From Bayesian Notation to Pure Racket

via Discrete Measure-Theoretic Probability in $\lambda_{\text {zFC }}$

Implementation and Application of Functional Languages
September 1-3, 2010

Neil Toronto and Jay McCarthy
PLT @ Brigham Young University, Utah, USA

Bayesian Practice and Philosophy

- State a probabilistic model of a process; then pose a query that runs the process backwards

Bayesian Practice and Philosophy

- State a probabilistic model of a process; then pose a query that runs the process backwards
- Document generation / Is this email spam?

Bayesian Practice and Philosophy

- State a probabilistic model of a process; then pose a query that runs the process backwards
- Document generation / Is this email spam?
- Real-world scenes and image capture / Likely scene given a photograph

Bayesian Practice and Philosophy

- State a probabilistic model of a process; then pose a query that runs the process backwards
- Document generation / Is this email spam?
- Real-world scenes and image capture / Likely scene given a photograph

John Wilder Tukey
"An approximate answer to the right question is worth a great deal more than a precise answer to the wrong question."

Philosophy Into Practice (1)

- Approximations must be put off as long as possible

Philosophy Into Practice (1)

- Approximations must be put off as long as possible
- Models and queries are exact, and generally not closed-form nor finitely computable

Philosophy Into Practice (1)

- Approximations must be put off as long as possible
- Models and queries are exact, and generally not closed-form nor finitely computable
- Compute answers as converging approximations

Philosophy Into Practice (1)

- Approximations must be put off as long as possible
- Models and queries are exact, and generally not closed-form nor finitely computable
- Compute answers as converging approximations
- Example: enlarging images

Model and query

```
\(\mathbf{S}_{i, j}^{\boldsymbol{\theta}} \sim \mathrm{Uniform}(-\pi, \pi) \quad \mathbf{S}_{i, j}^{\mathbf{v}^{+}} \sim \operatorname{Uniform}(0,1)\)
\(\mathbf{S}_{i, j}^{d} \sim \operatorname{Uniform}(-3,3) \quad \mathbf{S}_{i, j}^{-} \sim \operatorname{Uniform}(0,1)\)
\(\mathrm{S}_{i, j}^{\sigma} \sim \operatorname{Beta}(1.6,1)\)
    \(\mathbf{I}_{i, j} \mid \mathbf{S}_{\mathrm{N} 9(t, j)} \sim \operatorname{Normal}\left(\mathbf{E}\left[\mathbf{S}_{i, j}\right], \omega\right)\)
    \(\boldsymbol{\Phi}_{i, j}\left(\mathbf{S}_{\mathrm{N} 9(i, j)}\right) \equiv \exp \left(-\frac{\operatorname{Var}\left[\mathrm{S}_{i, j}\right]}{2 \gamma^{2}}\right)\)
```

What is the distribution of $\mathbf{I}^{\prime} \mid \mathbf{I}$?

Philosophy Into Practice (1)

- Approximations must be put off as long as possible
- Models and queries are exact, and generally not closed-form nor finitely computable
- Compute answers as converging approximations
- Example: enlarging images

Model and query

$$
\begin{aligned}
& \mathbf{S}_{i, j}^{\theta} \sim \operatorname{Uniform}(-\pi, \pi) \\
& \mathbf{S}_{i, j}^{d} \sim \operatorname{Uniform}(-3,3) \quad \mathbf{S}_{i, j}^{v^{+}} \sim \operatorname{Uniform}(0,1) \\
& \mathbf{S}_{i, j}^{e} \sim \operatorname{Beta}(1.6,1) \\
& \quad \mathbf{I}_{i, j} \mid \mathbf{S}_{\mathrm{N} 9(i, j)} \sim \operatorname{Uniform}(0,1) \\
& \quad \mathbf{S}_{i, j}\left(\mathbf{S}_{\mathrm{N} 9(i, j)}\right) \equiv \exp \left(-\frac{\operatorname{Varmal}\left[\mathbf{E}\left[\mathbf{S}_{i, j}\right], \omega\right)}{\left.2 \mathbf{S}_{i, j}\right]}\right)
\end{aligned}
$$

What is the distribution of $\mathbf{I} \mid \mathbf{I}$?

