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ABSTRACT

A CPS-like Transformation of Continuation Marks

Kimball R. Germane
Department of Computer Science, BYU

Master of Science

Continuation marks are a programming language feature which generalize stack
inspection. Despite its usefulness, this feature has not been adopted by languages which rely
on stack inspection, e.g., for dynamic security checks. One reason for this neglect may be
that continuation marks do not yet enjoy a transformation to the plain λ-calculus which
would allow higher-order languages to provide continuation marks at little cost.

We present a CPS-like transformation from the call-by-value λ-calculus augmented with
continuation marks to the pure call-by-value λ-calculus. We discuss how this transformation
simplifies the construction of compilers which treat continuation marks correctly. We document
an iterative, feedback-based approach using Redex. We accompany the transformation with
a meaning-preservation theorem.
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Chapter 1

Introduction

Thesis: A CPS-like global transformation can compile the λ-calculus with continuation

marks into the plain λ-calculus in a semantics-preserving way.

Numerous programming language instruments rely on stack inspection to function.

Statistical profilers sample the stack regularly to record active functions, algebraic steppers

observe the stack to represent the evaluation context of an expression, and debuggers naturally

require consistent access to the stack. Each of these relies on implementation-specific

information and must be maintained as the instrumented language undergoes optimizations

and ventures across platforms. This makes these tools brittle and increases the porting

cost of the language ecosystem. Each of these examples would benefit from a generalized

stack-inspection mechanism available within the instrumented language itself. If written in

such an enhanced language, each instrument would be more robust, more easily modified,

and would port for free.

Continuation marks [4] are a programming language feature which generalizes stack

inpection. Not only do they dramatically simplify correct instrumentation [6], they have

been used to allow inspection-based dynamic security checks in the presence of tail-call

optimization [5] and to express aspect-oriented programming in higher-order languagues [16].

In spite of their usefulness, continuation marks have remained absent from pro-

gramming languages at large. One reason for this is that retrofitting virtual machines to

accommodate the level of stack inspection continuation marks must provide is expensive,

especially when the virtual machines use the host stack for efficiency.
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For example, the ubiquitous JavaScript is an ideal candidate for the addition of

continuation marks. However, as the lingua franca of the web, it has numerous mature

implementations which have been heavily optimized; to add continuation marks to JavaScript

amounts to modifying each implementation upstream, to say nothing of amending the

JavaScript standard. (Clements et al. successfully added continuation marks in Mozilla’s

Rhino compiler [7], but it remains a proof-of-concept.)

To avoid this roadblock, we instead take a macro-style approach; that is, we enhance

the core language with facilities to manipulate continuation marks and desugar the enhanced

language back to the core. To make our desugaring transformation apply to many languages,

we define it over the λ-calculus, the common core of most higher-order languages. With

such a transformation, language semanticists do not need to reconcile the feature with other

features in the language (provided they have already done so with λ) and their compiler

writers do not need to worry about complicating their implementations (for the same reason).

The λ-calculus is a Turing-complete formal logic based on variable binding and substi-

tution. Where the Turing machine model of computation is machine-centric, the λ-calculus

model is language-centric. Thus, it conveniently serves as an intermediate representation for

a compiler or a base from which to define higher-level languages. The standard reference to

the λ-calculus is Barendregt [2].

The continuation-passing style (CPS) transformation is actually a family of language

transformations designed to make certain analyses simpler. Every member of this family

shares a common trait: their performance augments each function with an additional formal

parameter, the continuation, a functional representation of currently pending computation.

Functions in CPS never explicitly return; instead, they call the continuation argument with

their result. Because no function ever returns, function calls are the final act of the caller.

Thus, all calls are tail calls. The CPS transformation then simplifies programs by representing

all control and data transfer uniformly and explicitly. In general, the “spirit” of the CPS

transformation is to represent all transfers of control uniformly [15].
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We take the core of computation, the λ-calculus, and add facilities to manipulate

continuation marks. These two together comprise a language which we term λcm. By

expressing λcm in terms of the plain λ-calculus, we uncover the meaning of continuation

marks in a pure computational language absent other language features and implementation

details. To do this, we construct C, a transformation from λcm programs to λ-calculus

programs in the spirit of CPS. We use Redex [8] to test candidate transformations for

correctness. This allows us to increase our confidence in a functioning transformation but

cannot demonstrate correctness. We address this shortcoming by providing and proving a

meaning preservation theorem.
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Chapter 2

Continuation marks

There are certain tools that are indispensable to some programmers that concern

the behavior of their programs: debuggers, profilers, steppers, etc. Without these tools,

these programmers cannot justify the adoption of a language, however compelling it might

otherwise be. Traditionally, these tools are developed at the same level the language is,

privy to incidental implementation detail, precisely because that detail enables these tools to

function. This is problematic for at least two reasons. First, it couples the implementation

of the tool with the implementation of the language, which increases the cost to port to

other platforms. If users become dependent upon these tools, it can stall the advancement

of the language and the adoption of new language features. Second and more critical, it

makes these tools unsound. For instance, debuggers typically examine programs which have

been compiled without optimizations. In general, this means that the debugged program has

different behavior than the deployed program. This is obviously undesirable.

It is desirable to implement such tools at the same level as the language, removing

dependency upon the implementation and instead relying on definitional and behavioral

invariants. Continuation marks are a language-level feature that provide the information

necessary for these tools to function. Furthermore, languages which require stack inspection

to enforce security policies (Java, C#) or support aspect oriented programming (aspectj ) can

be defined in terms of a simpler language with continuation marks [5, 16].

Continuation marks originated in PLT Scheme (now Racket [10]) as a stack inspection

mechanism. In fact, the Java and C# languages rely on a similar stack inspection to enforce
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security policies of which continuation marks can be seen as a generalization. Surprisingly,

continuation marks can be encoded in any language with exception facilities [13].

The feature of continuation marks itself is accessible via two surface level syntactic

forms: with-continuation-mark and current-continuation-marks.

In Scheme-like syntax, a with-continuation-mark expression appears as (with-

continuation-mark key-expr value-expr body-expr). The evaluation of this expression

proceeds by first evaluating key-expr to key and value-expr to value. Thereafter, body-expr is

evaluated during which value is associated with key .

In the same Scheme-like syntax, a current-continuation-marks expression appears

as (current-continuation-marks key-list). This expression evaluates to a list of all the

present key-value associations referenced in key-list . The with-continuation-mark form

admits a notion of ordering–inner associations are more recent than outer ones–and this in

reflected in the list yielded by the current-continuation-marks.

Importantly, the result of current-continuation-marks provides no evidence of any

portion of the dynamic context lacking continuation marks with the specified keys. This

preserves the ability to perform optimizations without exposing details which would render the

optimizations unsound. This also requires special consideration of a language that supports

tail call optimization (which is not an optimization in the above sense since its behavior is

defined in the semantics of the language).

2.0.1 Example

The canonical example to illustrate the behavior of continuation marks in the presence and

absence of tail call optimization is the factorial function.

Figure 2.1 illustrates the properly recursive variant of the factorial function. In this

variation, a cascade of multiplication operations builds as the recursive calls are made. Each

multiplication is pending computation of which the machine must keep track.
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(define (fac n)
(if (= n 0)

1
(∗ n (fac (− n 1)))))

Figure 2.1: The definitionally recursive factorial function

(define (fac-tr n acc)
(if (= n 0)

acc
(fac-tr (− n 1) (∗ n acc))))

Figure 2.2: A tail-recursive variant of the factorial function

Figure 2.2 illustrates the tail recursive variant of the factorial function. In contrast to

the function in figure 2.1, this variation performs the multiplication before the recursive call.

Because the function has no pending computations after the evaluation of the recursive call,

the execution context need not grow. Such a call is said to be in tail position.

Figures 2.3 and 2.4 represent these two variants of the factorial function augmented

with continuation marks. Using these definitions, the result of (fac 3) would be

(((fac 1)) ((fac 2)) ((fac 3)))
6

whereas the result of (fac-tr 3 1) would be

(((fac 1)))
6

(define (fac n)
(if (= n 0)

(begin
(display (current-continuation-marks ’(fac)))
1)

(with-continuation-mark ’fac n (∗ n (fac (− n 1)))))

Figure 2.3: The definitionally recursive factorial function augmented with continuation
marks
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(define (fac-tr n acc)
(if (= n 0)

(begin
(display (current-continuation-marks ’(fac)))
acc)

(with-continuation-mark ’fac n (fac-tr (− n 1) (∗ n acc))))

Figure 2.4: The tail-recursive factorial function augmented with continuation marks

This difference is due to the growing continuation in the properly recursive fac. Each

call to fac has a pending computation–namely, the multiplication–after the recursive call and

so each necessitates the creation of additional evaluation context. The effect of this additional

context is that each annotation is applied to new, “blank” context, so all the previous

annotations are preserved. In the tail-recursive variant, there is no pending computation and

therefore no additional evaluation context. In this instance, the previous mark is overwritten

with the new.
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Chapter 3

λ-calculus

The λ-calculus [2] is a Turing-complete system of logic extensively used as a formal

system for expressing computation. Terms in the λ-calculus are defined inductively; they

take the form of variables x drawn from an infinite set, abstractions (λ (x)M) where M is

itself a λ-calculus term, and applications (M N) where M and N are λ-calculus terms.

