom types to give more type safety [7]. The smooth embedding of booleans

Constraint Sunroof Type τ Haskell Analog τ↑ js

() () X
JSBool Bool X
JSNumber Double X
JSString String X

Sunroof α JSArray α [α↑]

SunroofKey α JSMap α β Map α↑ β↑
Sunroof β

SunroofArgument α JSFunction α β α↑ → JSA β↑
Sunroof β

SunroofArgument α JSMVar α MVar α↑
SunroofArgument α JSChan α Chan α↑

Table 1: Sunroof types and their Haskell pendant.

and numbers is done through the Boolean package [12].
Table 1 shows that most basic Haskell types have counterparts in Sunroof.

To convert Haskell values into their counterparts, we provide the SunroofValue

class.

class SunroofValue a where

type ValueOf a :: *

js :: (Sunroof (ValueOf a)) => a -> ValueOf a

The type function ValueOf [6] provides the corresponding Sunroof type. js con-
verts a value from Haskell to Sunroof. By design SunroofValue only provides
instances for values that can be converted in a pure manner. Some types in
JavaScript are referentially transparent according to ==, while others, like gen-
eral objects, are not. As an example, if you call new Object(), twice you get two
equivalent empty objects, but when compared by == they are different. They are
not identical, because in this case reference equality is checked instead of value
equality. We call this observable allocation and handle it as a side-effect which
may only occur in the JS-monad.

This approach ensures to bind a new value to a variable, instead of creating
copies of that value everywhere it is used. This resolves some unwanted macro
behavior of Sunroof.

4 Functions and Continuations

Functions are first class values in Haskell and JavaScript. Sunroof represents
function with the type JSFunction α β, which resembles a function α → β in
JavaScript. Since partial application is questionable in the context of JavaScript,
we only permit uncurried functions. Thus a Sunroof α constraint would prohibit
functions to take more than one argument. We introduced SunroofArgument to
constrain the types that may be used as arguments for functions.

class SunroofArgument args where

jsArgs :: args -> [Expr]

jsValue :: (UniqM m) => m args

...

It converts each argument into its expression through jsArgs to supply the
arguments to a function call. jsValue generates unique names for each argument,
which is needed when compiling the function itself to a value.

Now we can provide more then one argument by providing SunroofArgument

instances for tuples of Sunroof values.

instance (Sunroof a, Sunroof b) => SunroofArgument (a,b) where

jsArgs (a,b) = [unbox a, unbox b]

jsValue = liftM2 (,) jsVar jsVar

Remember that each Sunroof value already has to be a SunroofArgument, which
enables us to pass a single argument to a function.

We can create functions with the function combinator.

function :: (SunroofArgument a, Sunroof b)

=> (a -> JS A b) -> JS t (JSFunction a b)

As a function can have side-effects, its computation and result have to be ex-
pressed in the JS-monad. The creation of a function is considered a side-effect,
due to observable allocation.

Function application is done through the apply or $$ combinator, they are
synonyms. Functions can only be applied in the JS-monad, since they can have
side-effects.

apply, ($$) :: (SunroofArgument a, Sunroof b)

=> JSFunction args ret -> args -> JS t ret

Creation and application are implemented using the JS Function and JS Invoke

instructions introduced in Fig. 3.
JSContinuation α is used to model continuations in the JS-monad. It was

introduced to work with continuations in Sunroof. Technically they are only spe-
cializations of functions, but restricted to the second threading model. Contin-
uations are meant to be a representation of side-effects – ongoing computations
inside the JS-monad – and may not terminate, so they do not return a value. As
with functions, there is a combinator to create and apply a continuation.

continuation :: (SunroofArgument a)

=> (a -> JS B ()) -> JS t (JSContinuation a)

goto :: (SunroofArgument a)

=> JSContinuation a -> a -> JS t b

The presented goto should not be considered harmful [10]. It calls a continuation,
as apply calls functions. The difference is that a call to goto will never return,

JSFunction a b

a → JS A b

JSContinuation a

a → JS B ()

kast

apply gotofunction continuation

liftJS

Fig. 4: How functions and continuations relate between the Haskell and Sunroof domain.

as it executes the given continuation and abandons the current one. This allows
goto to be fully polymorphic on its result.