The answer's approximation

Philosophy Into Practice (2)

- Grads become compilers (and are just as grumpy)

Philosophy Into Practice (2)

- Grads become compilers (and are just as grumpy)

- Our motivation: free (fire?) the grad students

Philosophy Into Practice (2)

- Grads become compilers (and are just as grumpy)

- Our motivation: free (fire?) the grad students
- Our primary constraints
- Do not approximate earlier than users would
- Do not force users to approximate early

Philosophical Constraints

- Compatible approach

1. Informally determine meaning of notation

Philosophical Constraints

- Compatible approach

1. Informally determine meaning of notation
2. Develop exact [•]: "notation" "calculations"

Philosophical Constraints

- Compatible approach

1. Informally determine meaning of notation
2. Develop exact [•] : "notation" "calculations"
3. Approximate [.]], prove convergence

Philosophical Constraints

- Compatible approach

1. Informally determine meaning of notation
2. Develop exact [•]: "notation" "calculations"
3. Approximate $\llbracket \cdot \rrbracket$, prove convergence
4. Implement approximating $\llbracket \cdot]$

Philosophical Constraints

- Compatible approach

1. Informally determine meaning of notation
2. Develop exact [•]: "notation" "calculations"
3. Approximate [.]], prove convergence
4. Implement approximating $\llbracket \cdot]$

- Analogous to abstract interpretation
concrete/exact, abstract/approximating

Which Probability Theory?

- Naive/undergraduate/informal probability theory

Which Probability Theory?

- Naive/undergraduate/informal probability theory
- How Bayesians tend to think about probability
- But can't properly express infinities

Which Probability Theory?

- Naive/undergraduate/informal probability theory
- How Bayesians tend to think about probability
- But can't properly express infinities
- "Spooky interaction at a distance"

Which Probability Theory?

- Naive/undergraduate/informal probability theory
- How Bayesians tend to think about probability
- But can't properly express infinities
- "Spooky interaction at a distance"
- Measure-theoretic probability: global $(\Omega, \Sigma, \mathbb{P})$

Which Probability Theory?

- Naive/undergraduate/informal probability theory
- How Bayesians tend to think about probability
- But can't properly express infinities
- "Spooky interaction at a distance"
- Measure-theoretic probability: global $(\Omega, \Sigma, \mathbb{P})$

Which Probability Theory?

- Naive/undergraduate/informal probability theory
- How Bayesians tend to think about probability
- But can't properly express infinities
- "Spooky interaction at a distance"
- Measure-theoretic probability: global $(\Omega, \Sigma, \mathbb{P})$
$\circ \Omega$: set: all possible "worlds"
- $X: \Omega \rightarrow S:$ "getters" or "readers" for worlds

Which Probability Theory?

- Naive/undergraduate/informal probability theory
- How Bayesians tend to think about probability
- But can't properly express infinities
- "Spooky interaction at a distance"
- Measure-theoretic probability: global $(\Omega, \Sigma, \mathbb{P})$
$\bigcirc \Omega$: set: all possible "worlds"
- $X: \Omega \rightarrow S$: "getters" or "readers" for worlds
- Σ : set: measurable events (for uncountable Ω)

Which Probability Theory?

- Naive/undergraduate/informal probability theory
- How Bayesians tend to think about probability
- But can't properly express infinities
- "Spooky interaction at a distance"
- Measure-theoretic probability: global $(\Omega, \Sigma, \mathbb{P})$
$\circ \Omega$: set: all possible "worlds"
- $X: \Omega \rightarrow S:$ "getters" or "readers" for worlds
- Σ : set: measurable events (for uncountable Ω)
$\circ \mathbb{P}: \Sigma \rightarrow[0,1]$ (or $P: \Omega \rightarrow[0,1]):$ probabilities of events

Which Probability Theory?

- Naive/undergraduate/informal probability theory
- How Bayesians tend to think about probability
- But can't properly express infinities
- "Spooky interaction at a distance"
- Measure-theoretic probability: global $(\Omega, \Sigma, \mathbb{P})$
- Ω : set: all possible "worlds"
- $X: \Omega \rightarrow S:$ "getters" or "readers" for worlds
- Σ : set: measurable events (for uncountable Ω)
$\circ \mathbb{P}: \Sigma \rightarrow[0,1]$ (or $P: \Omega \rightarrow[0,1]):$ probabilities of events
- Calculations uncomputable when Ω infinite

Lambda-ZFC

- Looking for language for compositional measure- theoretic calculations; similarity to Racket a plus