Variables in the λ-calculus are either free or bound. A variable x is free if it does not

reside in the scope of a binding instance of x. Otherwise, x is bound. Terms with no free

variables can be called closed terms, combinators, or programs. The fact that variables are

drawn from an infinite set means that, given an arbitrary λ-calculus term, we can always

obtain a fresh variable, a variable not present in the term at hand. This is critical as we will

see shortly.

In an abstraction of the form (λ (x)M), x is a binding instance which binds all free

occurrences of x in the body M . To a first approximation, abstractions are functions. For

instance, the identity function can be expressed as (λ (x)x) where x is any variable. Thus,

there are an infinite number of ways to express the identity function: (λ (x)x), (λ (y) y),

(λ (z) z), etc. A consequence of this is that terms which are not syntactically equivalent may

be semantically equivalent. This fact naturally gives rise to the notion of α-equivalence which

captures the idea that consistent renaming of bound variables, and their binding instances,

does not change the meaning of a term.

There is some subtlety in valid renaming as there is the possibility of variable capture

which occurs when the new name of a binding instance is identical to that of some variable
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already present in the body. For instance, in the term (λ (x) y), if each x is renamed to y, we

obtain the term (λ (y) y), a fundamentally different term. For this reason, we need to take

special care when we rename variables, which we will need to do regularly.

One of the ways abstractions approximate functions is that we can apply them to

arguments. This is signified simply by juxtaposition of function (or operator) and argument

(or operand). In the correct context, an application of the form (M N) can be reduced in

which the operator M is applied to the operand N . For M of the form (λ (x)M ′) for some

M ′, this entails the substitution of every free occurrence of x in M ′ with N . The notation

we adopt for this is M ′[x← N ]. For instance, the application ((λ (x)x) y) signifies x[x← y]

and so reduces to y. Here, we must protect against another strain of variable capture. As

an example, consider the reduction of ((λ (x) (λ (y)x)) y). If we reduce naively, we obtain

(λ (y) y) which does not reflect the intended meaning of the reduction–the argument y has

been captured by the abstraction, an act which destroys its meaning within the environment.

In order to avoid this, we must rename capturing abstractions in M to be outside the set

of free variables of N . Within the greater term ((λ (x) (λ (y)x)) y), we rename y to z in

(λ (x) (λ (y)x)) obtaining (λ (x) (λ (z)x)). The subsequent reduction of ((λ (x) (λ (z)x)) y)

to (λ (z) y) correctly reflects the intended meaning of the original term.

In the λ-calculus, evaluation occurs during reduction, and reduction is merely appli-

cation. There is, however, yet more subtlety of which we must be aware: namely, in which

contexts applications are performed and terms evaluated. In the call-by-value λ-calculus,

denoted λv, evaluation of operands occurs before application. In contrast, in the call-by-name

λ-calculus, denoted λn, application is performed as soon as the operator is resolved.

For instance, in ((λ (x)x) ((λ (y) y) (λ (z) z))),

((λ (x)x) ((λ (y) y) (λ (z) z)))

→λv((λ (x)x) (λ (z) z))

→λv(λ (z) z)

9



whereas

((λ (x)x) ((λ (y) y) (λ (z) z)))

→λn((λ (y) y) (λ (z) z))

→λn(λ (z) z)

Although both terms reduce to the same term in this example, this distinction is not merely

pedantic: terms may reduce definitively in one reduction regime and fail to reduce completely

in the other! Consider ((λ (x) (λ (y) y)) ((λ (x) (x x)) (λ (x) (x x)))) where

((λ (x) (λ (y) y)) ((λ (x) (x x)) (λ (x) (x x))))→λn (λ (y) y)

but

((λ (x) (λ (y) y)) ((λ (x) (x x)) (λ (x) (x x))))

→λv((λ (x) (λ (y) y)) ((λ (x) (x x)) (λ (x) (x x))))

→λv · · ·

Historically at least, the call-by-name and call-by-value reduction regimes underlie the

distinction between so-called lazy and eager languages.

One final observation we should make about the λ-calculus is which terms denote

values. A value should be, in a sense, irreducible and that criterion disqualifies applications

from being considered as values. A value should should not merely be a placeholder for

arbitrary values, and that criterion disqualifies lone variables from being considered as values.1

Thus, we shall consider abstractions to be the sole form values can take in the λ-calculus,

habituating ourselves to the idea that functions are data.

1To be precise, a value is a closure: an irreducible λ-calculus term paired with an environment which
provides values for constituent free variables.
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Chapter 4

λv and λcm

4.1 λv

The λv language is merely the call-by-value λ-calculus [14].

Figure 4.1 presents the language terms and evaluation contexts of λv. The definition

of e specifies the form of terms in λv similar to our previous discussion of the λ-calculus. The

definition of E specifies evaluation contexts which, like terms, are defined inductively. An

evaluation context is either empty (denoted by •), an application wherein the operator is

being evaluated, or an application wherein the operand is being evaluated.

Figure 4.2 presents the sole semantic definition of λv, the meaning of application.

4.2 λcm

We now consider an extension of λv with facilities to manipulate continuation marks, intro-

duced by Pettyjohn et al. [13], which we term λcm. As an extension of λv, it inherits its

definitions of language terms, evaluation contexts, and semantics.

E =(E e) e =(e e)

(v E) x

• v

v =(λ (x) e)

Figure 4.1: λv forms

11



E[(λx.e) v]→ E[e[x← v]]

Figure 4.2: λv evaluation rule

E =(wcm v F ) e =(e e)

F x

F =• v

(E e) (wcm e e)

(v E) (ccm)

(wcmE e) v =(λ (x) e)

Figure 4.3: λcm forms

Figure 4.3 presents the syntactic forms of λcm. Definitions of E and F signify evaluation

contexts. The separation of E from F prevents (wcm v F ) contexts from directly nesting

within the entire evaluation context to enforce proper tail-call behavior. The definition of e

is identical to that of λv with the addition of contionuation mark forms (wcm e e) and (ccm).

(λcm expresses unkeyed marks which obviates the need to specify a key to which a value will

be associated. Hence, the wcm and ccm forms need one parameter fewer than their Scheme

counterparts.)

Figure 4.4 presents the semantics of λcm in the form of a list of reduction rules. Rule

1 defines the meaning of application as inherited from λv. Rule 2 defines the tail behavior of

the wcm form. Rule 3 expresses that the wcm form takes on the value of its body. Finally,

rule 4 defines the value of the ccm form in terms of the χ metafunction.

The definition of the χ-metafunction is given in figure 4.5. Conceptually, the χ-

metafunction traverses the context from the outside in, accumulating values as it encounters

(wcm v E) contexts. Since the χ metafunction is defined over evaluation contexts of λcm, its

domain corresponds to the definitions of E and F in figure 4.3.

12



E[(λx.e) v]→ E[e[x← v]] (1)

E[(wcm v (wcm v′ e))]→ E[(wcm v′ e)] (2)

E[(wcm v v′)]→ E[v′] (3)

E[(ccm)]→ E[χ(E)] (4)

Figure 4.4: λcm semantics

χ(•) = nil

χ(E[(• e)]) = χ(E)

χ(E[(v •)]) = χ(E)

χ(E[(wcm • e)]) = χ(E)

χ(E[(wcm v •)]) = v : χ(E)

Figure 4.5: Definition of χ metafunction

In λcm, evaluation of an application form proceeds as

E[(e0 e1)]→λcmE[(• e1)][e0]

→∗λcmE[(• e1)][v0]

→λcmE[(v0 e1)] (1)

→λcmE[(v0 •)][e1]

→∗λcmE[(v0 •)][v1]

→λcmE[(v0 v1)] (2)

=E[((λ (x) e′0) v1)] for some x and e′0

→λcmE[e′0[x← v1]]

=E[e2] for some e2

Steps 1 and 2 denote the insertion of a value into the hole in the context.
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Chapter 5

CPS transformation

5.1 Introduction

The CPS transform is actually a family of language transformations derived from Plotkin

[14] designed to simplify programs by representing all data and control flow uniformly and

explicitly. This, in turn, simplifies compiler construction and analyses such as optimization

and verification [1, 15]. The standard variation of CPS adds a formal parameter to every

function definition and an argument to every call site.

As an example, consider once again the two variants of the factorial function, sans

continuation marks, given earlier. In CPS, the properly-recursive variant can be expressed as

(define (fac n k)
(if (= n 0)

(k 1)
(fac (− n 1) (λ (acc) (k (∗ n acc))))))

and the tail-recursive variant as

(define (fac-tr n acc k)
(if (= n 0)

(k acc)
(fac-tr (− n 1) (∗ n acc) k)))

(For clarity, we have treated “primitive” functions–equality comparison, subtraction, and

multiplication–in a direct manner. In contrast, a comprehensive CPS transformation would

affect every function.)

Notice that, in the first variation, each recursive call receives a newly-constructed k

encapsulating additional work to be performed at the completion of the recursive computation.
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In the second, k is passed unmodified, so while computation occurs within each context, no

additional computation pends. From this example, we see that the CPS representation is

ideal for understanding tail-call behavior as it is explicit that the continuation is preserved

by the tail call.

