
The Two-State Solution
Native and Serializable Continuations Accord

Jay A. McCarthy

PLT
Computer Science Department

Brigham Young University
Provo, UT, USA

jay@cs.byu.edu

Abstract
Continuation-based Web servers provide advantages over
traditional Web application development through the in-
crease of expressive power they allow. This leads to fewer
errors and more productivity for the programmers that adopt
them. Unfortunately, existing implementation techniques
force a hard choice between scalability and expressiveness.

Our technique allows a smoother path to scalable, continuation-
based Web programs. We present a modular program trans-
formation that allows scalable Web applications to use
third-party, higher-order libraries with higher-order argu-
ments that cause Web interaction. Consequently, our system
provides existing Web applications with more scalability
through significantly less memory use than the traditional
technique.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Control structures

General Terms Languages, Performance, Theory

Keywords Delimited Continuations, Stack Inspection, Web
Applications

1. Introduction
Web computations are described by the capture and resump-
tion of continuations on the Web server. This is accepted
wisdom now in the functional programming community
(Hughes 2000; Queinnec 2000; Graham 2001). Furthermore,
it is the theoretical basis for many practical Web application
development frameworks (Matthews et al. 2004; Ducasse

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright © 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

et al. 2004; Pettyjohn et al. 2005; Thiemann 2006; Cooper
et al. 2006; Krishnamurthi et al. 2007; McCarthy 2009).

Unfortunately, these frameworks rely on techniques that
force users to make all-or-nothing trade-offs between pro-
gram expressiveness and industrial scalability. Whole pro-
gram compilers achieve scalability but sacrifice interaction
with third-party libraries (Matthews et al. 2004; Cooper
et al. 2006). Modular compilation techniques (Pettyjohn
et al. 2005; McCarthy 2009) achieve scalability but sacri-
fice higher-order interaction with third-party libraries.First-
class continuation-based Web servers (Ducasse et al. 2004;
Krishnamurthi et al. 2007) donotachieve scalability (Welsh
and Gurnell 2007), but donot sacrifice any expressiveness.
Worse still, each of these techniques must essentially be
used in isolation; it is not possible to gradually control the
trade-off between expressiveness and scalability.

We present an implementation technique, and its formal
model, that allows controlled scalability for Web applica-
tions that use higher-order third-party libraries and total scal-
ability for those that do not use these libraries. This allows
Web applications written using our system to use drastically
less memory than before without sacrificing expressiveness.

2. Background
The central problem of Web application implementation is
caused by the statelessness ofHTTP: when the server re-
sponds to a client’s request, the connection is closed and the
server program exits. If the client needs to communicate with
the server program, its next request must contain enough in-
formation to resume the computation.

All Web programmers understand this problem, but func-
tional programmers understand that this resumption infor-
mation is the continuation. This is easily demonstrated by
porting a small application from the command-line to the
Web.1

1 All program examples are written in Racket (Flatt and PLT June 7, 2010).

(define(get-number i)
(prompt"Please provide number #˜a:\n" (add1 i)))

(define(sum how-many)
(define the-sum(num-sum(build-list how-many get-number)))
(printf "Sum of ˜a is ˜a.\n" how-many the-sum))

The programsum, when given an integer, requests that
many numbers from the user and returns their sum. When the
user is providing the third of four numbers, the continuation
is

(define the-sum
(num-sum
(list∗ 42 1830 [] (build-list 1 get-number))))

(printf "Sum of ˜a is ˜a.\n" 4 the-sum)

where [] represents the hole.This is the continuation that
must be captured and given to the client in a Web application
version to resume the computation appropriately.

Traditional Web programmers manually produce code
that makes this continuation explicit, and many whole pro-
gram transformation-based Web application frameworks (Matthews
et al. 2004) automatically compile code that represents this
continuation. Both the programmers and the tools produce
code like:

(define(get-number/k i k)
(web-prompt
k "Please provide number #˜a:\n" (add1 i)))

(define(got-numbers how-many l)
(num-sum/k l
(make-kont got-sum
(list (cons’how-many how-many)))))

(define(got-sum how-many sum)
(format"Sum of ˜a is ˜a.\n" how-many sum))

(define(sum how-many)
(build-list/k how-many get-number/k

(make-kont got-numbers
(list (cons’how-many how-many)))))

This code is striking because the third-party libraries
num-sumandbuild-listmust be rewritten to be in continuation-
passing style (CPS) (Fischer 1972) in the form of the new
functionsnum-sum/kand build-list/k. This is only accept-
able when all the source code for the application is available
for programmer rewriting or compiler transformation.