Lambda-ZFC

- Looking for language for compositional measure- theoretic calculations; similarity to Racket a plus

Lambda-ZFC

- Looking for language for compositional measure- theoretic calculations; similarity to Racket a plus

Lambda-ZFC

- Looking for language for compositional measure- theoretic calculations; similarity to Racket a plus

λ calculus
$(\lambda x, e, x, e e), \alpha, \beta)$

Set theory
$(V, \in,=,\{r\}, \bigcup$, image, \mathcal{P}, order $)$

Lambda-ZFC

- Looking for language for compositional measure- theoretic calculations; similarity to Racket a plus

- "Programming" is doing contemporary math, plus $\lambda x . e$

Lambda-ZFC

- Looking for language for compositional measure- theoretic calculations; similarity to Racket a plus

- "Programming" is doing contemporary math, plus $\lambda x . e$
- Contains all set-theoretic functions

Lambda-ZFC

- Looking for language for compositional measure- theoretic calculations; similarity to Racket a plus

- "Programming" is doing contemporary math, plus $\lambda x . e$
- Contains all set-theoretic functions
- Can solve any OTM halting problem constructively

Interpreting Notation	Computational Syntactic Category	Examples

Developing the whole semantics right now would take too much time, so l'm going to give some examples of syntax and talk about the structure of the calculations.

First we have random variable expressions. In the first example, X and Y are random variables, so they're functions of Omega. I've already hinted that you could interpret this by regarding andom variables as reader monad computations.

But there's no reason to impose a total order, so we use the corresponding applicative functor, or idiom.

Next, we have statements about random variables. A collection of statements is a probabilistic model. We interpret each statement as transforming the global probability space. The first example, X is distributed Geometric B, extends the probability space. The second example is a 'condition,' which asserts that applying the random variable $\mathrm{X}+\mathrm{Y}$ to any world must yield 4. It *restricts* the global probability space.

A nice way to structure these calculations is with the state monad, with probability-space-valued state

Last, we have queries. The first example is a `conditional probability query'. It conditions the probability space first, and then asks for the probability that B outputs $1 / 2$. The second example is like the first, but is parameterized on the outputs of B and $\mathrm{X}+\mathrm{Y}$. It should return a function, or a distribution, so it's a 'distribution query'.
Queries run the probability space monad computation in their own particular way.

	Interpreting Notation	
Syntactic Category	Examples	Computational Structure
Expressions	$X+Y$ Geometric (B)	Semantic Functions

First we have random variable expressions. In the first example, X and Y are random variables, so they're functions of Omega. I've already hinted that you could interpret this by regarding random variables as reader monad computations.

But there's no reason to impose a tota order, so we use the corresponding applicative functor, or idiom.

Next, we have statements about random variables. A collection of statements is probabilistic model. We interpret each statement as transforming the global probability space. The first example, X i distributed Geometric B, extends the probability space. The second example is a `condition,' which asserts that applying the random variable $\mathrm{X}+\mathrm{Y}$ to any world must yield 4. It *restricts* the global probability space.

A nice way to structure these calculations is with the state monad, with probability-space-valued state.

Last, we have queries. The first example s a `conditional probability query'. It conditions the probability space first, and then asks for the probability that B outputs $1 / 2$. The second example is like the first, but is parameterized on the outputs of B and $\mathrm{X}+\mathrm{Y}$. It should return a function, or a distribution, so it's a 'distribution query'.

Queries run the probability space monad computation in their own particular way.

Interpreting Notation			
Syntactic Category	Examples	Computational Structure	Semantic Functions
Expressions	$\begin{aligned} & X+Y \\ & \text { Geometric }(B) \end{aligned}$	Environment idiom: $R a=\Omega \rightarrow a$	$\mathcal{R} \llbracket \cdot \rrbracket$, RV

First we have random variable expressions. In the first example, X and Y are random variables, so they're functions of Omega. I've already hinted that you could interpret this by regarding random variables as reader monad computations.

But there's no reason to impose a tota order, so we use the corresponding applicative functor, or idiom.

Next, we have statements about random variables. A collection of statements is probabilistic model. We interpret each statement as transforming the global probability space. The first example, X i distributed Geometric B, extends the probability space. The second example is a 'condition,' which asserts that applying the random variable $\mathrm{X}+\mathrm{Y}$ to any world must yield 4. It *restricts* the global probability space.