The purpose of CPS does not lie solely in pedagogy, however. The reification of and

consequent ability to directly manipulate the continuation is powerful, analogous in power

to the ability to capture a continuation which some languages provide. In Scheme, this is

accomplished with call/cc, short for “call with current continuation”. This call takes one

argument which itself is a function of one argument. call/cc calls its argument, passing in a

functional representation of the current continuation–the continuation present when call/cc

was invoked. This continuation function takes one argument which is treated as the result of

call/cc and runs this continuation to completion.

As a simple example,

(+ 1 (call/cc
(λ (k)

(k 1))))

returns 2. In effect, invoking k with 1 is the same as replacing the entire call/cc

invocation with 1.

Much of the power of call/cc lies in the manifestation of the continuation as a function,

giving it first-class status. It can be passed as an argument in function calls, invoked, and,

amazingly, reinvoked at leisure. It is this reinvokeability that makes call/cc the fundamental

unit of control from which all other control structures can be built, including generators,

coroutines, and threads.

In direct style, the definition of call/cc is conceptually

(define call/cc
(λ (f )

(f (get-function-representing-continuation))))

15



where get-function-representing-continuation is an opaque function which lever-

ages sweeping knowledge of the language implementation. The CPS definition is notably

simpler:

(define call/cc
(λ (f k)

(f (λ (x w) (k x )) k)))

Within the definition of call/cc, we define an anonymous function which, when given

a value x and continuation w, applies the captured continuation k to x.

Variations of the standard CPS transformation make the expression of certain control

structures more straightforward. For instance, the “double-barrelled” CPS transformation

is a variation wherein each function signature receives not one but two additional formal

parameters, each a continuation. One application of this particular variation is error handling

with one continuation argument representing the remainder of a successful computation and

the other representing the failure contingency. It is especially useful in modelling exceptions

and other non-local transfers of control in situations where the computation might fail. In

general, the nature of the CPS transformation allows it to untangle complicated, intricate

control structures.

Similar transformations exist which express other programming language features such

as security annotations [17] and control structures such as procedures, exceptions, labelled

jumps, coroutines, and backtracking. On top of other offerings, this places it in a category of

tools to describe and analyze programming language features. (This category is also occupied

by Moggi’s computational λ-calculus–monads [12].)

5.2 Example

We will now focus our attention on a CPS transform defined over λv.

A CPS transformation is a global syntactic transformation of language terms. Recall

that terms in the λ-calculus take the form of lone variables x, λ-abstractions (λ (x)M), and
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applications (M N) where M and N are themselves λ-calculus terms. A comprehensive CPS

transform definition then need only specify transformations for these three categories. As an

example, consider Fischer’s CPS transform [9]:

F [x] = (λ (k) (k x))

F [(λ (x)M)] = (λ (k) (k (λ (x)F [M ])))

F [(M N)] = (λ (k) (F [M ] (λ (m) (F [N ] (λ (n) ((mn) k))))))

Fischer’s CPS transform abstracts each term in the λ-calculus: lone variables wait on a

continuation, abstractions receive a degree of indirection, and even applications, the sole

reduction facility of the λ-calculus, become abstractions. In essence, terms become suspended

in wait of a continuation argument. By priming a term so-transformed with a continuation

function–even as simple as the identity function–we instigate a cascade of computation.

In a sense, the CPS transform contaminates abstractions, the values of the λ-calculus.

For example, consider the transformation of λx.x

F [λx.x] = λk.k (λx.F [x])

= λk.(k λx.λk.(k x))

If we apply this term to the identity function, it reduces as

λk.(kλx.λk.(k x))λy.y

→λvλy.y λx.λk.(k x)

→λvλx.λk.(k x)

The result of this reduction contains residue of the CPS transform. This must be accounted

for when attempting to formally relate direct and continuation-passing style terms.
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Chapter 6

C

A CPS-like global transformation can compile the λ-calculus with continuation marks

into the plain λ-calculus in a semantics-preserving way.

In order to demonstrate this, we must first clarify (and later, formalize) the semantics-

preservation property. We will define a transformation from λcm to λv and term it C, as in

compile, since we are, in essence, compiling away continuation marks. In order to preserve

the meaning of λcm, C must commute with evaluation. More precisely, C satisfies

p →∗λcm v

↓C ↓C

C[p] →∗λv C[v]

for any program p ∈ λcm.

The burden of demonstration is then reduced to the existence of C. We do this by

construction.

6.0.1 Intuition

The essence of λcm is that programs can apply information to and observe information

about the context in which they are evaluated. Programs in λv have no such facility. We

can simulate this facility by explicitly passing contextual information to each term as it is

evaluated. We can define C to transform wcm directives to manipulate this information and

ccm directives to access it. Intuitively, we can transform λcm programs to mark-passing style.
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However, marks alone do not account for the tail-call behavior specified by rule 2 of

figure 4.4. Since tail-call behavior is observable (if indirectly) by λcm programs, we must also

provide to each term information about the position in which it is evaluated. Specifically,

each transformed wcm directive must be notified whether it is evaluated in tail position of

an enclosing wcm directive as it must behave specially if so. Thus, in addition to passing the

current continuation marks, the transform should pass a flag to each term indicating whether

it is evaluated in tail position of a wcm directive.

These two pieces of information suffice to correctly simulate continuation marks.

6.0.2 Concept

The definition of C entails transformation over each syntactic form of λcm.

With this in mind, consider a conceptual transformation of application, C[(rator-expr

rand-expr)], as

(λ (flag)
(λ (marks)

(let ((rator-value ((C[rator-expr ] false) marks))
(rand-value ((C[rand-expr ] false) marks))

(((rator-value rand-value) flag) marks))))

ignoring for the moment that let is in neither λv or λcm. This definition captures that

1. before evaluation, we expect flag to indicate tail position information and marks to

provide a list of the current continuation marks,

2. we would like to evaluate C[rator-expr ] and C[rand-expr ] in the same manner, providing

to each its contextual information–specifically that neither is evaluated in tail position

of a wcm directive and the continuation marks for each are unchanged from the parent

context, and

3. following evaluation of operator and operand and application, evaluation of the resultant

term is performed with the original contextual information.
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Now consider a conceptual transformation of a wcm directive, C[(wcm mark-expr

body-expr)], as

(λ (flag)
(λ (marks)

((C[body-expr ] true) (let ((mark-value ((C[mark-expr ] false) marks))
(rest-marks (if flag (snd marks) marks)))

(cons mark-value rest-marks)))))

with similar caveats as the previous case. This definition captures that

1. as in application, we expect flag to indicate tail position information and marks to

provide a list of the current continuation marks,

2. we evaluate mark-expr with correct contextual information,

3. we discard the first continuation mark of the parent context if evaluation is occurring

in tail position of a wcm directive, and

4. we evaluate C[body-expr ] with the correct tail-position flag and current continuation

marks.

Finally, consider the conceptual transformation of a ccm directive, C[(ccm)], as

(λ (flag)
(λ (marks)

marks))

wherein we reap the fruits of simplicity from our laborious passing: this definition is

gratifyingly direct.

The conceptual transformation of variables x and values (λ (x ) e) is straightforward.

We now address the absence of let, if, cons , etc. from λv.

We can express the let construct in λv with application. An expression such as

(let ((x 1 e 1 )
. . .
(x n e n))

e)
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Definition 1. true = (λ (x) (λ (y)x))

Definition 2. false = (λ (x) (λ (y) y))

Definition 3. cons = (λ (a) (λ (b) (λ (z) ((z a) b))))

Definition 4. fst = (λ (p) (p true))

Definition 5. snd = (λ (p) (p false))

Definition 6. nil = false

Figure 6.1: Church encodings for booleans and lists.

can be interpreted as

(. . . ((λ (x 1 ) . . . (λ (x n)
e). . . ) e 1 ) . . . ) e n)

which is the curried form of

((λ (x 1 . . . x n)
e) e 1 . . . e n)

We unfold this characterization of let to guide the construction of C before simplifying.

To achieve if and conditionals as well as list primitives cons , snd , and nil , we use the

Church encodings of fig. 6.0.2.

6.0.3 Initiation

Abstracting terms has the effect of suspending evaluation. When an entire program is

transformed, all evaluation is suspended, and awaits arguments representing contextual

information. At the top level, the context is empty, so we pass the contextual information for

the empty context: false, indicating evaluation is not occurring in wcm tail position and

nil, an empty list of marks.

We can accommodate this by defining a top-level transform Ĉ in terms of C by

Ĉ[p] = ((C[p] false) nil) (6.1)

21



and stating our commutativity property as

Ĉ[evalcm(p)] = evalv(Ĉ[p]) (6.2)

which is equivalent to

((C[evalcm(p)] false) nil) = evalv(((C[p] false) nil)) (6.3)

6.0.4 Some Final Subtleties

Our choice to keep the core language small by omitting lists as primitive values has the

consequence of complicating our transform somewhat. Because lists are defined in terms

of λ-calculus values which are themselves touched by the transform and because of the

commutativity property that C must satisfy, we cannot deal with a list of continuation marks

directly–we must instead deal with a transformed list of transformed continuation marks,

and manipulation of this list within transformed terms must occur at the transformed level.

