
Control Flow Analysis with SAT Solvers

Steven Lyde, Matthew Might

University of Utah, Salt Lake City, Utah, USA

Abstract. Control flow analyses statically determine the control flow
of programs. This is a nontrivial problem for higher-order programming
languages. This work attempts to leverage the power of SAT solvers
to answer questions regarding control flow. A brief overview of a tra-
ditional control flow analysis is presented. Then an encoding is given
which has the property that any satisfying assignment will give a con-
servative approximation of the true control flow, along with additional
ideas to improve the precision and efficiency of the encoding. The results
of the encodings are then compared to those of a traditional implementa-
tion on several example programs. This approach is competitive in some
instances with hand-optimized implementations. Finally, the paper con-
cludes with a discussion of the implications of these results and work
that can build upon them.

1 Introduction

A control flow analysis determines the control flow of a program. This is a
difficult problem in higher order languages, because data flow affects control
flow and control flow affects data flow. To address this issue, much work has
been done. The first major effort was k-CFA as created by Shivers [8]. It is a
family of algorithms where the chosen value of k determines the precision of the
analysis. A higher value of k gives greater precision but at the cost of a greater
run time. When k = 0, the algorithm, more commonly known as 0CFA, has
been shown to be PTIME complete [9]. For k ≥ 1, it has been shown that the
algorithm is complete for EXPTIME [10].

We present an alternative approach to the problem by encoding a control flow
analysis into SAT. The results are more similar to 0CFA than k-CFA as SAT is
a NP-hard problem, while k-CFA is EXPTIME-hard. Similar work that took the
idea of encoding k-CFA into another problem for performance reasons was done
by Prabhu et al. [7]. The algorithm is ported to run on a GPU by encoding the
problem into matrix operations. Another work that will feel similar is constraint
based 0CFA analysis as summarized by Nielson [6]. They formulate 0CFA using
constraints on sets and then provide an algorithm for solving these constraints.
This work differs in that the constraints are not not encoded using matrices or
sets, but propositional logic.

1.1 Motivation

Many problems are readily encoded into SAT problems and even though the
problem is NP-complete, fast implementations are available. Control flow anal-



2 Control Flow Analysis with SAT Solvers

ysis is not trivial, and being able to leverage the effort that placed every year
into improving SAT solvers would be a great benefit.

1.2 Accomplishments

This work attempts to leverage the power of SAT solvers to answer questions
regarding control flow. It presents an encoding and compares its results to two
traditional 0CFA implementations.

2 Preliminaries

In order to understand this work, you will need a passing understanding of
continuation-passing style (CPS) lambda calculus and k-CFA. Brief descriptions
of both will be given. The original formulation of k-CFA operates on CPS lambda
calculus and this work also operates on the same language.

CPS is similar to the untyped lambda calculus but with additional con-
straints: functions never return, all calls are tail calls; where a function would
normally return, the current continuation is invoked on the return value; and
when calling a function, the caller must supply a continuation procedure. There
are three types of terms: applications, anonymous functions, and variables. The
grammar for CPS lambda calculus follows.

call ∈ Call ::= (f e . . . )

f, e ∈ Exp = Var + Lam

v ∈ Var is a set of identifiers

lam ∈ Lam ::= (λ (v . . . ) call)

The abstract state space and the abstract semantics of k-CFA reformulated
as an operational semantics are easily accessible [3]. The basic idea is to take a
CES machine and abstract it by making the number of addresses finite. Successor
states are then generated, starting at the initial state of the program, until all the
states have been visited. Because the number of addresses is finite the abstract
state space is finite and the exploration will terminate.

3 Encodings

This section describes the devised encoding scheme. Here is a simple program
we will work with in describing the encodings. In the following explanation, each
lambda term will be identified by its line number.

((lambda (x)

((lambda (y)

(y (lambda (z) (x z)))) x))

(lambda (a) (a a)))



Control Flow Analysis with SAT Solvers 3

For the encoding, we introduce a variable for every variable lambda pair in the
program. The variable will be true if the lambda flows to the variable, and false
if it doesn’t. We will assume that the program has been alphatised, meaning
that each variable is only bound by a single lambda. In the example we have
four variables and four lambda terms, resulting in sixteen variables. Lambdas
use their line number as their subscript.