A nice way to structure these calculations is with the state monad, with probability-space-valued state

Last, we have queries. The first example s a `conditional probability query'. It conditions the probability space first, and then asks for the probability that B outputs $1 / 2$. The second example is like the first, but is parameterized on the outputs of B and $\mathrm{X}+\mathrm{Y}$. It should return a function, or a distribution, so it's a 'distribution query'.

Interpreting Notation			
Syntactic Category	Examples	Computational Structure	Semantic Functions
Expressions	$\begin{aligned} & X+Y \\ & \text { Geometric(B) } \end{aligned}$	Environment idiom: $R a=\Omega \rightarrow a$	$\mathcal{R} \llbracket \cdot \rrbracket$, RV
Statements	$\begin{aligned} & X \sim \text { Geometri } \\ & X+Y=4 \end{aligned}$		

First we have random variable expressions. In the first example, X and Y are random variables, so they're functions of Omega. I've already hinted that you could interpret this by regarding random variables as reader monad computations.

But there's no reason to impose a total order, so we use the corresponding applicative functor, or idiom.

Next, we have statements about random variables. A collection of statements is probabilistic model. We interpret each statement as transforming the global probability space. The first example, X i distributed Geometric B, extends the probability space. The second example is a 'condition,' which asserts that applying the random variable $\mathrm{X}+\mathrm{Y}$ to any world must yield 4. It *restricts* the global probability space.

A nice way to structure these calculations is with the state monad, with probability-space-valued state

Last, we have queries. The first example s a `conditional probability query'. It conditions the probability space first, and then asks for the probability that B outputs $1 / 2$. The second example is like the first, but is parameterized on the outputs of B and $\mathrm{X}+\mathrm{Y}$. It should return a function, or a distribution, so it's a 'distribution query'.

Interpreting Notation			
Syntactic Category	Examples	Computational Structure	Semantic Functions
Expressions	$\begin{aligned} & X+Y \\ & \text { Geometric }(B) \end{aligned}$	Environment idiom: $R a=\Omega \rightarrow a$	$\mathcal{R} \llbracket \cdot \rrbracket$, RV
Statements	$\begin{aligned} & X \sim \operatorname{Geometric}(B) \\ & X+Y=4 \end{aligned}$	State monad: $M b=P S \rightarrow(P S, b)$ $\text { (usually } b=R a \text {) }$	$\mathcal{M} \llbracket \downarrow$, model

First we have random variable expressions. In the first example, X and Y are random variables, so they're functions of Omega. I've already hinted that you could interpret this by regarding random variables as reader monad computations.

But there's no reason to impose a total order, so we use the corresponding applicative functor, or idiom.

Next, we have statements about random variables. A collection of statements is a probabilistic model. We interpret each statement as transforming the global probability space. The first example, X is distributed Geometric B, extends the probability space. The second example is a 'condition,' which asserts that applying the random variable $\mathrm{X}+\mathrm{Y}$ to any world must yield 4. It *restricts* the global probability space.

A nice way to structure these calculations is with the state monad, with probability-space-valued state

Last, we have queries. The first example s a `conditional probability query'. It conditions the probability space first, and then asks for the probability that B outputs $1 / 2$. The second example is like the first, but is parameterized on the outputs of B and $\mathrm{X}+\mathrm{Y}$. It should return a function, or a distribution, so it's a 'distribution query'.

Queries run the probability space monad computation in their own particular way.

Interpreting Notation			
Syntactic Category	Examples	Computational Structure	Semantic Functions
Expressions	$\begin{aligned} & X+Y \\ & \text { Geometric }(B) \end{aligned}$	Environment idiom: $R a=\Omega \rightarrow a$	$\mathcal{R} \llbracket \cdot \rrbracket$, RV
Statements	$\begin{aligned} & X \sim \operatorname{Geometric}(B) \\ & X+Y=4 \end{aligned}$	State monad: $M b=P S \rightarrow(P S, b)$ $\text { (usually } b=R a \text {) }$	$\mathcal{M} \llbracket \downarrow \rrbracket$, model
Queries	$\begin{aligned} & \mathbf{P}\left[\left.B=\frac{1}{2} \right\rvert\, X+Y=4\right] \\ & \mathcal{C}[B \mid X+Y] \end{aligned}$		

First we have random variable expressions. In the first example, X and Y are random variables, so they're functions of Omega. I've already hinted that you could interpret this by regarding random variables as reader monad computations.