Access to the current continuations is given through the powerful call-with-
current-continuation combinator callcc.

callcc :: SunroofArgument a

=> (JSContinuation a -> JS B a) -> JS B a

The current continuation models everything that would usually happen after the
call to callcc.

callcc f = JS $ \ k -> unJS

(continuation (\a -> JS $ \ _ -> k a) >>= f) k

unJS :: JS t a -> (a -> Program (JSI t) ()) -> Program (JSI t) ()

The implementation of callcc is interesting, because it shows how the Program-
continuation is translated into a JSContinuation that is passed to the given
function f. Section 5 will show why this function is important for Sunroof and
what it is used for.

Functions and continuations are similar and connected to each other, as can
be seen in Fig. 4. We can go back and forth between the Haskell and the Sunroof
representation of a function or continuation. But once a function is specialized
to a continuation, it is not possible to go back, because continuations only model
the side-effect, but do not return anything.

5 Threading Models

JavaScript uses a callback centric model of computation. There is no concurrency,
only a central loop that executes callbacks when events occur.

In contrast, Haskell has real concurrency and wide-spread abstractions for
synchronization, e.g. MVars and Chans [17]. So the question arises: do we gen-
erate atomic JavaScript code, and keep the callback centric model, or generate
JavaScript using CPS [8], and allow for blocking primitives and cooperative con-
currency. The latter, though more powerful, precluded using the compiler to
generate code that can be cleanly called from native JavaScript. Both choices
had poor consequences.

We decided to explicitly support both, and make both first-class threading
strategies in Sunroof. In terms of user-interface, we parameterize the JS-monad
with a phantom type that represents the threading model used, with A for Atomic,
and B for Blocking threads. Atomic threads are classical JavaScript computations
that cannot be interrupted and actively use the callback mechanism. Blocking
threads can support suspending operations and cooperative concurrency abstrac-
tions as known from Haskell. By using phantom types, we can express the neces-
sary restrictions on specific combinators, as well as provide combinators to allow
both types of threads to cooperate.

The blocking model hides the callback mechanism behind abstractions. This
implies that every atomic computation can be converted into a blocking compu-
tation. liftJS achieves this.

liftJS :: Sunroof a => JS A a -> JS t a

When suspending, we register our current continuation as a callback to re-
sume later. This gives other threads (registered continuations) a chance to run.
Of course, this model depends on cooperation between the threads, because a
not terminating or suspending thread will keep others from running.

There are three main primitives for the blocking model:

forkJS :: SunroofThread t1 => JS t1 () -> JS t2 ()

threadDelay :: JSNumber -> JS B ()

yield :: JS B ()

They can all be seen as analogues of their IO counterparts. forkJS resembles
forkIO. It registers the continuation of the given computation as a callback.
yield suspends the current thread by registering the current continuation as a
callback, giving other threads time to run. threadDelay is a form of yield that
sets the callback to be called after a certain amount of time. We rely on the
JavaScript function window.setTimeout [1] to register our callbacks.

The class SunroofThread offers functions to retrieve the current threading
model (evalStyle) and to create a possible blocking computation (blockableJS).

class SunroofThread (t :: T) where

evalStyle :: ThreadProxy t -> T

blockableJS :: (Sunroof a) => JS t a -> JS B a

Based on these primitive combinators, we also offer a Sunroof version of MVar
and Chan: JSMVar and JSChan.

newMVar :: (SunroofArgument a) => a -> JS t (JSMVar a)

newEmptyMVar :: (SunroofArgument a) => JS t (JSMVar a)

putMVar :: (SunroofArgument a) => a -> JSMVar a -> JS B ()

takeMVar :: (SunroofArgument a) => JSMVar a -> JS B a

newChan :: (SunroofArgument a) => JS t (JSChan a)

writeChan :: (SunroofArgument a) => a -> JSChan a -> JS t ()

readChan :: (SunroofArgument a) => JSChan a -> JS B a

Both implementations use arrays to store the waiting readers and writers in the
form of continuations. Note that all functions are able to handle SunroofArguments,
not just Sunroof types. This is possible, because the computations themselves
(their current continuation) are stored in the lists through callcc. When argu-
ments are written, either the waiting continuation is called with those arguments
or a new continuation that applies an incoming one with those arguments is cre-
ated.