λ1 λ2 λ3 λ4
a a1 a2 a3 a4
x x1 x2 x3 x4
y y1 y2 y3 y4
z z1 z2 z3 z4

To generate the clauses of our encoding we look at each point where bind-
ing occurs in lambda calculus, at application sites. From the grammar of CPS
lambda calculus we can see that there are four cases which need to be considered.
The function and the arguments at an application can either be a lambda term
or a variable.

Case 1: Lambda Lambda The first case to consider is the simplest, when
there is a lambda term in both function and argument position. The top level
application of the sample program is an example of this.

((lambda (x) call) (lambda (a) (a a)))

We know that the lambda in argument position flows to the parameter of the
lambda in function position. For this call site, we would add the clause x4.

Case 2: Lambda Variable The second case to consider is when there is still
a lambda in function position but a variable in argument position. Observe the
following call site from the example.

((lambda (y) call) x)

If we know a lambda flows to x, then we know that it must flow to y. We must
assume that any lambda can flow to x, so we must create a clause for each
lambda. This results in the following clauses: x1 → y1, x2 → y2, x3 → y3,
x4 → y4.

Case 3: Variable Lambda The third case to consider is having a variable in
function position and a lambda term in argument position.

(y (lambda (z) call))

We must assume that any variable can flow to y. Thus we need to create a
clause for each lambda in the program. We infer that if a lambda term flows to
y, then λ4 will flow to the parameter of that lambda. This results in the following
clauses: y1 → x3, y2 → y3, y3 → z3, y4 → a3.



4 Control Flow Analysis with SAT Solvers

Case 4: Variable Variable The most complicated case is when we have a
variable in both function and argument position.

(x z)

We must assume that any lambda can flow to x and any lambda can flow to z.
If we know that two flows are true for x and z, we can infer a third flow. For
example, if we know λ2 flows to x and λ4 flows to z, we can infer that λ4 flows
to y, the parameter of λ2. Thus we create the clause x2 ∧ z4 → y4. Since there
are four lambda terms, there are 16 total such clauses that need to be generated.

4 Additional Encoding Details

The generated clauses described above are necessary but not sufficient. The
problem is that every variable can be set to true and the equation is still satisfied.
What we really want is the lowest possible number of flows set to true that still
satisfy all the generated clauses. However, the SAT solver is free to give any
satisfying solution. In the end, we have constraints that will never give us false
negatives, but we need constraints that will ideally never give us false positives,
or at least limit them.

4.1 Additional Encodings

For each case we will show additional clauses that can be added which will limit
the number of false positives.

Case 1: Lambda Lambda Since the program is alphatised we not only know
that the given flow must be true, but we know that all other flows to that variable
must be false. For the above example we add the clauses: ¬x1, ¬x2, ¬x3.

Case 2: Lambda Variable In the description found above, we said you could
infer an additional flow if a given lambda flows to the variable in argument
position. But more can be inferred since the program is alphatised. The clauses
are not just implications because the call site is the only place where the binding
of the variable can occur. Thus we can change the clauses to equivalences: x1 ↔
y1, x2 ↔ y2, x3 ↔ y3, x4 ↔ y4.

Case 3: Variable Lambda

Unlike the previous case, we cannot turn the inference described in the previous
section for case 3 into an equivalence. The issue is that because the lambda
which flows to the variable in function position can flow to other application
sites where there is a variable in function position, this is not the only place
where a binding can occur. However, we can infer the disjoin of all the call sites
where the binding could occur. An example will be be given below.



Control Flow Analysis with SAT Solvers 5

Case 4: Variable Variable

Much like the previous case, we cannot infer equivalences because bindings can
happen at any call site where there is variable in function position. However, like
the above case, additional clauses can still be created; we can infer the disjoin
of all the call sites where the binding could occur. For example, if λ3 flows z it
would mean that either λ3 flows to y, λ3 flows to a, or that λ3 flows to x and
λ3 flows to z. Thus we would add the following clause: z3 → y3 ∨ a3 ∨ (x3 ∧ z3).