Additionally, after evaluation, values are “truncated” with their leading abstractions

applied away. For instance, the transformation of the value (λ (x ) x ) to (λ (flag) (λ (marks)

(λ (x ) (λ (flag) (λ (marks) x ))))) will yield, following evaluation, (λ (x ) (λ (flag) (λ (marks)

x ))). For convenience, we define

C ′[(λ (x) e)] = (λ (x) C[e]) (6.4)

and we adjust Ĉ so that

Ĉ[p] = ((C[p] false) C ′[nil]) (6.5)

6.0.5 Definition of C

Finally, we present the definition of C over the five syntactic forms of λcm.

Definition 7. C[(rator-expr rand-expr)]
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The formal transformation of application follows the let version exactly except the definitions

of rator-value and rand-value are folded directly in.

(λ (flags)
(λ (marks)

(((((C[rator-expr ] false) marks)
((C[rand-expr ] false) marks))

flags)
marks)))

Definition 8. C[(wcm mark-expr body-expr)]

The formal transformation of a wcm directive is also extremely similar to the let version.

The definition of C[cons ] is unfolded and simplified.

(λ (flag)
(λ (marks)

((C[body-expr ] true)
(((λ (mark-value) (λ (rest-marks) Ĉcps[((cons mark-value) rest-marks)]))

((C[mark-expr ] false) marks))
((flag Ĉ[(snd marks)]) marks)))))

Definition 9. C[(ccm)]

The let version of the transformation of a ccm directive remains unchanged.

(λ (flag)
(λ (marks)

marks))

Definition 10. C[v ]=C[(λ (x ) e)]

Like other terms, values are modified to receive contextual information. However, being

unaffected by context, values discard this information.

(λ (flag)
(λ (marks)

(λ (x ) C[e])))

Definition 11. C[x ]
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Variables have the property that, when substitution occurs, they reconstitute transformed

values. That is, in the midst of application in C, terms of the form (C ′[(λ (x ) x )] C ′[(λ (y)

y)]) appear, reducing to C[x][x← C ′[(λ (y) y)]] = C[x[x← (λ (y) y)] = C[(λ (y) y)].

(λ (flag)
(λ (marks)

x ))

6.0.6 Definition of C in CPS

We present a continuation mark transformation integrated in CPS.

Definition 12. Ccps[(rator-expr rand-expr)]

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks)))
false) marks))))

Definition 13. C[(wcm mark-expr body-expr)]

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false) marks))))

Definition 14. Ccps[(ccm)]

(λ (kont)
(λ (flag)
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(λ (marks)
(kont marks))))

Definition 15. Ccps[v ]=Ccps[(λ (x ) e)]

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x ) Ccps[e])))))

Definition 16. Ccps[x ]

(λ (kont)
(λ (flag)

(λ (marks)
(kont x ))))

We include corresponding definitions for C ′ and Ĉ.

Definition 17. C ′cps[(λ (x ) e)]

(λ (x ) Ccps[e])

Definition 18. Ĉcps[p]

(((Ccps[p] (λ (x ) x )) false) C ′cps[nil ])

6.0.7 Example

To better illustrate what the transformation does, we step through the reduction of a program

which exhibits its more interesting aspects. One λcm program suited to this purpose is (wcm

0 ((λ (x ) (wcm x (ccm))) 1)). It reduces according to λcm semantics as

(wcm 0 ((λ (x ) (wcm x (ccm))) 1))
(wcm 0 (wcm 1 (ccm)))
(wcm 1 (ccm))
(wcm 1 (λ (z ) ((z 1) (λ (x ) (λ (y) y)))))
(λ (z ) ((z 1) (λ (x ) (λ (y) y))))
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Now consider the reduction of the same program transformed. We apply the trans-

formation just-in-time as we reduce to prevent term size explosion and promote clarity and

omit uninteresting reductions.

Ĉ[(wcm 0 ((λ (x ) (wcm x (ccm))) 1))]

By definition this is

((C[(wcm 0 ((λ (x ) (wcm x (ccm))) 1))] false) C ′[nil])

which explodes upon expansion to

(((λ (flag)
(λ (marks)

((C[((λ (x ) (wcm x (ccm))) 1)] true)
(((λ (mark-value) (λ (rest-marks) C ′[((cons mark-value) rest-marks)]))

((C[0] false) marks)) ((flag Ĉ[(snd marks)]) marks)))))
false) C ′[nil])

After the application of contextual information, we reach

((C[((λ (x ) (wcm x (ccm))) 1)] true)
(((λ (mark-value) (λ (rest-marks) C ′[((cons mark-value) rest-marks)]))

((C[0] false) C ′[nil])) ((false Ĉ[(snd nil)]) C ′[nil])))

the transformation of the wcm body. Terms within are arranged so that correct evaluation

occurs within the native call-by-value regime. This evaluates mark-expr and and prepends

its value to the list of continuation marks before proceeding with evaluation of body-expr .

This reduction soon yields the following term:

((C[((λ (x ) (wcm x (ccm))) 1)] true) C ′[((cons 0) nil)])

It is evident that this term will behave exactly as a top-level term except as this contextual

information influences it, and this is exactly the property we have strived for. Expansion of

this term yields

(((λ (flag)
(λ (marks)

(((((C[(λ (x ) (wcm x (ccm)))] false) marks)
((C[1] false) marks))
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flag)
marks))) true) C ′[((cons 0) nil)])

the expansion of an application. In this example, both the operator and operand are values,

so are essentially unaffected by the application of contextual information; this application

has the effect of preparing the terms for application:

((((λ (x ) C[(wcm x (ccm))])
1) true) C ′[((cons 0) nil)])

reduces to

((C[(wcm 1 (ccm))]
true) C ′[((cons 0) nil)])

This expands and reduces as the wcm term seen previously:

(((λ (flag)
(λ (marks)

((C[(ccm)] true)
(((λ (mark-value) (λ (rest-marks) C ′[((cons mark-value) rest-marks)]))

((C[1] false) marks))
((flag Ĉ[(snd marks)]) marks)))))

true) C ′[((cons 0) nil)])

Of interest in this process is the effective collapse of the previous mark context by

virtue of the value of flag . When we reach

((λ (marks) marks)
((λ (rest-marks) C ′[((cons 1) rest-marks)])
((true Ĉ[(snd ((cons 0) nil))]) C ′[((cons 0) nil)])))

the list is beheaded to simulate mark overwriting:

((λ (marks) marks)
((λ (rest-marks) C ′[((cons 1) rest-marks)])
Ĉ[(snd ((cons 0) nil))]))

Once given the contextual information, the evaluation of ccm is simple:

((λ (marks) marks)
C ′[((cons 1) nil)])
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reduces to

C ′[((cons 1) nil)]

and we are left with just what we hoped for.
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Chapter 7

Testing

We do not attempt to construct a correct transformation ex nihilo. A pragmatic

approach to the discovery of a correct transformation involves consistent feedback and testing

to validate candidate transforms. Testing is no substitute for proof, but, as Klein et al. [11]

show, proof is no substitute for testing. Lightweight mechanization is a fruitful middle ground

between pencil-and-paper analysis and fully- mechanized formal proof. We use Redex to

provide feedback, thoroughly exercise candidates, and perform exploratory analysis.

7.1 Redex

Redex [8] is a domain-specific language for exploring language semantics. It lives very close

to the semantics notation we have used so far in this discussion.

7.1.1 Toy Language

To illustrate how easily langagues can be defined in Redex, we will examine a Redex program

which defines a toy language. In contrast to a Redex tutorial, we will not concern ourselves

with the syntax and structure of roads not taken and will instead briefly explain each

component of the program.

(define-language toy
(x variable-not-otherwise-mentioned)
(v number undefined)
(e (+ e e) (with (x e) e) x v)
(E • (+ E e) (+ v E ) (with (x E ) e)))
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This expression defines the abstract syntactic structure of a language named toy.

There are four categories of structures: x , v , e, and E . The category x is defined to contain

any token not otherwise mentioned in the definition. The category v is defined to contain

numbers and the token undefined. The category e is defined to contain the expression forms of

the language, of which there are four: addition expressions, with expressions, lone variables,

and lone values. The last category, E , does not define abstract syntax but instead reduction

contexts. The first reduction context is a • (a special token in Redex) which will be filled

in with the result of the expression that previously resided in its place. The next two are

addition contexts, the first representing the evaluation of the first argument and the second

representing the evaluation of the second; the composition of these contexts imposes an order

on the evaluation of the arguments. The final context, a with context, specifies a variable, a

value, and an expression within which that variable is bound to that value.

(define toy-rr
(reduction-relation toy
(→ (in-hole E (+ number 1 number 2 ))

(in-hole E (+ (term number 1 ) (term number 2 )))
"+")

(→ (in-hole E (with (x 1 v 1 ) e 1 ))
(in-hole E (substitute x 1 v 1 e 1 ))
"with")

(→ (in-hole E x 1 )
(in-hole E undefined)
"free variable")

(→ (in-hole E (+ undefined e 1 ))
(in-hole E undefined)
"undefined in first position")

(→ (in-hole E (+ number 1 undefined))
(in-hole E undefined)
"undefined in second position")))

This term defines a reduction relation on the toy language. The five defined reductions,

signalled by →, match specified patterns and manipulate them according to the defined rules.