6 Foreign Function Interface

Sunroof also offers a foreign function interface, which enables us to easily access
predefined JavaScript. There are four core functions:

fun :: (SunroofArgument a, Sunroof r)

=> String -> JSFunction a r

object :: String -> JSObject

new :: (SunroofArgument a)

=> String a -> JS t JSObject

invoke :: (SunroofArgument a, Sunroof o, Sunroof r)

=> String -> a -> o -> JS t r

fun is used to create Sunroof functions from their names in JavaScript. This
can happen in two ways: either to call a function in line, or to create a real
binding for that function. As an example, the alert function can be called in
line through fun "alert" $$ "text", or you can provide a binding in form of
a Haskell function for it.

alert :: JSString -> JS t ()

alert s = fun "alert" $$ s

Objects can be bound through the object function, e.g. the document object
is bound through object "document". Constructors can be called using new. To
create a new object you would call new "Object" ().

We can call methods of objects through invoke. Again, this can be used in
line and to create a real binding. An inline use of this to produce document

.getElementById("id") would look like this:

object "document" # invoke "getElementById" "id"

where # is just a flipped function application. To provide a binding to the
getElementById method, one can write:

getElementById :: JSString -> JSObject -> JS t JSObject

getElementById s = invoke "getElementById" s

Providing actual bindings ensures that everything is typed correctly and
prevents the need to resolve ambiguities through large type annotations inside
of code.

The current release of Sunroof already provides bindings for most of the core
browser API, the HTML5 canvas element, and some of the JQuery API.

7 The Sunroof Compiler

How do we compile Sunroof? Through the JS-monad we produce a Program

(JSI t) () instance. We translate such a program into a list of statements
(Stmt) by matching over the JSI constructors.

data Stmt = AssignStmt Rhs Expr -- Assignment

| ExprStmt Expr -- Expression as statement

| ReturnStmt Expr -- Return statement

| IfStmt Expr [Stmt] [Stmt] -- If-Then-Else statement

...

The constructors of Stmt directly represent the different statements you can
write in JavaScript. Operationals [3, 2] Program type is abstract and has to be
converted to a ProgramView instance to work with. It provides the :>>= and
Return constructors to pattern match on and translate the instructions inside.

compile :: Program (JSI t) () -> CompM [Stmt]

compile p = eval (view p)

where eval :: ProgramView (JSI t) () -> CompM [Stmt]

...

The CompM state monad provides the compiler options and fresh variables.
To get started, JS Assign is translated in the following manner. Recall from

Fig. 3 that it takes a variable name and the value to assign as arguments.

eval (JS_Assign_ v a :>>= k) = do

(stmts0,val) <- compileExpr (unbox a) -- Expr -> CompM ([Stmt], Expr)

stmts1 <- compile (k ())

return (stmts0 ++ [AssignStmt (VarRhs v) val] ++ stmts1)

First, we compile the expression a to assign into a series of statements that
compute it together with the result value val. Next, we compile what happens
after the assignment. Since the assignment produces unit, we can pass that to
k. In the end, we concatenate all statements with the assignment in between.

Now we will look into the translation of branches. Recall the JSI constructor
for branches from Fig. 3:

JS_Branch :: (SunroofThread t, SunroofArgument a, Sunroof bool)

=> bool -> JS t a -> JS t a -> JSI t a

Fig. 5 shows how to compile a JS Branch. We generate the statements for the
branching condition. Then we generate unique variables for each of the returned
values in either branch and use bindResults to assign them to the new variables.
The function extractProgramJS passes the result of a computation m into the
function f and closes the continuation in JS with return. The result is a Program

containing all instructions of m >>= k.

extractProgramJS :: (a -> JS t ()) -> JS t a -> Program (JSI t) ()

extractProgramJS k m = unJS (m >>= k) return

eval (JS_Branch b c1 c2 :>>= k) = do

(src0, res0) <- compileExpr (unbox b)

res :: a <- jsValue

let bindResults :: a -> JS t ()

bindResults res’ =

sequence_ [single $ JS_Assign_ v (box $ e :: JSObject)

| (Var v, e) <- jsArgs res ‘zip‘ jsArgs res’]

src1 <- compile $ extractProgramJS bindResults c1

src2 <- compile $ extractProgramJS bindResults c2

rest <- compile (k res)

return (src0 ++ [IfStmt res0 src1 src2] ++ rest)

Fig. 5: Naive translation of branches in Sunroof.