4.2 Enhancements

The encodings presented above give way to some enhancements that can be used
to make the encoding more efficient.

– Not all lambdas can flow. Lambdas that appear in function position cannot
be bound to variables, thus we do not need to create a variable for pairs
involving lambdas in function position.

– Not all lambdas are compatible. Although the example shows lambda terms
with only one parameter, the lambda terms can have any number of param-
eters. When there is a variable in function position, only lambdas with the
same number of parameters as there are arguments at the application site
need to be considered.

– Some clauses will be trivially true. While iterating through every lambda,
when faced with a variable at an application site, some of the implications
will involve the same pairs on both sides, thus they are trivially true and
can be omitted.

In the implementation, the first two enhancements were used, but the third
was omitted.

4.3 Complexity

In the described encoding, many clauses can be generated. However, it is bounded
by a polynomial of the size of the program. The worst case to consider is when you
have a variable in both function and argument position. You must consider each
lambda flowing to each variable. If there are n terms in the program, there are
at most n call sites and n lambda terms. Thus the number of generated clauses
will be bound by n3. This seems logical as one of the simplest formulations of
0CFA is “nearly” cubic: O(n3/ log n) [2].

5 Implementation and Evaluation

We implemented the encoding in Scala using the back end of the analyzer written
by Might et al. for parsing and pre-process transformations [5]. We compared
its run times to those of that same analyzer, which closely follows the formal
semantics, as well as a fast Racket implementation, which employs abstract



6 Control Flow Analysis with SAT Solvers

Church encodings and binary CPS lambda calculus [7]. MiniSat was used for
solving the constructed encodings. All experiments were run on a 2.7 GHz Intel
Core i7 on Mac OS X.

The first experiments were run on synthetic programs, which in a constructive
complexity proof are shown to be the worst case for k-CFA when k ≥ 1 and
difficult for 0CFA [9, 10]. The results can be found in the following table. The
first column is the number of terms in the program. The second column is the
run time of the optimized Racket implementation. The Scala column is the run
time of the traditional Scala implementation. The SAT column is the time taken
to encode and solve the problem using SAT. This column is broken down into its
two components in the last two columns. The Encode column is the time taken
to create the encoding. The Solve column is the time taken by MiniSat to solve
the encoding.

Terms Racket Scala SAT Encode Solve

37 0.005s 0.613s 0.521s 0.518s 0.003s
63 0.012s 0.742s 0.575s 0.571s 0.004s
115 0.047s 1.072s 757s 0.751s 0.006s
219 0.260s 1.751s 1.087s 1.065s 0.022s
427 1.483s 5.034s 2.724s 2.567s 0.157s
843 9.265s 51.411s 13.153 11.872s 1.281s
1675 53.361s 16m4.607s 1m34.829 1m24.611s 10.218s
3339 5m3.110s >6h 13m18.232 11m28.179s 1m50.053s

From the experiments, we see encoding the problem and solving it with
MiniSat takes about the same amount of time as the fast implementation. How-
ever, this is not always the case. Experiments were also run on more traditional
benchmarks. To run these, the language on which the encoding operates had
to be enriched. Additional constructs were added (e.g., if and set!) as well as
support for Scheme primitives. The fast Racket implementation could not be
run on these examples, as it only supports pure binary CPS lambda calculus.

Program Terms Scala SAT Encode Solve

eta 79 0.639s 0.528s 0.525s 0.003s
map 182 0.802s 0.689s 0.682s 0.007s
sat 250 0.914s 0.913s 0.895s 0.018s
rsa 609 1.263s 1.061s 1.041s 0.020s

prime 891 1.663s 7.664s 4.695s 2.969s
scm2java 2505 3.054s 1m29.605s 1m15.181s 14.424s

interp 4484 3.973s 7m46.352s 5m29.850s 2m16.502s

The first two benchmarks test common functional patterns; sat is a simple SAT
solver; rsa is a RSA implementation; prime is a Solovay-Strassen primality tester;
scm2java is a Scheme to Java compiler; interp is a Scheme interpreter.