These define: the addition of two numbers; the substitution of a with expression; a lone
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variable; the addition of an undefined value on the left; and the addition of an undefined

value on the right.

(define-metafunction toy
substitute : x v e -> e
[(substitute x 1 v 1 (+ e 1 e 2 ))
(+ (substitute x 1 v 1 e 1 ) (substitute x 1 v 1 e 2 ))]
[(substitute x 1 v 1 (with (x 1 e 1 ) e 2 ))
(with (x 1 (substitute x 1 v 1 e 1 )) e 2 )]
[(substitute x 1 v 1 (with (x 2 e 1 ) e 2 ))
(with (x 2 (substitute x 1 v 1 e 1 )) (substitute x 1 v 1 e 2 ))]
[(substitute x 1 v 1 x 1 )
v 1 ]
[(substitute x 1 v 1 x 2 )
x 2 ]
[(substitute x 1 v 1 v 2 )
v 2 ])

The definition of the with reduction rule relies on the substitute metafunction. (The

language used to define toy (Redex) is the metalanguage. As functions are in the language,

metafunctions are in the metalanguage.) The substitute metafunction recursively substitutes

a variable in an expression with a value. The substitution is only propagated as long as a

binding with the same name is not encountered. At that point, the substitution is performed

in the value expression of the binding, but not the body. This allows for expressions like

(with (x 5)
(with (x x )

x ))

to behave as we expect (returning 5).

Testing

Now that the syntactic forms and reduction rules of the language are defined, we can use the

randomized testing built into Redex to investigate properties of the language. We start by

defining the helper function

(define (reduces-to-one-value? e)
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(let ((results (apply-reduction-relation∗ toy-rr e)))
(and (= (length results) 1)

(value? (first results)))))

which has its own helper function

(define value? (redex-match toy v))

The ∗ at the end of the function name apply-reduction-relation∗ signifies that all

possible reduction rules will be applied as many times as possible. If some of the reduction

rules don’t actually reduce terms, the relation may produce a reducible term indefinitely.

The function apply-reduction-relation∗ is in a sense strict in the reduction relation and

will likewise run indefinitely if this is the case.

After the language and some properties have been established, the randomized testing,

initiated by

(redex-check toy e (reduces-to-one-value? (term e)))

is simple. We merely provide the name of the language we wish to work with, the nonterminal

in the grammar we wish to use to generate language terms, and a predicate that checks

terms for properties. This function generates terms gradually increasing in size, applying the

predicate to each in turn, and terminates with a counterexample or after a set number of

terms have been checked (1000 by default).

Proof

Randomized testing can increase our confidence in various assertions but is no substitute for

proof. We express the property of reducing to one value with the following theorem:

Toy Language One-Value Theorem. For all terms e of the toy language, e reduces to

exactly one value.1

1We do not use the term value loosely here; the toy language definition specifies what constitute values,
and we appeal to this.
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We proceed by induction on the structure of terms e of the toy language. First, we

consider the base cases.

Case v. A term e of the form v is exactly one value and cannot be reduced, so the statement

holds.

Case x . A term e of the form x , a variable, reduces to undefined, a value term, so the

statement holds.

Case (with (x e 1 ) e 2 ). By induction, we assume that e 1 reduces to exactly one value.

Then the “with”-rule can only be applied once, resulting in a single term e 2 in e which, by

our inductive hypothesis, reduces to only one value.

Case (+ e 1 e 2 ). By induction, we assume both e 1 and e 2 reduce to a single value. We

consider two subcases: If e 1 reduces to undefined, the “undefined in first position”-rule is

applied, and the whole term reduces to undefined. If e 1 reduces to a number, we consider

two further subcases: If e 2 reduces to a number, the “+”-rule is applied, and the entire

expression reduces to the sum of the two numbers obtained. If e 2 reduces to undefined, the

“undefined in second position”-rule is applied, and the entire term reduces to undefined. Thus,

in all subcases, the whole term reduces to exactly one value.

This property is fairly trivial and its proof is similarly trivial, but it is a shadow of

the approach we will ultimately take to verify certain transformation properties.

7.2 Flavors of λ

Our first task in developing a testing environment for transformations is to define interpreters

for λcm and λv.

We begin with λv, the simpler language.
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7.2.1 λv

To begin, we define language terms and evaluation contexts.

(define-language λv
(e (e e) x v error)
(x variable-not-otherwise-mentioned)
(v (λ (x ) e))
(E (E e) (v E ) •))

The characterization of λv seen in figures 4.1 and 4.2 was influenced by the knowledge

that an interpreter would need to be built. Because Redex lives so close to this characterization,

the only change we make in translation is the addition of error.

(define λv-rr
(reduction-relation λv
(→ (in-hole E ((λ (x ) e) v))

(in-hole E (λv-subst x v e))
"betav")

(→ (in-hole E x )
(in-hole E error)
"error: unbound identifier")

(→ (in-hole E (error e))
(in-hole E error)
"error in operator")

(→ (in-hole E (v error))
(in-hole E error)
"error in operand")))

The first rule in the reduction relation corresponds with the sole semantic rule found

in 4.2. The remaining handle cases introduced by error.

(define-metafunction λv
λv-subst : x v e -> e
;; 1. substitute in application
[(λv-subst x 1 v 1 (e 1 e 2 ))
((λv-subst x 1 v 1 e 1 ) (λv-subst x 1 v 1 e 2 ))]
;; 2a. substitute in variable (same)
[(λv-subst x 1 v 1 x 1 )
v 1 ]
;; 2b. substitute in variable (different)
[(λv-subst x 1 v 1 x 2 )
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x 2 ]
;; 3a. substitute in abstraction (bound)
[(λv-subst x 1 v 1 (λ (x 1 ) e 1 ))
(λ (x 1 ) e 1 )]
;; 3b. substitute in abstraction (free)
[(λv-subst x 1 v 1 (λ (x 2 ) e 1 ))
(λ (x 2 ) (λv-subst x 1 v 1 e 1 ))]
;; 4. substitute in error
[(λv-subst x 1 v 1 error)
error])

The λv-subst metafunction presents the conceptual definition of substitution. Because

we generate fresh identifiers within the transform, we don’t need to worry about capture

avoidance.

7.2.2 λcm

Since λcm is a superset of λv, we need only extend the definition of the λv interpreter to

accommodate the additions λcm brings.

(define-extended-language λcm λv
(e .... (wcm e e) (ccm))
(E (wcm v F ) F )
(F (E e) (v E ) (wcm E e) •))

Redex allows us to easily define a proper extension of a language, inheriting anything

left unspecified. As similar as the λv interpeter definition is to the λv definition in figure 4.1,

this λcm interpreter definition is to the λcm definition in figure 4.3.

(define λcm-rr
(extend-reduction-relation λv-rr λcm
(→ (in-hole E ((λ (x ) e) v))

(in-hole E (λcm-subst x v e))
"betav")

(→ (in-hole E (wcm v 1 (wcm v 2 e)))
(in-hole E (wcm v 2 e))
"wcm-collapse")

(→ (in-hole E (wcm v 1 v 2 ))
(in-hole E v 2 )
"wcm")
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(→ (in-hole E (ccm))
(in-hole E (chi E (λ (x ) (λ (y) y))))
"chi")

(→ (in-hole E (wcm error e))
(in-hole E error)
"error in wcm mark expression")

(→ (in-hole E (wcm v error))
(in-hole E error)
"error in wcm body expression")))

The first three rules in the reduction relation correspond with the three additional

semantic rules found in 4.4. The remaining handle cases introduced by the the new language

forms’ interaction with error.

(define-metafunction/extension λv-subst λcm
λcm-subst : x v e -> e
;; 1. substitute in wcm form
[(λcm-subst x 1 v 1 (wcm e 1 e 2 ))
(wcm (λcm-subst x 1 v 1 e 1 ) (λcm-subst x 1 v 1 e 2 ))]
;; 2. substitute in ccm form
[(λcm-subst x 1 v 1 (ccm))
(ccm)])

The λcm-subst metafunction is extended to accommodate the additional forms in λcm.

(define-metafunction λcm
chi : E v -> v
[(chi • v ms) v ms ]
[(chi (E e) v ms) (chi E v ms)]
[(chi (v E ) v ms) (chi E v ms)]
[(chi (wcm E e) v ms) (chi E v ms)]
[(chi (wcm v E ) v ms) (chi E (λ (p) ((p v) v ms)))])

Finally, we define the χ metafunction. Its definition does not map directly to the

formal definition, but matches the intuitive definition that underlies it.