But there's no reason to impose a total order, so we use the corresponding applicative functor, or idiom.

Next, we have statements about random variables. A collection of statements is a probabilistic model. We interpret each statement as transforming the global probability space. The first example, X is distributed Geometric B, extends the probability space. The second example is a 'condition,' which asserts that applying the random variable $\mathrm{X}+\mathrm{Y}$ to any world must yield 4. It *restricts* the global probability space.

A nice way to structure these calculations is with the state monad, with probability-space-valued state.

Last, we have queries. The first example is a `conditional probability query'. It conditions the probability space first, and then asks for the probability that B outputs $1 / 2$. The second example is like the first, but is parameterized on the outputs of B and $\mathrm{X}+\mathrm{Y}$. It should return a function, or a distribution, so it's a
'distribution query'.
Queries run the probability space monad computation in their own particular way.

Interpreting Notation			
Syntactic Category	Examples	Computational Structure	Semantic Functions
Expressions	$\begin{aligned} & X+Y \\ & \text { Geometric }(B) \end{aligned}$	Environment idiom: $R a=\Omega \rightarrow a$	$\mathcal{R} \llbracket \cdot \rrbracket$, RV
Statements	$\begin{aligned} & X \sim \text { Geometric }(B) \\ & X+Y=4 \end{aligned}$	State monad: $M b=P S \rightarrow(P S, b)$ $\text { (usually } b=R a \text {) }$	$\mathcal{M} \llbracket \downarrow \rrbracket$, model
Queries	$\begin{aligned} & \mathbf{P}\left[\left.B=\frac{1}{2} \right\rvert\, X+Y=4\right] \\ & \mathcal{C}[B \mid X+Y] \end{aligned}$	State monad run: $\begin{aligned} & b=[0,1] \text { or } \\ & b=a \rightarrow c \rightarrow[0,1] \end{aligned}$	$\begin{aligned} & \mathbf{P} \llbracket \rrbracket, \mathbf{D} \llbracket \cdot \rrbracket \text {, } \\ & \text { Pr, Dist } \end{aligned}$

First we have random variable expressions. In the first example, X and Y are random variables, so they're functions of Omega. I've already hinted that you could interpret this by regarding random variables as reader monad computations.

But there's no reason to impose a total order, so we use the corresponding applicative functor, or idiom.

Next, we have statements about random variables. A collection of statements is a probabilistic model. We interpret each statement as transforming the global probability space. The first example, X is distributed Geometric B, extends the probability space. The second example is a 'condition,' which asserts that applying the random variable $\mathrm{X}+\mathrm{Y}$ to any world must yield 4. It *restricts* the global probability space.

A nice way to structure these calculations is with the state monad, with probability-space-valued state.

Last, we have queries. The first example is a `conditional probability query'. It conditions the probability space first, and then asks for the probability that B outputs $1 / 2$. The second example is like the first, but is parameterized on the outputs of B and $\mathrm{X}+\mathrm{Y}$. It should return a function, or a distribution, so it's a
'distribution query'.
Queries run the probability space monad computation in their own particular way.

Interpreting Notation

$$
\begin{aligned}
& \mathbf{P}\left[\left.B=\frac{1}{2} \right\rvert\, X+Y=4\right] \\
& \mathcal{C}[B \mid X+Y]
\end{aligned}
$$

Computational	Semantic
Structure	Functions

Expressions

$$
X+Y
$$

Environment idiom:
$\mathcal{R} \llbracket \rrbracket \rrbracket$ RV

$$
\text { Geometric }(B)
$$

$R a=\Omega \rightarrow a$

Statements

$$
\begin{aligned}
& X \sim \text { Geometric }(B) \\
& X+Y=4
\end{aligned}
$$

State monad:
$\mathcal{M} \llbracket \cdot \rrbracket$, model
$M b=P S \rightarrow(P S, b)$ (usually $b=R a$)
State monad run:
$b=[0,1]$ or
$\mathbf{P} \llbracket \cdot \rrbracket, \mathbf{D} \llbracket \rrbracket]$,
$b=a \rightarrow c \rightarrow[0,1]$

- Difficult to encode types in most type systems

Fun Facts: Semantics

$-\mathcal{R}[\cdot]: \lambda_{\text {ZFC }} \rightarrow \lambda_{\text {ZFC }}$ interprets anything constructive