These benchmarks provide a stark contrast to the previous examples in per-
formance. Further investigation is needed to find the source of this large differ-
ence in performance. One possible explanation is that the Scheme primitives are



Control Flow Analysis with SAT Solvers 7

not well modelled. Also, the traditional small step abstract interpreter is able to
use widening to converge to the minimum fixed point faster. In addition, since
its analysis is directed by the syntax of the program more closely, it can explore
less spurious flows.

For the first set of benchmarks, the results returned by the encoding are ex-
actly the same as those provided by the traditional implementations. However,
running #SAT on the encodings, revealed that there are multiple valid interpre-
tations. Thus the encoding does not exactly encode traditional 0CFA, which has
a unique minimum fixed point.

5.1 Alternative Approach Using BDDs

Another approach attempted was to use a binary decision diagram (BDD) in-
stead of a SAT solver to solve the constraints. The constraints are encoded in
the same way, but the approach has the benefit that the minimum prime im-
plicant is readily available from the structure of the BDD. The minimum prime
implicant provides an equivalent solution as 0CFA. However, in practice, using
a BDD requires large amounts of memory and time for even simple examples.

6 Conclusion

This work has presented an encoding for control flow analysis of CPS lambda
calculus. It has shown that in some cases, the approach can be as fast as a
highly optimized solution. While the soundness of the encoding was not proven,
empirical results showed it to be accurate.

This work also provides a solid basis for additional work. Many avenues exist
which can build upon it. Better encoding schemes can be developed, which pos-
sibly could be even more precise than 0CFA, given the extra power provided by
SAT solvers being able to solve NP-complete problems. Van Horn and Mairson
give a reduction from SAT to k-CFA, effectively showing how to do SAT solving
with k > 1 CFA, which merits further investigation. Also, while this work oper-
ates on CPS lambda calculus, the encoding could easily be adapted to work on
a more direct style language, such as ANF lambda calculus [1], as analyzed by
Might and Prabhu [4].

This work was supported by the DARPA programs APAC and CRASH.

References

1. Flanagan, C., Sabry, A., Duba, B. F., and Felleisen, M. The essence of com-
piling with continuations. In PLDI ’93: Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and Implementation (New York,
NY, USA, June 1993), ACM, pp. 237–247.

2. Midtgaard, J., and Van Horn, D. Subcubic control flow analysis algorithms.
Tech. rep., Roskilde Unversitet, 2009.



8 Control Flow Analysis with SAT Solvers

3. Might, M. Environment Analysis of Higher-Order Languages. PhD thesis, Georgia
Institute of Technology, June 2007.

4. Might, M., and Prabhu, T. Interprocedural dependence analysis of higher-order
programs via stack reachability. In Proceedings of the 2009 Workshop on Scheme
and Functional Programming (Boston, Massachussetts, USA, 2009).

5. Might, M., Smaragdakis, Y., and Van Horn, D. Resolving and exploiting the
k-CFA paradox: Illuminating functional vs. object-oriented program analysis. In
PLDI ’10: Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation (2010), PLDI ’10, ACM Press, pp. 305–315.

6. Nielson, F., Nielson, H. R., and Hankin, C. Principles of Program Analysis,
corrected ed. Springer, Dec. 2004.

7. Prabhu, T., Ramalingam, S., Might, M., and Hall, M. EigenCFA: Accelerat-
ing flow analysis with GPUs. In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (New York, NY,
USA, Jan. 2011), vol. 38, ACM Press, pp. 511–522.

8. Shivers, O. G. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, 1991.

9. Van Horn, D., and Mairson, H. G. Relating complexity and precision in con-
trol flow analysis. In ICFP ’07: Proceedings of the 12th ACM SIGPLAN Interna-
tional Conference on Functional Programming (New York, NY, USA, 2007), ACM,
pp. 85–96.

10. Van Horn, D., and Mairson, H. G. Deciding k-CFA is complete for EXPTIME.
In ICFP ’08: Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming (2008), ACM Press, pp. 275–282.