7.3 Transformation definition

7.3.1 Direct Style

(define (c e)
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(let ([flag (gensym ’f)]
[marks (gensym ’m)]
[mark-value (gensym ’a)]
[rest-marks (gensym ’r)])

(match e
[(list ’ccm)
‘(λ (,flag)

(λ (,marks)
,marks))]

[(list ’wcm mark-expr body-expr)
‘(λ (flag)

(λ (marks)
((,(c body-expr) (λ (x) (λ (y) x)))
(((λ (,mark-value) (λ (,rest-marks) ,(c-hat ‘(λ (z) ,(c ‘((z ,mark-value) ,rest-marks))))))

((,(c mark-expr) (λ (x) (λ (y) y))) ,marks))
((flag ,(c-hat ‘((λ (p) (p (λ (x) (λ (y) y)))) ,marks))) ,marks)))))]

[(list ’λ (list x0 ) e0 )
‘(λ (,flag)

(λ (,marks)
(λ (,x0 )

,(c e0 ))))]
[(list rator-expr rand-expr)
‘(λ (,flag)

(λ (,marks)
(((((,(c rator-expr) (λ (x) (λ (y) y))) ,marks)

((,(c rand-expr) (λ (x) (λ (y) y))) ,marks))
,flag)

,marks)))]
[’error
’error]
[x0
‘(λ (flag) (λ (marks) ,x0 ))])))

(define (c-hat e)
(let ([f (gensym ’f)]

[m (gensym ’m)])
‘((,(c e) (λ (x) (λ (y) y))) (λ (x) ,(c ’(λ (y) y))))))

7.3.2 Continuation-passing Style

(define (c-cps e)
(let ([kont (gensym ’k)]

[flag (gensym ’f)]
[marks (gensym ’m)]
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[rator-value (gensym ’t)]
[rand-value (gensym ’n)]
[rest-marks (gensym ’r)]
[a (gensym ’a)]
[b (gensym ’b)]
[f (gensym ’f)])

(match e
[(list ’ccm)
‘(λ (,kont)

(λ (,flag)
(λ (,marks)

(,kont ,marks))))]
[(list ’wcm mark-expr body-expr)
‘(λ (,kont)

(λ (,flag)
(λ (,marks)

(((,(c-cps mark-expr)
(λ (,mark-value)

((λ (,rest-marks)
(((,(c-cps body-expr)

,kont)
(λ (x) (λ (y) x)))

,(c-hat ‘(λ (z) ((z ,mark-value) ,rest-marks)))))
((flag ,(c-hat ‘((λ (p) (p (λ (x) (λ (y) y)))) ,marks))) ,marks))))

(λ (x) (λ (y) y)))
,marks))))]

[(list ’λ (list x0 ) e0 )
‘(λ (,kont)

(λ (,flag)
(λ (,marks)

(kont (λ (,x0 ) ,(c-cps e0 ))))))]
[(list rator-expr rand-expr)
‘(λ (,kont)

(λ (,flag)
(λ (,marks)

(((,(c-cps rator-expr)
(λ (,rator-value)

(((,(c-cps rand-expr)
(λ (,rand-value)

((((,rator-value ,rand-value) ,kont) ,flag) ,marks)))
(λ (x) (λ (y) y)))

,marks)))
(λ (x) (λ (y) y)))

,marks))))]
[’error

38



’error]
[x0
‘(λ (,kont)

(λ (,flag)
(λ (,marks)

(,kont ,x0 ))))])))

(define (c-hat-cps e)
(let ([k (gensym ’k)]

[f (gensym ’f)]
[m (gensym ’m)])

‘(((,(c-cps e) (λ (x) x)) (λ (x) (λ (y) y))) (λ (x) ,(c-cps ’(λ (y) y))))))

7.4 Transformation testing

We can test that the property described by equation 6.2 holds for a given program p with

(define (meaning-preserved? p)

(alpha-eq? (eval λv (c-hat (eval λcm p))) (eval λv (c-hat p)))

where alpha-eq? determines α-equivalence between two λ-calculus terms and eval is an

alias for the Redex native apply-reduction-relation∗.

Redex provides convenient functions to initiate random testing.

(redex-check λcm e (meaning-preserved? e))

redex-check generates random terms according to the grammar of the given language

(λcm) and category (e) in search of counterexamples to the predicate. It gradually increases

the size of the terms it generates, which we found useful in obtaining minimal test cases. We

subjected both the direct and CPS transformation to random testing and each eventually

withstood 10,000 random tests. Interestingly, no incorrect transformation withstood more

than 500 random tests before failing.
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Chapter 8

Proof

The evaluation of a λcm program proceeds with the evolution of an evaluation context

and possibly reducible expression. When evaluation begins, the evaluation context is merely

•, a placeholder for the eventual result, and the reducible expression, or redex, is the program

itself. The evaluation of arguments–both in application and continuation mark forms–defers

evaluation of the expression at hand by storing its evaluation context and evaluating subterms.

As these results are applied and evaluation continues, the size of the context fluctuates until

finally, if the program terminates, we are left with a single value to plug in •. This value is

the value of the program.

The state of evaluation at any given point can be encapsulated by a pair of an

evaluation context E and an expression e which we write in unorthodox style as E[e]. In

order to prove that evaluation in the transformation corresponds to native evaluation, we

must relate this state with its corresponding transformation.

We do this by overloading Ccps to accommodate evaluation contexts which allows us

to formally relate E[e] and Ccps[E[e]]. We first define

Definition 19.

ξ(E) =


true if E = E ′[(wcm v′ •)] for some E ′ and v′

false otherwise

to denote the flags argument and assume that the marks argument is C ′cps[χ(E)]. We can

now define Ccps over contexts E ∈ λcm:
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Definition 20. Ccps[•]

(λ (value)
value)

Definition 21. Ccps[E [(• rand-value)]]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) Ccps[E ]) ξ(E)) C ′cps[χ(E)])))

false)
C ′cps[χ(E)]))

Definition 22. Ccps[E [(v0 •)]]

(λ (rand-value)
((((v0 rand-value) Ccps[E ]) ξ(E)) C ′cps[χ(E)]))

Definition 23. Ccps[E [(wcm • body-expr)]]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] Ccps[E ]) true) Ĉcps[((cons mark-value) rest-marks)]))

((ξ(E) Ĉcps[(snd χ(E))]) C ′cps[χ(E)])))

Definition 24. Ccps[E [(wcm v0 •)]]

Ccps[E ]

This allows us to define Ccps over a context-expression pair.

Definition 25. Ccps[E [e]]

(((Ccps[e] Ccps[E ]) ξ(E)) C ′cps[χ(E)])

From this definition, it is apparent that Ĉcps[p]=(((Ccps[p] Ccps[•]) ξ(•)) C ′cps[•])=Ccps[•[p]].

Now we show that substitution is preserved by the transformation.

Lemma 1 (Substitution). For all e, x, v ∈ λcm, C[e[x← v]] = C[e][x← C ′[v]].
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See appendix A for proof.

Finally, we define “filling the hole”, the insertion of a value in the context from which

it came.

Definition 26. Ccps[E [v ]]

(Ccps[E ] C ′cps[v ])

With each significant step of native evaluation formally related with the transformation,

we can express a simulation lemma.

Lemma 2 (Simulation). For all contexts E ∈ λcm and expressions e ∈ λcm, E[e] →λcm

E ′[e′] =⇒ Ccps[E[e]]→∗λv Ccps[E
′[e′]]

We will reason by structural induction on both contexts E and terms e. Instead of

nesting the induction, which requires the consideration of |E| · |e| cases, we will take first

E and then e in isolation, in each assuming the correctness of the other, which requires the

consideration of only |E|+ |e| cases.

First, we prove it holds for terms e. In each case, let E be an arbitrary context.

Proof. Case e = (e0 e1) By steps app1-app3, Ccps[E[(e0 e1)]]→∗λv Ccps[E[(• e1)][e0]].

Proof. Case e = (wcm e0 e1) By steps wcm1-wcm3, Ccps[E[(wcm e0 e1)]] →∗λv Ccps[E[(wcm •

e1)][e0]].

Proof. Case e = (ccm) By steps ccm1-ccm3, Ccps[E[(ccm)]]→∗λv Ccps[E[χ(E)]].

Proof. Case e = v0 By steps value1-value3, Ccps[E[v0]]→∗λv Ccps[E[v0]].

Proof. Case e = x By steps x1-x4, Ccps[E[x]]→∗λv Ccps[E[error]].

Now, we prove it holds for contexts E. In each case, let v0 be an arbitrary value.

Proof. Case E = • This is identical to the case that e = v0.

Proof. Case E = E ′[(• e1)] By step app4, Ccps[E[v0]]→λv Ccps[E ′[(v0 •)][e1]].
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Proof. Case E = E ′[(v0 •)] By step app5, Ccps[E[v0]]→λv Ccps[E ′[(v0 v1)]].

By step app6 and lemma 1, Ccps[E ′[(v0 v1)]]→λv Ccps[E ′[e′]].

Proof. Case E = E ′[(wcm • e1)] If E ′ = E ′′[(wcm v′ •) for some E ′′ and v′, then Ccps[E ′[(wcm •

e1)][v0]]→∗λv Ccps[E
′′[(wcm v0 •)][e1]] by steps wcm4tail-wcm6tail.

Otherwise, Ccps[E ′[(wcm • e1)][v0]]→∗λv Ccps[E
′[(wcm v0 •)][e1]] by steps wcm4nontail-

wcm6nontail.

Proof. Case E = E ′[(wcm v0 •)] By definition, Ccps[E[v1]] = Ccps[E ′[v1]].

Lemma 3. For all contexts E and terms e ∈ λcm, if E[e]→∗λcm v, then Ccps[E[e]]→∗λv C
′
cps[v].