- Uncountable Ω : need to prove measurability conditions

Fun Facts: Semantics

$-\mathcal{R} \llbracket \rrbracket]: \lambda_{\text {ZFC }} \rightarrow \lambda_{\text {ZFC }}$ interprets anything constructive

- Uncountable Ω : need to prove measurability conditions
- $\mathcal{R}[\operatorname{Geometric}(B)]: \Omega \rightarrow \mathbb{N} \rightarrow[0,1]$ is a discrete transition kernel

Fun Facts: Semantics

$-\mathcal{R}[\cdot]: \lambda_{\text {ZFC }} \rightarrow \lambda_{\text {ZFC }}$ interprets anything constructive

- Uncountable Ω : need to prove measurability conditions
- $\mathcal{R}[\operatorname{Geometric}(B)]: \Omega \rightarrow \mathbb{N} \rightarrow[0,1]$ is a discrete transition kernel
- Uncountable Ω already works: $\mathcal{R} \llbracket \operatorname{Normal}(M, S) \rrbracket: \Omega \rightarrow \mathcal{B}(\mathbb{R}) \rightarrow[0,1]$
- Queries approximate with finitize $(\Omega, P) k=\left(\Omega_{k}, P_{k}\right)$
- Uncountable Ω : finitize $(\Omega, \Sigma, \mathbb{P}) k=\left(\Omega_{k}, P_{k}\right)$ with Ω_{k} finite, stochastic

Fun Facts: Implementation

- Almost a transliteration of approximating semantics, except

Fun Facts: Implementation

- Almost a transliteration of approximating semantics, except
- Lazy lists represent recursively enumerable sets
- Floats and exact rationals represent probabilities

Fun Facts: Implementation

- Almost a transliteration of approximating semantics, except
- Lazy lists represent recursively enumerable sets
- Floats and exact rationals represent probabilities
- RV : kstx -> kstx interprets any Racket expression

Fun Facts: Implementation

- Almost a transliteration of approximating semantics, except
- Lazy lists represent recursively enumerable sets
- Floats and exact rationals represent probabilities
- RV : kstx -> kstx interprets any Racket expression
- (define-model name [X ~ ...] ...) is hygienically referred to by (with-model name (Pr ... X ...))

Duelling Idiots (Paul Nahin)

Duelling Idiots (Paul Nahin)

(define-model idiot-duel
[winning-shot ~ (Geometric 1/6)])

Duelling Idiots (Paul Nahin)

```
(define-model idiot-duel
    [winning-shot ~ (Geometric 1/6)])
(with-model idiot-duel
    (Pr (odd? winning-shot)))
; --> 2/3 as k --> \infty
```


Duelling Idiots (Paul Nahin)

```
(define-model idiot-duel
    [winning-shot ~ (Geometric 1/6)])
(with-model idiot-duel
    (Pr (odd? winning-shot)))
; --> 2/3 as k --> \infty
(with-model idiot-duel
    (Pr (p1-fires? winning-shot)))
```


Duelling Idiots (Paul Nahin)

```
(define-model idiot-duel
    [winning-shot ~ (Geometric 1/6)])
(with-model idiot-duel
    (Pr (odd? winning-shot)))
; --> 2/3 as k --> \infty
(with-model idiot-duel
    (Pr (p1-fires? winning-shot)))
    (define (p1-fires? n [shots 1])
    (cond [(<= n 0) #f]
        [else (not (p1-fires? (- n shots)
                                (add1 shots)))]))
```


Duelling Idiots (Paul Nahin)

```
(define-model idiot-duel
    [winning-shot ~ (Geometric 1/6)])
    (with-model idiot-duel
    (Pr (odd? winning-shot)))
    ; --> 2/3 as k --> \infty
    (with-model idiot-duel
    (Pr (pl-fires? winning-shot)))
    (define (pl-fires? n [shots 1])
        (cond [(<= n 0) #f]
        [else (not (pl-fires? (- n shots)
                                    (add1 shots)))]))
```


Duelling Idiot and Half-Wit

```
(define-model half-wit-duel
    [spin? ~ (Bernoulli 1/2)]
    [winning-shot ~ (cond [spin? (Geometric 1/6)]
    [else (UniformInt 1 6)])])
```


Duelling Idiot and Half-Wit

```
(define-model half-wit-duel
    [spin? ~ (Bernoulli 1/2)]
    [winning-shot ~ (cond [spin? (Geometric 1/6)]
    [else (UniformInt 1 6)])])
```

