
From Bayesian Notation to Pure Racket*From Bayesian Notation to Pure Racket*

via Discrete Measure-Theoretic Probability in λZFCvia Discrete Measure-Theoretic Probability in λZFC

Implementation and Application of Functional Languages

September 1-3, 2010

Neil Toronto and Jay McCarthy

PLT @ Brigham Young University, Utah, USA

* Formerly PLT-Scheme

I'm Neil Toronto of Toronto and

McCarthy, from the PLT group at

Brigham Young University. We're

developing languages for Bayesian

modeling and queries.

Bayesian Practice and PhilosophyBayesian Practice and Philosophy

• State a probabilistic model of a process; then pose a query that
runs the process backwards

2222222222222222

Doing Bayesian statistics is like doing

physics, but for fuzzy, uncertain, or

random things. In physics, you might

use a Newtonian model that gives

distance in terms of time (i.e. d=rt) and

ask how much time it will take to travel

given a certain distance.

Bayesian Practice and PhilosophyBayesian Practice and Philosophy

• State a probabilistic model of a process; then pose a query that
runs the process backwards

Document generation / Is this email spam?

2222222222222222

In Bayesian statistics, you might design

a model that says which words tend to

appear in a document given the writer's

intent, and ask how likely it is that the

writer is trying to sell you Viagra given

the words in an email.

Bayesian Practice and PhilosophyBayesian Practice and Philosophy

• State a probabilistic model of a process; then pose a query that
runs the process backwards

Document generation / Is this email spam?

Real-world scenes and image capture / Likely scene given a
photograph

2222222222222222

Or you could model real-world scenes

and image capture, and then ask for a

likely scene given an image---and that's

the computer vision problem in Bayesian

terms.

Bayesian Practice and PhilosophyBayesian Practice and Philosophy

• State a probabilistic model of a process; then pose a query that
runs the process backwards

Document generation / Is this email spam?

Real-world scenes and image capture / Likely scene given a
photograph

John Wilder Tukey

“An approximate answer to the right question is
worth a great deal more than a precise answer
to the wrong question.”

2222222222222222

Bayesian statisticians follow a particular

philosophy when they model the world

and ask questions about it. John Tukey

probably stated it best: (read).

Philosophy Into Practice (1)Philosophy Into Practice (1)

• Approximations must be put off as long as possible

3333333333333333

In practice, the philosophy requires

putting off approximation for as long as

possible. In fact, Bayesians intentionally

forget about how hard it might be to

calculate answers when they design

models and pose queries.

Philosophy Into Practice (1)Philosophy Into Practice (1)

• Approximations must be put off as long as possible

Models and queries are exact, and generally not closed-form
nor finitely computable

3333333333333333

The answers end up not being

closed-form or finitely computable...

Philosophy Into Practice (1)Philosophy Into Practice (1)

• Approximations must be put off as long as possible

Models and queries are exact, and generally not closed-form
nor finitely computable

Compute answers as converging approximations

3333333333333333

... so they usually end up compiling their

queries by hand, into programs that

compute converging approximations.

Philosophy Into Practice (1)Philosophy Into Practice (1)

• Approximations must be put off as long as possible

Models and queries are exact, and generally not closed-form
nor finitely computable

Compute answers as converging approximations

• Example: enlarging images

Model and query

3333333333333333

Here's a concrete example: an idealized

model of taking pictures of real-world

scenes. The query asks for a likely

scene given an image, and then for a

higher-resolution picture of the same

scene. In other words, it enlarges

images. The model and query are short

and elegant.

Philosophy Into Practice (1)Philosophy Into Practice (1)

• Approximations must be put off as long as possible

Models and queries are exact, and generally not closed-form
nor finitely computable

Compute answers as converging approximations

• Example: enlarging images

Model and query The answer's approximation

3333333333333333

And this is the 600 lines of

hand-compiled, highly vectorized Python

code that computes an approximate

answer.

Philosophy Into Practice (2)Philosophy Into Practice (2)

• Grads become compilers (and are just as grumpy)

4444444444444444

These are my friends, Andrew and

Dave, who write programs like that, in

their natural habitat, under typical

conditions. They suffer these conditions

because above all, they want to answer

the right questions.