After the compilation of both branches, we translate the rest and create the
list of statements in a canonical fashion.

This works perfectly if we are in the atomic threading model, but can fail
when inside the blocking model. In the blocking model either branch may involve
continuations. Each continuation describes the rest of the computation up to the
end of that branch. It also captures the assignments at the end of the branch.
Assignments captured inside a continuation are not visible outside of it. That
means the variables are not visible after the branch and the code inside of rest
refers to them although they are not defined in that scope.

Therefore, within the blocking threading model, we have to handle branches
differently:

eval (JS_Branch b c1 c2 :>>= k) =

case evalStyle (ThreadProxy :: ThreadProxy t) of

A -> compileBranch_A b c1 c2 k

B -> compileBranch_B b c1 c2 k

The call to compileBranch A executes our naive definition from Fig. 5.

compileBranch_B b c1 c2 k = do

fn_e <- compileContinuation $

\a -> blockableJS $ JS $ \k2 -> k a >>= k2

fn <- newVar

(src0, res0) <- compileExpr (unbox b)

src1 <- compile $ extractProgramJS (apply (var fn)) c1

src2 <- compile $ extractProgramJS (apply (var fn)) c2

return ([mkVarStmt fn fn_e] ++ src0 ++ [IfStmt res0 src1 src2])

We can see that the rest of our computation is captured in the continuation
fn e. It takes the results of a branch as arguments. A new variable fn is used
to share the continuation in both branches. The key difference is the parameter
to extractProgramJS. Instead of creating bindings to variables, we apply the
produced continuation to the returned values. That passes them to the ongoing

computation. Of course, we could compile every branch with the continuation
variant, but this would unnecessarily obfuscate the produced code.

The compiler offers two functions to compile either threading model:

sunroofCompileJSA :: Sunroof a

=> CompilerOpts -> String -> JS A a -> IO String

sunroofCompileJSB :: CompilerOpts -> String -> JS B () -> IO String

Notice that for the blocking threading model only unit may be returned due to
their continuation-based nature. The string argument provides the name of the
variable to which to bind the computation result.

8 The Sunroof Server

The Sunroof server provides infrastructure to send arbitrary pieces of JavaScript
to a calling website for execution. So, it is possible to interleave Haskell and
JavaScript computations with each other as needed. The three major functions
provided are sunroofServer, syncJS and asyncJS.

type SunroofApp = SunroofEngine -> IO ()

sunroofServer :: SunroofServerOptions -> SunroofApp -> IO ()

syncJS :: SunroofResult a

=> SunroofEngine -> JS t a -> IO (ResultOf a)

asyncJS :: SunroofEngine -> JS t () -> IO ()

sunroofServer starts a server that will call the given callback function for each
request. syncJS and asyncJS allow the server to run Sunroof code inside the
requesting website. asyncJS executes it asynchronously without waiting for a
return value. In contrast to that, syncJS waits until the execution is complete
and then sends the result back to the server. It is converted into a Haskell value
that can be processed further. Values that can be converted to a Haskell type
after a synchronous call implement the SunroofResult class. It maps the Sun-
roof type to a corresponding Haskell type through a type function and provides
a function to convert the data to that type.

9 Case Study - A Small Calculator

To see how Sunroof works in practice, we will look into the experience we gath-
ered when writing a small calculator for arithmetic expressions (Fig. 6). We use
Sunroof to display our interface and the results of our computation. Haskell will
be used to parse the arithmetic expressions and calculate the result. The Sunroof
server will be used to implement this JavaScript/Haskell hybrid.

The classical approach to develop an application like this would have been
to write a server that provides a RESTful interface and replies through a JSON

Fig. 6: The example application running on the Sunroof server.

Server
(Haskell)

Client (JavaScript)
JSON Response

REST Request

Server
(Haskell)

Client (Sunroof)
Arbitrary Sunroof

Haskell Result Data

Sunroof:

Classic:

Fig. 7: Classical structure and Sunroof structure of a web application.

data structure. The client side of that application would have been written in
JavaScript directly. This can be seen in Fig. 7.