 (with-model half-wit-duel
 (Pr spin? (not (p1-fires? winning-shot))))

Duelling Idiot and Half-Wit

(define-model half-wit-duel
[spin? ~ (Bernoulli 1/2)]
[winning-shot ~ (cond [spin? (Geometric 1/6)]
[else (UniformInt 1 6)])])
(with-model half-wit-duel
(Pr spin? (not (p1-fires? winning-shot))))
Answer: about 0.588 (compare (Pr spin?) $=0.5$)

Observational Equivalence

- Model equivalence: $m \equiv_{\mathbf{D}} m^{\prime}$ means no query q can distinguish between m and m^{\prime}

Observational Equivalence

- Model equivalence: $m \equiv_{\mathbf{D}} m^{\prime}$ means no query q can distinguish between m and m^{\prime}
- Justifies measure-theoretic optimizations
- Variable collapse (constant folding for rvs)

$$
X \sim \operatorname{Normal}(0,1) ; Y \sim \operatorname{Normal}(X, 1) \longrightarrow Y \sim \operatorname{Normal}(0,2)
$$

- Propagating conditions (like constraint propagation)

$$
X \sim P_{X} ; \ldots ; X=3 \longrightarrow X \sim P_{X} ; X=3 ; \ldots
$$

Observational Equivalence

- Model equivalence: $m \equiv \mathbf{D} m^{\prime}$ means no query q can distinguish between m and m^{\prime}
- Justifies measure-theoretic optimizations
- Variable collapse (constant folding for rvs)

$$
X \sim \operatorname{Normal}(0,1) ; Y \sim \operatorname{Normal}(X, 1) \longrightarrow Y \sim \operatorname{Normal}(0,2)
$$

- Propagating conditions (like constraint propagation)

$$
X \sim P_{X} ; \ldots ; X=3 \longrightarrow X \sim P_{X} ; X=3 ; \ldots
$$

- Justifiable only in the exact semantics

Observational Equivalence

- Model equivalence: $m \equiv \mathbf{D} m^{\prime}$ means no query q can distinguish between m and m^{\prime}
- Justifies measure-theoretic optimizations
- Variable collapse (constant folding for rvs)

$$
X \sim \operatorname{Normal}(0,1) ; Y \sim \operatorname{Normal}(X, 1) \longrightarrow Y \sim \operatorname{Normal}(0,2)
$$

- Propagating conditions (like constraint propagation)

$$
X \sim P_{X} ; \ldots ; X=3 \longrightarrow X \sim P_{X} ; X=3 ; \ldots
$$

- Justifiable only in the exact semantics
- Suppose for $k=29, q m=0.7$ but $q m^{\prime}=0.2$

Observational Equivalence

- Model equivalence: $m \equiv_{\text {D }} m^{\prime}$ means no query q can distinguish between m and m^{\prime}
- Justifies measure-theoretic optimizations
- Variable collapse (constant folding for rvs)

$$
X \sim \operatorname{Normal}(0,1) ; Y \sim \operatorname{Normal}(X, 1) \longrightarrow Y \sim \operatorname{Normal}(0,2)
$$

- Propagating conditions (like constraint propagation)

$$
X \sim P_{X} ; \ldots ; X=3 \longrightarrow X \sim P_{X} ; X=3 ; \ldots
$$

- Justifiable only in the exact semantics
- Suppose for $k=29$, $q m=0.7$ but $q m^{\prime}=0.2$
- But what if, for $k=400, q m=0.19$?

Observational Equivalence

- Model equivalence: $m \equiv \mathbf{D} m^{\prime}$ means no query q can distinguish between m and m^{\prime}
- Justifies measure-theoretic optimizations
- Variable collapse (constant folding for rvs)

$$
X \sim \operatorname{Normal}(0,1) ; Y \sim \operatorname{Normal}(X, 1) \longrightarrow Y \sim \operatorname{Normal}(0,2)
$$

- Propagating conditions (like constraint propagation)

$$
X \sim P_{X} ; \ldots ; X=3 \longrightarrow X \sim P_{X} ; X=3 ; \ldots
$$

- Justifiable only in the exact semantics
- Suppose for $k=29, q m=0.7$ but $q m^{\prime}=0.2$
- But what if, for $k=400, q m=0.19$?