Philosophy Into Practice (2)Philosophy Into Practice (2)

• Grads become compilers (and are just as grumpy)

• Our motivation: free (fire?) the grad students

4444444444444444

So Bayesian philosophy motivates our

work: we want to free Andrew and Dave

from compiling answers to queries by

hand. If we did that, they could spend a

lot more time searching the space of

models and experimenting.

Philosophy Into Practice (2)Philosophy Into Practice (2)

• Grads become compilers (and are just as grumpy)

• Our motivation: free (fire?) the grad students

• Our primary constraints

Do not approximate earlier than users would

Do not force users to approximate early

4444444444444444

The philosophy also places two

constraints on our work: our query

implementations can't approximate early,

and the modeling language has to be

expressive enough that it doesn't force

users to approximate early. Otherwise,

they won't be our users.

Philosophical ConstraintsPhilosophical Constraints

• Compatible approach

 1. Informally determine meaning of notation

5555555555555555

Here's an approach that satisfies the

constraints. First, we determine what the

notation means, which usually means

turning examples into something formal

and compositional enough to generalize.

Philosophical ConstraintsPhilosophical Constraints

• Compatible approach

 1. Informally determine meaning of notation

 2. Develop exact : “notation” → “calculations”

5555555555555555

Then we develop an exact,

compositional semantics...

Philosophical ConstraintsPhilosophical Constraints

• Compatible approach

 1. Informally determine meaning of notation

 2. Develop exact : “notation” → “calculations”

 3. Approximate , prove convergence

5555555555555555

... approximate the calculations, prove

that the approximation converges, and

then...

Philosophical ConstraintsPhilosophical Constraints

• Compatible approach

 1. Informally determine meaning of notation

 2. Develop exact : “notation” → “calculations”

 3. Approximate , prove convergence

 4. Implement approximating

5555555555555555

... implement the approximating

semantics in Racket.

Philosophical ConstraintsPhilosophical Constraints

• Compatible approach

 1. Informally determine meaning of notation

 2. Develop exact : “notation” → “calculations”

 3. Approximate , prove convergence

 4. Implement approximating

• Analogous to abstract interpretation

concrete/exact, abstract/approximating

5555555555555555

If you know abstract interpretation, our

approach should seem very familiar. It

isn't abstract interpretation, though,

because the approximations aren't

conservative.

Which Probability Theory?Which Probability Theory?

• Naive/undergraduate/informal probability theory

How Bayesians tend to think about probability

6666666666666666

To turn notation into exact calculations,

we need a theory of probability that tells

us what those calculations should be.

Bayesians tend to think and calculate

using naive probability, which you

probably learned if you had to take an

undergraduate statistics course. But we

can't use naive probability.

Which Probability Theory?Which Probability Theory?

• Naive/undergraduate/informal probability theory

How Bayesians tend to think about probability

But can’t properly express infinities

6666666666666666

We plan to allow infinitely many random

variables and distributions that have

both discrete and continuous parts.

Bayesians want those things, but naive

probability can't explain them.

Which Probability Theory?Which Probability Theory?

• Naive/undergraduate/informal probability theory

How Bayesians tend to think about probability

But can’t properly express infinities

“Spooky interaction at a distance”

6666666666666666

The second problem arises from the fact

that random variables can interact

non-locally, similar to how variables in

languages with mutable state can

interact non-locally. Naive probability

theory doesn't explain this

compositionally.

Which Probability Theory?Which Probability Theory?

• Naive/undergraduate/informal probability theory

How Bayesians tend to think about probability

But can’t properly express infinities

“Spooky interaction at a distance”

• Measure-theoretic probability: global

6666666666666666

Measure-theoretic probability explains

non-local interaction by having all

random variables interact through a

single, global object. You might call it a

`store,' but its actual name is `probability

space.'

Which Probability Theory?Which Probability Theory?

• Naive/undergraduate/informal probability theory

How Bayesians tend to think about probability

But can’t properly express infinities

“Spooky interaction at a distance”

• Measure-theoretic probability: global

: all possible “worlds”

6666666666666666

Omega is the set of all possible states of

the world being modeled. For example, if

your model includes flipping two coins,

all four combinations of outcomes will be

encoded somehow in Omega.

Which Probability Theory?Which Probability Theory?

• Naive/undergraduate/informal probability theory

How Bayesians tend to think about probability

But can’t properly express infinities

“Spooky interaction at a distance”

• Measure-theoretic probability: global

: all possible “worlds”

: “getters” or “readers” for worlds

6666666666666666

You'll also have random variables that

represent the coin flips, which decode or

`read' the outcomes from a world object.