In contrast, most first-class continuation-based Web ap-
plication frameworks support the original program with only
small modifications. The Racket Web Server (Krishnamurthi
et al. 2007) version is almost identical to the original:

(define(get-number i)
(web-prompt"Please provide number #˜a:\n" (add1 i)))

(define(sum how-many)
(define the-sum
(num-sum(build-list how-many get-number)))

(format"Sum of ˜a is ˜a.\n" how-many the-sum))

This is possible becauseweb-promptcaptures the precise
continuation that resumes the computation when the user’s
input is available. Unfortunately, first-class continuation-
based Web application frameworks have much worse scala-
bility properties than other approaches (see Welsh and Gur-
nell (2007) for an anecdote.)

The heart of the problem is that in many languages, espe-
cially those that mix a high-level language with a C-based
infrastructure, continuation serialization is simply notex-
pressible2. Thus native continuations are typically stored in
the server’s memory and the client is provided with a unique
identifier for each continuation. These continuations are per-
session server state and their unique identifiers are newGC

roots. Because there is nosoundway to reclaim these con-
tinuations, they must be retained indefinitely orunsoundly
deleted.

Luckily, there is at least one more functional implementa-
tion strategy for continuation-based Web applications: mod-
ular program transformation based on continuation marks
(Pettyjohn et al. 2005; McCarthy 2009). These work by
transforming part of the code to duplicate the continua-
tion components (stack frames) into continuation marks
(Clements et al. 2001). Continuation marks are a general-
ization of the stack inspection found in other languages (for
example, Java security through stack inspection or excep-
tion handling). By copying the continuation into the marks,
the continuation can be extracted when user interaction is
requiredand there is representation freedom, so they can be
serialized to the client.

Unfortunately, this strategy relies on the insertion of
marks during the entire context up to continuation capture.
The implication of this is that continuations can only be cap-
tured in transformed contexts, such as during the evaluation
of higher-order arguments to higher-order third-party library
functions. Our example does this in the call tobuild-list, so if
we use the mark-based serialization strategy we would need
to reimplementbuild-list to expose it to the transformation.
Our code is close to the original version:

(define(get-number i)
(web-prompt"Please provide number #˜a:\n" (add1 i)))

(define(sum how-many)
(define the-sum
(num-sum(my-build-list how-many get-number)))

(format"Sum of ˜a is ˜a.\n" how-many the-sum))

2 Of course, some systems (Cejtin et al. 1995) do support native continua-
tion serialization. Given that so many system do not allow this, our work is
widely applicable.

Strategy Scalable Automated num-sumUnchanged build-list Unchanged
Manual Yes Yes
CPS Yes Yes
First-Class Yes Yes Yes
Modular Yes Yes Yes
Two-State Yes Yes Yes Yes

Table 1. Web Application Implementation Options

Compared to whole-program transformations, this strat-
egy is a win because onlybuild-list needs a reimplementa-
tion (my-build-list), notnum-sum.

At this point we have exhausted existing implementation
choices. Our options are depicted in Table 1. Obviously we
need a strategy that is scalable and automated, and does not
require us to rewrite any third-party libraries. We present
such an implementation technique. In the end, our program
will look like:

(define(get-number i)
(native→serial
(web-prompt
"Please provide number #˜a:\n" (add1 i))))

(define(sum how-many)
(define the-sum

(num-sum
(serial→native (build-list how-many get-number))))

(format"Sum of ˜a is ˜a.\n" how-many the-sum))

Intuitively, we use delimited continuations to capture the
native continuations that the mark-based serializable con-
tinuations cannot capture. The functions serial→native and
native→serial correspond, respectively, towith-continuation-
prompandcall-with-delimited-continuation.