How does Sunroof improve or change this classical structure? First of all,
in Sunroof you write the client-side code together with your server application
within Haskell. In our example, all code for the server and client is in Haskell.
The control logic for the client side is provided through the server. This leads
to a tight coupling between both sides. It forces both sides to work together
correctly because they share types and interfaces. This also shows how Sunroof
blurs the border between the server and client side. You are not restricted by
an interface or language barrier. If you need the client to do something, you can
just send arbitrary Sunroof code to execute in the client.

Following are a few statistics (Table 2) about how much code it took to write
each part of the client.

The client-server response loop shuffles new input to the server and executes
the response in the client.

Data conversion is needed, because pure Haskell data types cannot be han-
dled in Sunroof and vice versa. There still exists a language barrier between

Part of Application Lines of Code Percentage

Response loop 25 6.5%

Data conversion 85 22.0%

Rendering 190 49.5%

Parsing and interpretation 85 22.0%

Table 2: Lines of code needed for the example.

JavaScript and Haskell. Code to convert between two essentially equal data
structures on each side must be written, as well as representations of Haskell
structures in Sunroof. However, there is great potential in automatically gener-
ating this code using techniques such as template Haskell [27].

The code for displaying the results is basically a transliteration of the JavaScript
that you would write for this purpose. The transliteration used here is not very
appealing. In the future, this code can be generated through higher-level li-
braries. Sunroof is intended to deliver a foundation for this purpose.

The rest of our code to parse the arithmetic expression and calculate result
is classical Haskell code.

We have a lot of boilerplate code for data conversion that has potential to be
generated. The transliteration of JavaScript into Sunroof has an overhead and
tends to be verbose. This problem can be hidden through higher-level libraries
using Sunroof as a backend. We can see that Sunroof has the potential to be
a low-level interface to the browser’s capabilities. It offers a solid and robust
foundation to build more advanced systems that want to utilize the browser.

10 Conclusion

Sunroof took the key idea of monad reification and successfully created the JS-
monad to describe computations in JavaScript. This work was mainly done by
Farmer and Gill [13] and has been streamlined during the further development
of Sunroof. By adding the concept of JSFunction and JSContinuation, there
now is a connection between functions in the JavaScript and the Sunroof lan-
guage space (Fig. 4). It is possible to go back and forth between both worlds.
Combining both concepts, functions and the JS-monad, we were able to create a
second implementation of the monad, this time based on the direct translation
of continuations from Haskell to JavaScript. It enabled us to build a blocking
threading model on top of JavaScript that resembles the model already known
from Haskell. Based on this model and the provided abstraction over continua-
tions, we can use primitives like forkJS or yield. Higher-level abstractions like
JSMVar and JSChan are also available.

11 Related Work

There have been several attempts to translate Haskell to JavaScript. Prominent
ones are the compiler backends for UHC [28] and GHCJS [24]. There are also
projects like Fay [11] that compile subsets of Haskell to JavaScript or JMacro [5]
which use quasiquotation [21] to embed a custom-tailored language into Haskell
code.

At the same time there are also projects like CoffeeScript [4] or LiveScript [23]
to build custom languages that are very similar to JavaScript but add convenient
syntax and support for missing features.

Our approach to cooperative concurrency through continuations in JavaScript
has has been used before [9, 25]. To our knowledge, creating a direct connection
between Haskell and JavaScript continuations has not been attempted before.

Deep embeddings of monads based on data structures have been used before
in Unimo [19] and Operational [3, 2]. The specific approach Sunroof takes by
using GADTs has been discussed by Sculthorpe et al. [26] in detail.

The Sunroof server does not have the aim to provide a full-featured web
framework, as HAppS, Snap or Yesod do. It only provides the infrastructure to
communicate with the currently calling website through the Kansas comet [16]
push mechanism [20]. Although all of the frameworks mentioned above would
be able to implement this technique, to our knowledge, none of them has yet.

To our knowledge, Sunroof is the only library that supports generation of
JavaScript inside of Haskell using pure Haskell in a type-safe manner. All other
approaches discussed above either require a separate compilation step or intro-
duce new syntax inside of Haskell.

There is an effort to generalize Active [30], a library for animations, and
implement a backend based on Sunroof [14].

12 Acknowledgment

We want to thank Conal Elliott for his support in adapting the Boolean package
[12] and helping us to extend it with support for deeply embedded numbers.