Which Probability Theory?Which Probability Theory?

• Naive/undergraduate/informal probability theory

How Bayesians tend to think about probability

But can’t properly express infinities

“Spooky interaction at a distance”

• Measure-theoretic probability: global

: all possible “worlds”

: “getters” or “readers” for worlds

: measurable events (for uncountable)

6666666666666666

Sigma is critical for handling

uncountable infinities properly, and it's

complicated.

Which Probability Theory?Which Probability Theory?

• Naive/undergraduate/informal probability theory

How Bayesians tend to think about probability

But can’t properly express infinities

“Spooky interaction at a distance”

• Measure-theoretic probability: global

: all possible “worlds”

: “getters” or “readers” for worlds

: measurable events (for uncountable)

 (or): probabilities of events

6666666666666666

And last, P assigns probabilities. In our

preliminary work, we don't let Omega get

any bigger than countable, so we can

forget about Sigma, and use a P that

assigns probabilities to single worlds.

We have simpler calculations that way,

but they're still structured

measure-theoretically, and we still have

to deal with approximation.

Which Probability Theory?Which Probability Theory?

• Naive/undergraduate/informal probability theory

How Bayesians tend to think about probability

But can’t properly express infinities

“Spooky interaction at a distance”

• Measure-theoretic probability: global

: all possible “worlds”

: “getters” or “readers” for worlds

: measurable events (for uncountable)

 (or): probabilities of events

Calculations uncomputable when infinite
6666666666666666

Measure theory fits naturally into

functional programming, but before we

start defining monads, we have to deal

with the fact that measure-theoretic

calculations aren't generally computable.

Lambda-ZFCLambda-ZFC

• Looking for language for compositional measure- theoretic
calculations; similarity to Racket a plus

7777777777777777

We want to transform notation into

measure-theoretic calculations, and

eventually approximate the calculations

in Racket. For the semantic function's

target language, then, we need a

call-by-value lambda calculus for

expressing uncomputable things that are

well-defined in contemporary

mathematics.

Lambda-ZFCLambda-ZFC

• Looking for language for compositional measure- theoretic
calculations; similarity to Racket a plus

λ calculus

7777777777777777

So we start with Alonzo Church's

invention, the lambda calculus; then we

add Ernst Zermelo and Abraham

Fraenkel's inventions, the well-founded

sets and set operations; and we get

lambda-ZFC.

Lambda-ZFCLambda-ZFC

• Looking for language for compositional measure- theoretic
calculations; similarity to Racket a plus

λ calculus

+

Set theory

7777777777777777

So we start with Alonzo Church's

invention, the lambda calculus; then we

add Ernst Zermelo and Abraham

Fraenkel's inventions, the well-founded

sets and set operations; and we get

lambda-ZFC.

Lambda-ZFCLambda-ZFC

• Looking for language for compositional measure- theoretic
calculations; similarity to Racket a plus

λ calculus

+

Set theory

=

λZFC

7777777777777777

So we start with Alonzo Church's

invention, the lambda calculus; then we

add Ernst Zermelo and Abraham

Fraenkel's inventions, the well-founded

sets and set operations; and we get

lambda-ZFC.

Lambda-ZFCLambda-ZFC

• Looking for language for compositional measure- theoretic
calculations; similarity to Racket a plus

λ calculus

+

Set theory

=

λZFC

• “Programming” is doing contemporary math, plus λx.e

7777777777777777

Programming in lambda-ZFC is like

doing contemporary mathematics... but

with first-class lambdas, so we can

structure our uncomputable

measure-theoretic calculations as

monadic computations.

Lambda-ZFCLambda-ZFC

• Looking for language for compositional measure- theoretic
calculations; similarity to Racket a plus

λ calculus

+

Set theory

=

λZFC

• “Programming” is doing contemporary math, plus λx.e

• Contains all set-theoretic functions

7777777777777777

Lambda-ZFC contains all set-theoretic

functions; specifically, all conditional

probability distributions.