Thus, we use two different kinds of state: server-side
state for the small native delimited continuations and client-
side state for the larger serializable continuations. Our “two-
state” solution is much more scalable than the first-class con-
tinuation approach and only slightly worse than the modular
approach. It provides an essential way point between native
(first-class) continuations and serializable (modular) contin-
uations for developers to use when reimplementation and re-
compilation is not possible or is otherwise prohibitive.

3. Intuition
Our implementation can be seen as an extension to our
prior work on modular serializable continuations (McCarthy
2009); however, the essence is captured by an extension to
the work that our work was based on: the Pettyjohn et al.
(2005) transformation. Therefore, we will present our intu-
ition and formalism in that context, even though the actual
implementation supports our continuation mark extensions.

The Pettyjohn et al. (2005) transformation relies on the
modular A-Normal Form (ANF) transformation to name con-
tinuation components (Flanagan et al. 2004) and stack in-
spection through continuation marks to provide the “captur-
ing” part ofcall/cc.

ANF is a canonical form that requires all function argu-
ments to be named. This has the implication that the en-
tire program is a set of nestedlet expressions with simple
function calls for bodies. If thelets are expanded intoλs,
then the continuation of every expression is syntacticallyob-
vious. Any expression can be modularly transformed into
ANF without modifying the rest of the program in contrast
to naı̈veCPS.

Many programming languages and environments al-
low access to the run-time stack in one way or another.
Examples include Java security through stack inspection,
privileged access for debuggers in .NET, and exception
handlers in many languages. An abstraction of all these
mechanisms is provided by Racket in continuation marks
(Clements et al. 2001). Using thewith-continuation-mark
(w-c-m) language form, a developer can attach values to
the control stack. Later, the stack-walking primitivecurrent-
continuation-marks(c-c-m) can retrieve those values from
the stack. Continuation marks are parameterized by keys and
do not interfere with Racket’s tail-call optimization. These
two mechanisms allow marks to be used without interfering
with existing code.

A pedagogic example of continuation mark usage is pre-
sented in Figure 1.fact is the factorial function with instru-
mentation using continuation marks:w-c-m records function
arguments on the stack with the ’fact mark, even function ar-
guments on the stack with the ’even mark, andc-c-mcollects
both mark values in the base case. In the result ofc-c-mstack
frames that have no ’even mark are recorded as#f to ensure
that the relation on the stack between the different marks is
discernible.fact-tr is a tail-recursive version of factorial that
appears to be an identical usage of continuation marks, but
because they preserve tail-calling space usage, the interme-
diate marks are overwritten, leaving only the final mark for
’ fact and the only mark for ’even.

The main insight of Pettyjohn et al. (2005) was thatc-c-m
can “capture” the continuation, just likecall/cc, if the com-
ponents of the continuation are installed viaw-c-m. Their
transformation does this by duplicating the continuation into

(define-syntax-rule(mark-if-even n e)
(if (even? n)

(w-c-m ’even n e)
e))

(define(fact n)
(if (zero? n)
(begin (display(c-c-m’ fact ’even))

1)
(mark-if-even n
(w-c-m ’ fact n (∗ n (fact (sub1 n)))))))

(fact3)
7→
console output: (#(1 #f) #(2 2) #(3 #f))
computed value: 6

(define(fact-tr n a)
(if (zero? n)
(begin (display(c-c-m’ fact ’even))

a)
(mark-if-even n
(w-c-m ’ fact n (fact-tr (sub1 n) (∗ n a))))))

(fact-tr 3 1)
7→
console output: (#(1 2))
computed value: 6

Figure 1. Factorial with Continuation Marks

marks. This is easy becauseANF makes these continuations
obvious, and the tail-calling property of marks mirrors that
of continuations themselves, so the two stay synchronized.