Proof. If E[e]→∗λcm v, then E[e]→∗λcm •[v]→λcm v.

By simulation, E[e]→∗λcm •[v] =⇒ Ccps[E[e]]→∗λv Ccps[•[v]].

By definition, Ccps[•[v]] = (((Ccps[v] Ccps[•]) ξ(•)) C ′cps[χ(•)])→∗λv C
′
cps[v], which is what

we sought.

Correctness of Ĉ. For all programs p ∈ λcm, Ĉcps[evalcm(p)] ≡ evalv(Ĉcps[p]).

Proof.

p→∗λcm v =⇒ evalcm(p) = v by definition of evalcm

=⇒ Ĉ[evalcm(p)]→∗λv C
′[v] by definition of Ĉ

=⇒ Ĉ[evalcm(p)] ≡ C ′[v] by definition of equivalency
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p→∗λcm v =⇒ •[p]→∗λcm v (since p→λcm •[p])

=⇒ C[•[p]]→∗λv C
′[v] (by lemma 3)

=⇒ (((C[p] C[•]) ξ(•)) C ′[χ(•)])→∗λv C[v] by definition of C

=⇒ Ĉ[p]→∗λv C[v] (by definition of Ĉ)

=⇒ evalv(Ĉ[p]) = C ′[v] (by definition of evalv)

Therefore, C[evalcm(p)] ≡ evalv(C[p]).
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Chapter 9

Conclusion

Continuation marks support a bevy of instrumentation tools and advanced language

features in a generalized, portable way. Despite their demonstrated utility, they have not yet

found their way into most languages. A verified characterization of continuation marks in

a pure computational language provides implementors of higher-order languages a correct

compiler for continuation marks which we have demonstrated for JavaScript.

Our macro-style approach would be more useful if deployed as a proper macro, but

this requires a hygienic macro system which many languages lack. sweet.js is just such a

system for JavaScript in early stages and is ideal for our transformation.

Although we used some level of mechanization in the proof of the theorem, a for-

mal proof assistant, such as Coq [3], would increase confidence out of the gate that the

transformation was correct.
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Appendix A

Proof of Lemma 1

A.1 Application Form

Proof. Case e = (rator-expr rand-expr)

First, we have on the left side

Ccps[(rator-expr rand-expr)[x ← v ]] = Ccps[(rator-expr [x ← v ] rand-expr [x ← v ])]

We have on the right side

Ccps[(rator-expr rand-expr)][x ← C ′cps[v ]]

which, expanded, follows this sequence of equivalences:

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks)))
false) marks))))[x ← C ′cps[v ]]

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks)))
false) marks))[x ← C ′cps[v ]]))
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(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks)))
false) marks)[x ← C ′cps[v ]])))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks)))
false)[x ← C ′cps[v ]] marks [x ← C ′cps[v ]]))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks)))[x ← C ′cps[v ]]
false[x ← C ′cps[v ]]) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks))[x ← C ′cps[v ]])
false) marks))))
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(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks)[x ← C ′cps[v ]]))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false)[x ← C ′cps[v ]] marks [x ← C ′cps[v ]])))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))[x ← C ′cps[v ]]

false[x ← C ′cps[v ]]) marks)))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ][x ← C ′cps[v ]]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks))[x ← C ′cps[v ]])

false) marks)))
false) marks))))
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(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ][x ← C ′cps[v ]]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)[x ← C ′cps[v ]]))

false) marks)))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ][x ← C ′cps[v ]]

(λ (rand-value)
((((rator-value rand-value) kont) flag)[x ← C ′cps[v ]] marks [x ← C ′cps[v ]])))

false) marks)))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ][x ← C ′cps[v ]]

(λ (rand-value)
((((rator-value rand-value) kont)[x ← C ′cps[v ]] flag [x ← C ′cps[v ]]) marks)))

false) marks)))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ][x ← C ′cps[v ]]

(λ (rand-value)
((((rator-value rand-value)[x ← C ′cps[v ]] kont [x ← C ′cps[v ]]) flag) marks)))

false) marks)))
false) marks))))
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(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ][x ← C ′cps[v ]]

(λ (rand-value)
((((rator-value[x ← C ′cps[v ]] rand-value[x ← C ′cps[v ]]) kont) flag) marks)))

false) marks)))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ][x ← C ′cps[v ]]

(λ (rator-value)
(((Ccps[rand-expr ][x ← C ′cps[v ]]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks)))
false) marks))))

And finally, by induction, we have

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr [x ← v ]]

(λ (rator-value)
(((Ccps[rand-expr [x ← v ]]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks)))
false) marks))))

which is equal to

Ccps[(rator-expr [x ← v ] rand-expr [x ← v ])]

Therefore,

Ccps[(rator-expr rand-expr)[x ← v ]] = Ccps[(rator-expr rand-expr)][x ← C ′cps[v ]]
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A.2 wcm Form

Proof. Case e = (wcm mark-expr body-expr)

First, we have on the left side

Ccps[(wcm mark-expr body-expr)[x ← v ]] = Ccps[(wcm mark-expr [x ← v ] body-expr [x ← v ])]

We have on the right side

Ccps[(wcm mark-expr body-expr)][x ← C ′cps[v ]]

which, expanded, follows this sequence of equivalences:

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false) marks))))[x ← C ′cps[v ]]

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false) marks)))[x ← C ′cps[v ]])

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false) marks))[x ← C ′cps[v ]]))

(λ (kont)
(λ (flag)
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(λ (marks)
(((Ccps[mark-expr ]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false) marks)[x ← C ′cps[v ]])))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false)[x ← C ′cps[v ]] marks [x ← C ′cps[v ]]))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))[x ← C ′cps[v ]]
false[x ← C ′cps[v ]]) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ][x ← C ′cps[v ]]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks)))[x ← C ′cps[v ]])
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ][x ← C ′cps[v ]]

(λ (mark-value)
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((λ (rest-marks)
(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))[x ← C ′cps[v ]]))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ][x ← C ′cps[v ]]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)]))[x ← C ′cps[v ]]

((flag Ĉcps[(snd marks)]) marks)[x ← C ′cps[v ]])))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ][x ← C ′cps[v ]]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) Ĉcps[((cons mark-value) rest-marks)])[x ← C ′cps[v ]])

((flag Ĉcps[(snd marks)])[x ← C ′cps[v ]] marks [x ← C ′cps[v ]]))))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ][x ← C ′cps[v ]]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true)[x ← C ′cps[v ]] Ĉcps[((cons mark-value) rest-marks)][x ← C ′cps[v ]]))

((flag [x ← C ′cps[v ]] Ĉcps[(snd marks)][x ← C ′cps[v ]]) marks))))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ][x ← C ′cps[v ]]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont)[x ← C ′cps[v ]] true[x ← C ′cps[v ]]) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
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false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ][x ← C ′cps[v ]]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ][x ← C ′cps[v ]] kont [x ← C ′cps[v ]]) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false) marks))))

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ][x ← C ′cps[v ]]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ][x ← C ′cps[v ]] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false) marks))))

And finally, by induction, we have

(λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr [x ← v ]]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr [x ← v ]] kont) true) Ĉcps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false) marks))))

which is equal to

Ccps[(wcm mark-expr [x ← v ] body-expr [x ← v ])]

Therefore,

Ccps[(wcm mark-expr body-expr)[x ← v ]] = Ccps[(wcm mark-expr body-expr)][x ← C ′cps[v ]]
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A.3 ccm Form

Proof. Case e=(ccm)

First, we have on the left side

Ccps[(ccm)[x ← v ]] = Ccps[(ccm)]

We have on the right side

Ccps[(ccm)][x ← C ′cps[v ]]

which, expanded, follows this sequence of equivalences:

(λ (kont)
(λ (flag)

(λ (marks)
(kont marks))))[x ← C ′cps[v ]]

(λ (kont)
(λ (flag)

(λ (marks)
(kont marks)))[x ← C ′cps[v ]])

(λ (kont)
(λ (flag)

(λ (marks)
(kont marks))[x ← C ′cps[v ]]))

(λ (kont)
(λ (flag)

(λ (marks)
(kont marks)[x ← C ′cps[v ]])))

(λ (kont)
(λ (flag)

(λ (marks)
(kont [x ← C ′cps[v ]] marks [x ← C ′cps[v ]]))))

(λ (kont)
(λ (flag)

(λ (marks)
(kont marks))))

which is equal to

Ccps[(ccm)]
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Therefore, Ccps[(ccm)[x ← v ]]=Ccps [(ccm)][x ← C ′cps[v ]].

A.4 Value Form

Proof. Case e = (λ (x ) e′)

On the left side, we have

Ccps[(λ (x ) e′)[x ← v ]] = Ccps[(λ (x ) e′)]

On the right side, we have

Ccps[(λ (x ) e′)][x ← C ′cps[v ]]

which follows

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x ) Ccps[e′])))))[x ← C ′cps[v ]]

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x ) Ccps[e′]))))[x ← C ′cps[v ]])

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x ) Ccps[e′])))[x ← C ′cps[v ]]))

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x ) Ccps[e′]))[x ← C ′cps[v ]])))

(λ (kont)
(λ (flag)

(λ (marks)
(kont [x ← C ′cps[v ]] (λ (x ) Ccps[e′])[x ← C ′cps[v ]]))))

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x ) Ccps[e′])))))

58



Ccps[(λ (x ) e′)]

Therefore, Ccps[(λ (x ) e′)[x ← v ]] = Ccps[(λ (x ) e′)][x ← C ′cps[v ]].