Lambda-ZFCLambda-ZFC

• Looking for language for compositional measure- theoretic
calculations; similarity to Racket a plus

λ calculus

+

Set theory

=

λZFC

• “Programming” is doing contemporary math, plus λx.e

• Contains all set-theoretic functions

• Can solve any OTM halting problem constructively

7777777777777777

To give you an idea of its relative

computational power: you can solve any

oracle Turing machine halting problem

by writing an interpreter in lambda-ZFC.

It might seem like too much power, but

remember that we want to interpret

Bayesian notation exactly. We'll worry

about computability when we do the

approximations.

Interpreting NotationInterpreting Notation

Syntactic
Category

Examples Computational
Structure

Semantic
Functions

8888888888888888

Developing the whole semantics right

now would take too much time, so I'm

going to give some examples of syntax

and talk about the structure of the

calculations.

First we have random variable

expressions. In the first example, X and

Y are random variables, so they're

functions of Omega. I've already hinted

that you could interpret this by regarding

random variables as reader monad

computations.

But there's no reason to impose a total

order, so we use the corresponding

applicative functor, or idiom.

Next, we have statements about random

variables. A collection of statements is a

probabilistic model. We interpret each

statement as transforming the global

probability space. The first example, X is

distributed Geometric B, extends the

probability space. The second example

is a `condition,' which asserts that

applying the random variable X+Y to any

world must yield 4. It *restricts* the

global probability space.

A nice way to structure these

calculations is with the state monad, with

probability-space-valued state.

Last, we have queries. The first example

is a `conditional probability query'. It

conditions the probability space first, and

then asks for the probability that B

outputs 1/2. The second example is like

the first, but is parameterized on the

outputs of B and X+Y. It should return a

function, or a distribution, so it's a

`distribution query'.

Queries run the probability space monad

computation in their own particular way.

Interpreting NotationInterpreting Notation

Syntactic
Category

Examples Computational
Structure

Semantic
Functions

Expressions

8888888888888888

Developing the whole semantics right

now would take too much time, so I'm

going to give some examples of syntax

and talk about the structure of the

calculations.

First we have random variable

expressions. In the first example, X and

Y are random variables, so they're

functions of Omega. I've already hinted

that you could interpret this by regarding

random variables as reader monad

computations.

But there's no reason to impose a total

order, so we use the corresponding

applicative functor, or idiom.

Next, we have statements about random

variables. A collection of statements is a

probabilistic model. We interpret each

statement as transforming the global

probability space. The first example, X is

distributed Geometric B, extends the

probability space. The second example

is a `condition,' which asserts that

applying the random variable X+Y to any

world must yield 4. It *restricts* the

global probability space.

A nice way to structure these

calculations is with the state monad, with

probability-space-valued state.

Last, we have queries. The first example

is a `conditional probability query'. It

conditions the probability space first, and

then asks for the probability that B

outputs 1/2. The second example is like

the first, but is parameterized on the

outputs of B and X+Y. It should return a

function, or a distribution, so it's a

`distribution query'.

Queries run the probability space monad

computation in their own particular way.

Interpreting NotationInterpreting Notation

Syntactic
Category

Examples Computational
Structure

Semantic
Functions

Expressions Environment idiom: , RV

8888888888888888

Developing the whole semantics right

now would take too much time, so I'm

going to give some examples of syntax

and talk about the structure of the

calculations.

First we have random variable

expressions. In the first example, X and

Y are random variables, so they're

functions of Omega. I've already hinted

that you could interpret this by regarding

random variables as reader monad

computations.

But there's no reason to impose a total

order, so we use the corresponding

applicative functor, or idiom.

Next, we have statements about random

variables. A collection of statements is a

probabilistic model. We interpret each

statement as transforming the global

probability space. The first example, X is

distributed Geometric B, extends the

probability space. The second example

is a `condition,' which asserts that

applying the random variable X+Y to any

world must yield 4. It *restricts* the

global probability space.

A nice way to structure these

calculations is with the state monad, with

probability-space-valued state.

Last, we have queries. The first example

is a `conditional probability query'. It

conditions the probability space first, and

then asks for the probability that B

outputs 1/2. The second example is like

the first, but is parameterized on the

outputs of B and X+Y. It should return a

function, or a distribution, so it's a

`distribution query'.

Queries run the probability space monad

computation in their own particular way.

Interpreting NotationInterpreting Notation

Syntactic
Category

Examples Computational
Structure

Semantic
Functions

Expressions Environment idiom: , RV

Statements

8888888888888888

Developing the whole semantics right

now would take too much time, so I'm

going to give some examples of syntax

and talk about the structure of the

calculations.