Function applications, like (k a), are transformed as

(k (w-c-m SQUAREk a))

whereSQUARE is a special key known only to the transfor-
mation. This effectively duplicates the continuation in a spe-
cial mark. Thencall/cc is defined as

(define(call/cc e)
(defineks(c-c-mSQUARE))
(e (λ (x) (abort (resume ks x)))))

whereλ constructs a serializable closure by generating a
fresh structure that runs itsλ-lifted (Johnsson 1985) body
when applied; andresumerestores the continuation record
from theSQUAREmarks into an actual control stack.resume
must also reinstall theSQUAREmarks so subsequent invoca-
tions ofcall/ccare correct.

(define(resume l x)
(match l
[(list) x]
[(cons k l)
(k (w-c-m SQUAREk (resume l x)))]))

This transformation producesRESTful Web applications,
because standard modularλ-lifting and defunctionalization
transformations encode all values into serializable represen-
tations that can be sent to the client.

The main deficiency of this transformation is thatcall/cc
is useless when called from an untransformed context. For
example, in the program

(+ 1 (build-list how-many(λ (i) (call/cc (λ (k) . . .)))))

wherebuild-list is not available to the transformation, the
continuationk is generated from theSQUARE marks and
therefore does not contain the code forbuild-list, because
it was never transformed to createSQUARE marks. That is,
the continuation is recreated as (+ 1 []) rather than the true
context insidebuild-list.

The first step will be to formalize the implementation
Pettyjohn et al. (2005) used to detect such problematic uses
of call/cc.3 The second step will be to use thisdetection
technique as a hook toeliminatethe problem and provide
access to the actual part of the native continuation that was
not captured by the mark-based transformation.

3.1 Third-Party Higher-Order Libraries with
Higher-Order Arguments That Capture
Continuations

The essence of the problem is that when untransformed code
is called, it is unsafe to try and capture the continuation inits
dynamic context, because theSQUARE marks are not avail-
able. Therefore, we need to learn when acall/ccattempt oc-
curs in the dynamic context of untransformed code. The real
question, then, is how do we observe our dynamic context?

This, of course, is the purpose of continuation marks.
We can create a continuation mark key calledSAFE? that
marks whether the context is safe for continuation capture.
Our implementation ofcall/cc will extract these marks and
ensure that each is true:

(define(call/cc e)
(defineks(c-c-mSQUARE))
(definesafe?(c-c-mSAFE?))
(if (safe-context? safe?)
(e (λ (x) (abort (resume ks x))))
(error ’call/cc "Unsafe context")))

(define(safe-context? safe?-marks)
(andmap identity safe?-marks))

This, however, assumes that we mark unsafe contexts by
wrapping them inSAFE? continuation marks. But how do
we know if a context is unsafe before entering it?

In an implementation there are many options, such as
looking at the exporting module of a function’s definition
and a flow-analysis to determine if lexical identifiers are

3 The intuitive description of this implementation is found in item 2 of the
list at the end of section 4.1 of their paper, roughly on page 8.

bound to third-party functions. But in our theory, we can
be conservative and assume that all contexts are unsafe, but
explicitly mark contexts that we know are safe.

We wrap all function application in a continuation mark
that signifies its unsafety: the application (k a) is transformed
as

(w-c-m SAFE? false(k (w-c-m SQUAREk a)))

This mark will be available in the dynamic context ofk to
detect that the context is unsafe. Of course, not all contexts
are unsafe so we must explicitly mark the safe context as
such. The safe contexts are inside safe functions; and the
safe functions are the ones that are transformed, so if we
transform all function definitions, we will track safety.

The function (λ (x . . .) expr . . .) will be transformed to

(λ (x . . .)
(w-c-m SAFE? true
expr . . .))

When a transformed function is called, it adds a safety
mark to its context. If the function is called from a safe
(transformed) context, then there is already an unsafety mark
on the context; but the tail call property of continuation
marks ensures that thesafetymark will overwrite theun-
safetymark, socall/ccwill succeed.

In contrast, when a transformed function is called from an
unsafe (third-party) context, unless the call is in tail position,
the continuation frame doesnot contain an unsafety mark,
so the safety mark does not override any marks. However,
call/cc will fail because when it captures theSAFE? marks
with c-c-m, it will extract a list like (list . . . false true. . .)
where the frames betweenfalseandtruewere the third-party
context.