Proof. Case e = (λ (x′) e′) where x′ 6= x

On the left side, we have

Ccps[(λ (x′) e′)[x ← v ]] = Ccps[(λ (x′) e′)]

On the right side, we have

Ccps[(λ (x′) e′)][x ← C ′cps[v ]]

which follows

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x′) Ccps[e′])))))[x ← C ′cps[v ]]

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x′) Ccps[e′]))))[x ← C ′cps[v ]])

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x′) Ccps[e′])))[x ← C ′cps[v ]]))

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x′) Ccps[e′]))[x ← C ′cps[v ]])))

(λ (kont)
(λ (flag)

(λ (marks)
(kont [x ← C ′cps[v ]] (λ (x′) Ccps[e′])[x ← C ′cps[v ]]))))

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x′) Ccps[e′][x ← C ′cps[v ]])))))
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By induction, this is

(λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x′) Ccps[e′[x ← v ]])))))

which equals

Ccps[(λ (x′) e′[x ← v ])]

Therefore, Ccps[(λ (x′) e′)[x ← v ]] = Ccps[(λ (x′) e′)][x ← C ′cps[v ]].

A.5 Variable Form

Proof. Case e = x

On the left, we have Ccps[x [x ← v ]] = Ccps[v ].

On the right, we have Ccps[x ][x ← C ′cps[v ]] which follows

(λ (kont)
(λ (flag)

(λ (marks)
(kont x ))))[x ← C ′cps[v ]]

(λ (kont)
(λ (flag)

(λ (marks)
(kont x )))[x ← C ′cps[v ]])

(λ (kont)
(λ (flag)

(λ (marks)
(kont x ))[x ← C ′cps[v ]]))

(λ (kont)
(λ (flag)

(λ (marks)
(kont x )[x ← C ′cps[v ]])))

(λ (kont)
(λ (flag)

(λ (marks)
(kont [x ← C ′cps[v ]] x [x ← C ′cps[v ]]))))
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(λ (kont)
(λ (flag)

(λ (marks)
(kont C ′cps[v ]))))

Ccps[v ]

Therefore, Ccps[x [x ← v ]] = Ccps[x ][x ← C ′cps[v ]].

Proof. Case e = x′ where x′ 6= x

On the left, we have Ccps[x′[x ← v ]]=Ccps[x′].
On the right, we have Ccps[x′][x ← C ′cps[v ]], which follows

(λ (kont)
(λ (flag)

(λ (marks)
(kont x′))))[x ← C ′cps[v ]]

(λ (kont)
(λ (flag)

(λ (marks)
(kont x′)))[x ← C ′cps[v ]])

(λ (kont)
(λ (flag)

(λ (marks)
(kont x′))[x ← C ′cps[v ]]))

(λ (kont)
(λ (flag)

(λ (marks)
(kont x′)[x ← C ′cps[v ]])))

(λ (kont)
(λ (flag)

(λ (marks)
(kont [x ← C ′cps[v ]] x′[x ← C ′cps[v ]]))))

(λ (kont)
(λ (flag)

(λ (marks)
(kont x′))))
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Ccps[x′]

Therefore, Ccps[x′[x ← v ]] = Ccps[x′][x ← C ′cps[v ].
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Appendix B

Reductions

B.1 Application Form

Ccps[E [(rator-expr rand-expr)]]

((((λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[rator-expr ]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) kont) flag) marks)))

false) marks)))
false) marks))))

C[E]) ξ(E)) C ′cps[χ(E)])

app1

(((λ (flag)
(λ (marks)

(((Ccps[rator-expr ]
(λ (rator-value)

(((Ccps[rand-expr ]
(λ (rand-value)

((((rator-value rand-value) C[E]) flag) marks)))
false) marks)))

false) marks)))
ξ(E)) C ′cps[χ(E)])

app2

((λ (marks)
(((Ccps[rator-expr ]

(λ (rator-value)
(((Ccps[rand-expr ]

(λ (rand-value)
((((rator-value rand-value) C[E]) ξ(E)) marks)))
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false) marks)))
false) marks)) C ′cps[χ(E)])

app3

(((Ccps[rator-expr ]
(λ (rator-value)

(((Ccps[rand-expr ]
(λ (rand-value)

((((rator-value rand-value) C[E]) ξ(E)) C ′cps[χ(E)])))
false) C ′cps[χ(E)])))

false) C ′cps[χ(E)])

app4

(((Ccps[rand-expr ]
(λ (rand-value)

((((C ′cps[v0] rand-value) C[E]) ξ(E)) C ′cps[χ(E)])))
false) C ′cps[χ(E)])

app5

((((C ′cps[v0] C ′cps[v1]) C[E]) ξ(E)) C ′cps[χ(E)])

((((C ′cps[(λ (x ) e0)] C ′cps[v1]) C[E]) ξ(E)) C ′cps[χ(E)])

app6

(((Ccps[e0][x ← C ′cps[v1]] C[E]) ξ(E)) C ′cps[χ(E)])

B.2 wcm form

Ccps[E [(wcm mark-expr body-expr)]]

((((λ (kont)
(λ (flag)

(λ (marks)
(((Ccps[mark-expr ]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] kont) true) C ′cps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false) marks))))

C[E]) ξ(E)) C ′cps[χ(E)])

wcm1

(((λ (flag)
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(λ (marks)
(((Ccps[mark-expr ]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] C[E]) true) C ′cps[((cons mark-value) rest-marks)]))

((flag Ĉcps[(snd marks)]) marks))))
false) marks)))

ξ(E)) C ′cps[χ(E)])

wcm2

((λ (marks)
(((Ccps[mark-expr ]

(λ (mark-value)
((λ (rest-marks)

(((Ccps[body-expr ] C[E]) true) C ′cps[((cons mark-value) rest-marks)]))

((ξ(E) Ĉcps[(snd marks)]) marks))))
false) marks))

C ′cps[χ(E)])

wcm3

(((Ccps[mark-expr ]
(λ (mark-value)

((λ (rest-marks)
(((Ccps[body-expr ] C[E]) true) C ′cps[((cons mark-value) rest-marks)]))

((ξ(E) Ĉcps[(snd χ(E))]) C ′cps[χ(E)]))))
false) C ′cps[χ(E)])

wcm4tail

((λ (rest-marks)
(((Ccps[body-expr ] C[E]) true) C ′cps[((cons mark-value) rest-marks)]))

((true Ĉcps[(snd χ(E))]) C ′cps[χ(E)]))

wcm5tail

((λ (rest-marks)
(((Ccps[body-expr ] C[E]) true) C ′cps[((cons mark-value) rest-marks)]))
C ′cps[(snd χ(E))])

wcm6tail

(((Ccps[body-expr ] C[E]) true) C ′cps[((cons mark-value) (snd χ(E)))])

wcm4nontail

((λ (rest-marks)
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(((Ccps[body-expr ] C[E]) true) C ′cps[((cons mark-value) rest-marks)]))

((false Ĉcps[(snd χ(E))]) C ′cps[χ(E)]))

wcm5nontail

((λ (rest-marks)
(((Ccps[body-expr ] C[E]) true) C ′cps[((cons mark-value) rest-marks)]))
C ′cps[χ(E)])

wcm6nontail

(((Ccps[body-expr ] C[E]) true) C ′cps[((cons mark-value) χ(E))])

B.3 ccm form

Ccps[E [(ccm)]]

((((λ (kont)
(λ (flag)

(λ (marks)
(kont marks))))

C[E]) ξ(E)) C ′cps[χ(E)])

ccm1

(((λ (flag)
(λ (marks)

(C[E] marks)))
ξ(E)) C ′cps[χ(E)])

ccm2

((λ (marks)
(C[E] marks))
C ′cps[χ(E)])

ccm3

(C[E] C ′cps[χ(E)])

B.4 Value Form

Ccps[E [v ]]=Ccps[E [(λ (x ) e)]]

((((λ (kont)
(λ (flag)

(λ (marks)
(kont (λ (x ) Ccps[e])))))

C[E]) ξ(E)) C ′cps[χ(E)])
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value1

(((λ (flag)
(λ (marks)

(C[E] (λ (x ) Ccps[e]))))
ξ(E)) C ′cps[χ(E)])

value2

((λ (marks)
(C[E] (λ (x ) Ccps[e])))
C ′cps[χ(E)])

value3

(C[E] (λ (x ) Ccps[e]))

B.5 Variable Form

Ccps[E [x ]]

((((λ (kont)
(λ (flag)

(λ (marks)
(kont x ))))

C[E]) ξ(E)) C ′cps[χ(E)])

x1

(((λ (flag)
(λ (marks)

(C[E] x )))
ξ(E)) C ′cps[χ(E)])

x2

((λ (marks)
(C[E] x ))
C ′cps[χ(E)])

x3

(C[E] x )

x4

(C[E] error)

x5

error
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