First we have random variable

expressions. In the first example, X and

Y are random variables, so they're

functions of Omega. I've already hinted

that you could interpret this by regarding

random variables as reader monad

computations.

But there's no reason to impose a total

order, so we use the corresponding

applicative functor, or idiom.

Next, we have statements about random

variables. A collection of statements is a

probabilistic model. We interpret each

statement as transforming the global

probability space. The first example, X is

distributed Geometric B, extends the

probability space. The second example

is a `condition,' which asserts that

applying the random variable X+Y to any

world must yield 4. It *restricts* the

global probability space.

A nice way to structure these

calculations is with the state monad, with

probability-space-valued state.

Last, we have queries. The first example

is a `conditional probability query'. It

conditions the probability space first, and

then asks for the probability that B

outputs 1/2. The second example is like

the first, but is parameterized on the

outputs of B and X+Y. It should return a

function, or a distribution, so it's a

`distribution query'.

Queries run the probability space monad

computation in their own particular way.

Interpreting NotationInterpreting Notation

Syntactic
Category

Examples Computational
Structure

Semantic
Functions

Expressions Environment idiom: , RV

Statements State monad:

(usually)

, model

8888888888888888

Developing the whole semantics right

now would take too much time, so I'm

going to give some examples of syntax

and talk about the structure of the

calculations.

First we have random variable

expressions. In the first example, X and

Y are random variables, so they're

functions of Omega. I've already hinted

that you could interpret this by regarding

random variables as reader monad

computations.

But there's no reason to impose a total

order, so we use the corresponding

applicative functor, or idiom.

Next, we have statements about random

variables. A collection of statements is a

probabilistic model. We interpret each

statement as transforming the global

probability space. The first example, X is

distributed Geometric B, extends the

probability space. The second example

is a `condition,' which asserts that

applying the random variable X+Y to any

world must yield 4. It *restricts* the

global probability space.

A nice way to structure these

calculations is with the state monad, with

probability-space-valued state.

Last, we have queries. The first example

is a `conditional probability query'. It

conditions the probability space first, and

then asks for the probability that B

outputs 1/2. The second example is like

the first, but is parameterized on the

outputs of B and X+Y. It should return a

function, or a distribution, so it's a

`distribution query'.

Queries run the probability space monad

computation in their own particular way.

Interpreting NotationInterpreting Notation

Syntactic
Category

Examples Computational
Structure

Semantic
Functions

Expressions Environment idiom: , RV

Statements State monad:

(usually)

, model

Queries

8888888888888888

Developing the whole semantics right

now would take too much time, so I'm

going to give some examples of syntax

and talk about the structure of the

calculations.

First we have random variable

expressions. In the first example, X and

Y are random variables, so they're

functions of Omega. I've already hinted

that you could interpret this by regarding

random variables as reader monad

computations.

But there's no reason to impose a total

order, so we use the corresponding

applicative functor, or idiom.

Next, we have statements about random

variables. A collection of statements is a

probabilistic model. We interpret each

statement as transforming the global

probability space. The first example, X is

distributed Geometric B, extends the

probability space. The second example

is a `condition,' which asserts that

applying the random variable X+Y to any

world must yield 4. It *restricts* the

global probability space.

A nice way to structure these

calculations is with the state monad, with

probability-space-valued state.

Last, we have queries. The first example

is a `conditional probability query'. It

conditions the probability space first, and

then asks for the probability that B

outputs 1/2. The second example is like

the first, but is parameterized on the

outputs of B and X+Y. It should return a

function, or a distribution, so it's a

`distribution query'.

Queries run the probability space monad

computation in their own particular way.

Interpreting NotationInterpreting Notation

Syntactic
Category

Examples Computational
Structure

Semantic
Functions

Expressions Environment idiom: , RV

Statements State monad:

(usually)

, model

Queries State monad run:
 or

, ,
Pr , Dist

8888888888888888

Developing the whole semantics right

now would take too much time, so I'm

going to give some examples of syntax

and talk about the structure of the

calculations.

First we have random variable

expressions. In the first example, X and

Y are random variables, so they're

functions of Omega. I've already hinted

that you could interpret this by regarding

random variables as reader monad

computations.