References

1. HTML Living Standard - Timers, http://www.whatwg.org/specs/web-apps/

current-work/multipage/timers.html#timers

2. Apfelmus, H.: (2010), http://hackage.haskell.org/package/operational
3. Apfelmus, H.: The Operational Monad Tutorial. The Monad.Reader 15, 37–55

(2010)
4. Ashkenas, J.: CoffeeScript, http://coffeescript.org/
5. Bazerman, G.: JMacro, http://www.haskell.org/haskellwiki/Jmacro
6. Chakravarty, M.M.T., Keller, G., Jones, S.P.: Associated Type Synonyms. SIG-

PLAN Not. 40(9), 241–253 (Sep 2005), http://doi.acm.org/10.1145/1090189.
1086397

7. Cheney, J., Hinze, R.: First-Class Phantom Types (2003)
8. Claessen, K.: A Poor Man’s Concurrency Monad. Journal of Functional Program-

ming 9(03), 313–323 (1999)
9. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web Programming Without

Tiers. In: Formal Methods for Components and Objects. pp. 266–296. Springer
(2007)

10. Dijkstra, E.W.: Letters to the editor: go to statement considered harmful. Com-
munications of the ACM 11(3), 147–148 (1968)

11. Done, C., Bergmark, A.: Fay, https://github.com/faylang/fay/wiki
12. Elliott, C.: Boolean, http://hackage.haskell.org/package/Boolean
13. Farmer, A., Gill, A.: Haskell DSLs for Interactive Web Services. In: Cross-model

Language Design and Implementation (2012)
14. Gill, A.: sunroof-active, https://github.com/ku-fpg/sunroof-active
15. Gill, A.: Type-Safe Observable Sharing in Haskell. In: Proceedings of the Second

ACM SIGPLAN Haskell Symposium. pp. 117–128. Haskell ’09, ACM, New York,
NY, USA (Sep 2009), http://doi.acm.org/10.1145/1596638.1596653

16. Gill, A., Farmer, A.: Kansas Comet, http://hackage.haskell.org/package/

kansas-comet

17. Jones, S.P., Gordon, A., Finne, S.: Concurrent Haskell. In: Annual Symposium on
Principles of Programming Languages: Proceedings of the 23 rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. vol. 21, pp. 295–308
(1996)

18. Leijen, D., Meijer, E.: Domain Specific Embedded Compilers. In: Domain-Specific
Languages. pp. 109–122. ACM (1999)

19. Lin, C.: Programming Monads Operationally with Unimo. In: International Con-
ference on Functional Programming. pp. 274–285. ACM (2006)

20. Mahemoff, M.: HTTP Streaming, http://ajaxpatterns.org/Comet
21. Mainland, G.: Why It’s Nice to be Quoted: Quasiquoting for Haskell. In: Proceed-

ings of the ACM SIGPLAN workshop on Haskell workshop. pp. 73–82. Haskell
’07, ACM, New York, NY, USA (2007), http://doi.acm.org/10.1145/1291201.
1291211

22. Moggi, E.: Notions of computation and monads. Information and Computation
93(1), 55–92 (1991)

23. Murakami, S., Ashkenas, J.: LiveScript, http://livescript.net/
24. Nazarov, V.: GHCJS Haskell to Javascript Compiler, https://github.com/ghcjs/

ghcjs

25. Predescu, O.: Model-View-Controller in Cocoon using continuations-based control
flow (2002), http://www.webweavertech.com/ovidiu/weblog/archives/000042.
html

26. Sculthorpe, N., Bracker, J., Giorgidze, G., Gill, A.: The Constrained-Monad Prob-
lem (2013), submitted to the International Conference on Functional Programming

27. Sheard, T., Jones, S.P.: Template Meta-programming for Haskell. In: Proceedings
of the 2002 ACM SIGPLAN workshop on Haskell. pp. 1–16. Haskell ’02, ACM,
New York, NY, USA (2002), http://doi.acm.org/10.1145/581690.581691

28. Stutterheim, J.: Improving the UHC JavaScript backend. Tech. rep., Utrecht Uni-
versity (2012), http://www.norm2782.com/improving-uhc-js-report.pdf

29. Svenningsson, J., Axelsson, E.: Combining Deep and Shallow Embedding for EDSL.
Presentation at Trends in Functional Programming, June (2012)

30. Yorgey, B.: Active, https://github.com/diagrams/active