But there's no reason to impose a total

order, so we use the corresponding

applicative functor, or idiom.

Next, we have statements about random

variables. A collection of statements is a

probabilistic model. We interpret each

statement as transforming the global

probability space. The first example, X is

distributed Geometric B, extends the

probability space. The second example

is a `condition,' which asserts that

applying the random variable X+Y to any

world must yield 4. It *restricts* the

global probability space.

A nice way to structure these

calculations is with the state monad, with

probability-space-valued state.

Last, we have queries. The first example

is a `conditional probability query'. It

conditions the probability space first, and

then asks for the probability that B

outputs 1/2. The second example is like

the first, but is parameterized on the

outputs of B and X+Y. It should return a

function, or a distribution, so it's a

`distribution query'.

Queries run the probability space monad

computation in their own particular way.

Interpreting NotationInterpreting Notation

Syntactic
Category

Examples Computational
Structure

Semantic
Functions

Expressions Environment idiom: , RV

Statements State monad:

(usually)

, model

Queries State monad run:
 or

, ,
Pr , Dist

• Difficult to encode types in most type systems

8888888888888888

Now, you might think that with all these

types and idioms and monads and such,

Racket might not be the best

implementation language. But Racket's

macro system allows us to implement

the semantic functions directly. Besides,

these types are difficult to encode in

most type systems; it seems to require

either unityped random variables or

dependent types. It's possible in Typed

Racket using occurrence typing, but it's

a little too much trouble.

Fun Facts: SemanticsFun Facts: Semantics

• interprets anything constructive

Uncountable : need to prove measurability conditions

9999999999999999

The random variable expression

semantic function can turn any

lambda-ZFC expression into random

variable. When Omega is uncountable,

we're going to have to start worrying

about something called measurability,

but we'll be able to worry about it

compositionally.

Fun Facts: SemanticsFun Facts: Semantics

• interprets anything constructive

Uncountable : need to prove measurability conditions

• is a discrete
transition kernel

Uncountable already works:

9999999999999999

Next is a fortunate accident: the random

variable semantic function turns notation

that denotes conditional distributions into

`transition kernels,' which

measure-theoretic probability uses to

build probability spaces. So the

semantics turns Bayesian notation into

exactly what measure-theoretic

probability requires, and that fact doesn't

change when Omega is uncountable. It

also allows Bayesians more freedom:

any expression with the right type can

be a conditional distribution. I'll show an

example later.

Fun Facts: SemanticsFun Facts: Semantics

• interprets anything constructive

Uncountable : need to prove measurability conditions

• is a discrete
transition kernel

Uncountable already works:

• Queries approximate with

Uncountable : with finite, stochastic

9999999999999999

There's a single point of approximation

in the approximating semantics: right

before a query, `finitize' restricts Omega

to a finite subset of size k. Then, as k

approaches infinity, the answer to any

query approaches the correct value.

Finitize also renormalizes P so that it

sums to 1.

Approximations for uncountable Omega

are going to be tricky, but there are a lot

of available approximations. The most

efficient ones are randomized

algorithms.

Fun Facts: ImplementationFun Facts: Implementation

• Almost a transliteration of approximating semantics, except

10101010101010101010101010101010

The implementation is almost a

transliteration of the approximating

semantics, with the substitutions you

would expect; for example,

Fun Facts: ImplementationFun Facts: Implementation

• Almost a transliteration of approximating semantics, except

Lazy lists represent recursively enumerable sets

Floats and exact rationals represent probabilities

10101010101010101010101010101010

lazy lists instead of recursively

enumerable sets, and floats and

rationals instead of reals.

Fun Facts: ImplementationFun Facts: Implementation

• Almost a transliteration of approximating semantics, except

Lazy lists represent recursively enumerable sets

Floats and exact rationals represent probabilities

• RV : kstx -> kstx interprets any Racket expression

10101010101010101010101010101010

Just as the random variable semantic

function interprets any lambda-ZFC

expression as a random variable, the

implementation interprets any Racket

expression as a random variable. It does

this by fully expanding the expressions

first, and then transforming kernel

syntax.

Fun Facts: ImplementationFun Facts: Implementation

• Almost a transliteration of approximating semantics, except

Lazy lists represent recursively enumerable sets

Floats and exact rationals represent probabilities

• RV : kstx -> kstx interprets any Racket expression

• (define-model name [X ~ ...] ...) is hygienically
referred to by (with-model name (Pr ... X ...))

10101010101010101010101010101010

And because Racket has a very

expressive macro system, we can

separate the monadic computations

from the queries that run them, and

allow the queries access to the bound

identifiers. They can even be in separate

modules. This is important for

Bayesians, who usually pose many

queries for each model.

Duelling Idiots (Paul Nahin)Duelling Idiots (Paul Nahin)

11111111111111111111111111111111

Let's see how the implementation does

on a good, countably infinite probability

problem. (By `good,' by the way, I mean

that the problem includes gambling and

death.) It comes from Paul Nahin's book

of puzzlers. Two idiots decide to duel,

but they have only one gun, a

six-shooter. So they put a bullet in it and

take turns spinning the chamber and

firing at each other. What's the

probability that the player that shoots

first wins?

Duelling Idiots (Paul Nahin)Duelling Idiots (Paul Nahin)

(define-model idiot-duel
 [winning-shot ~ (Geometric 1/6)])

11111111111111111111111111111111

The trick to answering the query is to

recognize that how many shots it takes

before the gun finally goes off has a

geometric distribution.

Duelling Idiots (Paul Nahin)Duelling Idiots (Paul Nahin)

(define-model idiot-duel
 [winning-shot ~ (Geometric 1/6)])

(with-model idiot-duel
 (Pr (odd? winning-shot)))
; --> 2/3 as k --> ∞

11111111111111111111111111111111

The probability that player one wins is

the probability that the winning shot is

odd-numbered, and this approaches 2/3

as k approaches infinity. So player one

has a much better chance of winning

this duel. But suppose the idiots know

this, so they come up with a plan to even

the odds. Player one takes one shot,

then player two takes two shots, player

one takes three shots, and so on.

What's the probability that player one

wins?

Duelling Idiots (Paul Nahin)Duelling Idiots (Paul Nahin)

(define-model idiot-duel
 [winning-shot ~ (Geometric 1/6)])

(with-model idiot-duel
 (Pr (odd? winning-shot)))
; --> 2/3 as k --> ∞

(with-model idiot-duel
 (Pr (p1-fires? winning-shot)))

11111111111111111111111111111111

Our query now looks like this, where

p1-fires? is defined by

Duelling Idiots (Paul Nahin)Duelling Idiots (Paul Nahin)

(define-model idiot-duel
 [winning-shot ~ (Geometric 1/6)])

(with-model idiot-duel
 (Pr (odd? winning-shot)))
; --> 2/3 as k --> ∞

(with-model idiot-duel
 (Pr (p1-fires? winning-shot)))

(define (p1-fires? n [shots 1])
 (cond [(<= n 0) #f]

[else (not (p1-fires? (- n shots)
(add1 shots)))]))

11111111111111111111111111111111

Designing p1-fires? was the trickiest part

of the solution. Don't stare at it too long,

though; the point is that it exists and isn't

too hard to write.

Duelling Idiots (Paul Nahin)Duelling Idiots (Paul Nahin)

(define-model idiot-duel
 [winning-shot ~ (Geometric 1/6)])

(with-model idiot-duel
 (Pr (odd? winning-shot)))
; --> 2/3 as k --> ∞

(with-model idiot-duel
 (Pr (p1-fires? winning-shot)))

(define (p1-fires? n [shots 1])
 (cond [(<= n 0) #f]

[else (not (p1-fires? (- n shots)
(add1 shots)))]))

Nahin (MATLAB): 0.5239191275550995247919843
Us (Racket, k=321): 0.52391912755509952479198439

11111111111111111111111111111111

Nahin spends a page of his book

describing his MATLAB solution, which

uses problem transformation and

symbolic algebra hackery. He computes

the answer to 25 decimal places. Our

solution consists of just the declarative

encoding of the problem on this slide,

which took five minutes to write and test.

We get the same first 25 digits, but the

26th is 9... so it looks like Nahin should

have rounded up.

Duelling Idiot and Half-WitDuelling Idiot and Half-Wit

12121212121212121212121212121212

But the probelm isn't Bayesian! So

suppose that player one is actually a

half-wit, and proposes flipping a coin to

see whether they will spin the chamber.

If they don't spin it, the gun will go off

within six shots, and for four of those

shots, it will be in player one's hand. But

player two is an idiot and agrees to it.

Duelling Idiot and Half-WitDuelling Idiot and Half-Wit

(define-model half-wit-duel
 [spin? ~ (Bernoulli 1/2)]
 [winning-shot ~ (cond [spin? (Geometric 1/6)]

[else (UniformInt 1 6)])])

12121212121212121212121212121212

The model looks like this now. The

boolean-valued random variable spin?

represents the coin flip. Winning-shot's

conditional distribution is specified using

cond. A Bayesian would normally write

his own first-order function instead. This

is much nicer, and it has a precise

meaning because we have a

compositional semantics.

Duelling Idiot and Half-WitDuelling Idiot and Half-Wit

(define-model half-wit-duel
 [spin? ~ (Bernoulli 1/2)]
 [winning-shot ~ (cond [spin? (Geometric 1/6)]

[else (UniformInt 1 6)])])

(with-model half-wit-duel
 (Pr spin? (not (p1-fires? winning-shot))))

12121212121212121212121212121212

The probability that player one wins isn't

really a Bayesian question. But this is:

what's the probability that they spun the

chamber given that player two won?

Duelling Idiot and Half-WitDuelling Idiot and Half-Wit

(define-model half-wit-duel
 [spin? ~ (Bernoulli 1/2)]
 [winning-shot ~ (cond [spin? (Geometric 1/6)]

[else (UniformInt 1 6)])])

(with-model half-wit-duel
 (Pr spin? (not (p1-fires? winning-shot))))

Answer: about 0.588 (compare (Pr spin?) = 0.5)

12121212121212121212121212121212

And the answer is... a little bit more than

1/2. Knowing just the outcome of the

duel tells us a little bit about its causes...

and that's Bayesian.

Observational EquivalenceObservational Equivalence

• Model equivalence: means no query can distinguish
between and

13131313131313131313131313131313

Because we have a semantics, we can

define a notion of observational

equivalence, which lets us determine

when we can perform optimizations...

Observational EquivalenceObservational Equivalence

• Model equivalence: means no query can distinguish
between and

• Justifies measure-theoretic optimizations

Variable collapse (constant folding for rvs)

Propagating conditions (like constraint propagation)

13131313131313131313131313131313

... like variable collapse, which is like

constant folding, and condition

propagation, which is like constraint

propagation. Both of them can yield

order-of-magnitude speedups.

Observational EquivalenceObservational Equivalence

• Model equivalence: means no query can distinguish
between and

• Justifies measure-theoretic optimizations

Variable collapse (constant folding for rvs)

Propagating conditions (like constraint propagation)

• Justifiable only in the exact semantics

13131313131313131313131313131313

And both of them can only be proven

correct in the exact semantics.

Observational EquivalenceObservational Equivalence

• Model equivalence: means no query can distinguish
between and

• Justifies measure-theoretic optimizations

Variable collapse (constant folding for rvs)

Propagating conditions (like constraint propagation)

• Justifiable only in the exact semantics

Suppose for , but

13131313131313131313131313131313

Suppose that, at the 29th approximation,

a certain query returned 0.7. Then, after

an `optimization,' the same query

returned 0.2. It's obviously wrong.

Observational EquivalenceObservational Equivalence

• Model equivalence: means no query can distinguish
between and

• Justifies measure-theoretic optimizations

Variable collapse (constant folding for rvs)

Propagating conditions (like constraint propagation)

• Justifiable only in the exact semantics

Suppose for , but

But what if, for , ?

13131313131313131313131313131313

But then, what if we find that at the

400th approximation, the original query

returns 0.19? Maybe the optimization

preserves meaning and speeds

convergence.

Observational EquivalenceObservational Equivalence

• Model equivalence: means no query can distinguish
between and

• Justifies measure-theoretic optimizations

Variable collapse (constant folding for rvs)

Propagating conditions (like constraint propagation)

• Justifiable only in the exact semantics

Suppose for , but

But what if, for , ?

13131313131313131313131313131313

In fact, that's what most

measure-theoretic optimizations do.

Attempting to reason about them in the

approximating semantics, or heaven

forbid the implementation, would be a

total mess, and we'd end up

reconstructing the exact semantics

anyway.

Having an exact, compositional

semantics sets our work apart from

other work on Bayesian modeling

languages, and in short, it's an

awesome thing to have.