An interesting subtle point is that continuation capture
is safe in the higher-order arguments to third-party higher-
order functions if they are always called from tail-position.

At this point, we have an account of how to detect and
avoid continuation capture when the context is not trans-
formed and does not contain theSQUARE marks that make
capture safe and sound. In the next section, we will trans-
form unsafe contexts into safe contexts.

3.2 Delimiting the Native Continuation

In the previous section, we effectively used theSAFE? mark
to delimit the part of the continuation where the transforma-
tion was not run and thus where theSQUARE marks are not
available. This allows us to detect that the user-levelcall/cc,
implemented by extractingSQUARE marks, would fail be-
cause it misses part of the continuation during reconstruc-
tion. In the context of Web applications all is not lost, be-
cause we can always capture a native continuation and store
it on the server. However, that severely limits our scalability.

If we were to capture a complete native continuation,
we’d be doing something even worse: capturing native ver-

sions of continuation components that are serializable. For
instance, in this program

(+ 5 (map(λ (x) (native-call/cc. . .)) (list 1)))

if map were not transformed but the rest of the program
were, then the native continuation captured bynative-call/cc
would be:

(+ 5 (w-c-m SQUARE (λ (x) (+ 5 x))
(w-c-m SAFE? false(list []))))

Even though we have a serializable representation of the
application of+, we would still capture that part of the
continuation natively.

Fortunately for us, practical implementations ofdelim-
ited continuations are already well developed (Gasbichler
and Sperber 2002; Dyvbig et al. 2007; Flatt et al. 2007).
While a full continuation captures the entire program con-
text, delimited continuations provide two operations:with-
continuation-prompt, which installs a “prompt” that serves
as the upper bound of delimited capture, andcall-with-
delimited-continuation, which captures the context up to the
nearest dynamic prompt.4

What we need is not just to mark delimited contexts
as safe, but rather capture those contexts for later use. We
require that programmers explicitly specify that they are
willing to pay for this behavior by annotating the entry into
untransformed code with serial→native and the return to
transformed code with native→serial. For example,

(+ 5 (serial→native
(map(λ (x) (native→serial (call/cc . . .))) (list 1))))

Intuitively, serial→native is with-continuation-prompt
and native→serial is call-with-delimited-continuation, but
there are some subtleties. Here is a first attempt at the trans-
formation:

(+ 5 (w-c-m SAFE? false
(with-continuation-prompt
(map(λ (x)
(w-c-m SAFE? true
(call-with-delimited-continuation
(λ (dc) (call/cc . . .)))) (list 1))))

But, of course, we need to communicate the delimited con-
tinuation (dc) to the serializablecall/cc implementation:

(+ 5 (w-c-m SAFE? false
(with-continuation-prompt
(map(λ (x)
(w-c-m SAFE? true
(call-with-delimited-continuation
(λ (dc)
(w-c-m UNSAFE-PART dc
(call/cc . . .)))) (list 1))))

4 In most implementations, including Racket’s, continuation prompts are
“tagged” to support multiple distinct prompts.

This sets things up so thatcall/cccan extract theUNSAFE-PART

marks in addition to theSQUAREmarks. These native contin-
uations can then be stored on the server in a global hash ta-
ble, like normal native continuations are; syntheticSQUARE

marks can be generated that look up and execute these native
continuations:

(define(call/cc e)
(defineks+unsafe(c-c-mSQUARE UNSAFE-PART))
(defineks(store-unsafe-on-server ks+unsafe))
(definesafe?(c-c-mSAFE?))
(if (andmap identity safe?)
(e (λ (x) (abort (resume ks x))))
(error ’call/cc "Unsafe context")))

(definestore-unsafe-on-server
(match-lambda
[(list) (list)]
[(list (vector k#f) l)
(cons k(store-unsafe-on-server l))]

[(list (vector#f unsafe) l)
(definecont-id(store-on-server! unsafe))
(cons(λ args

(apply(lookup-on-server cont-id) args))
(store-unsafe-on-server l))]))

wherestore-on-server!stores a value on the server and re-
turns a serializable value that can be used to fetch the value
later.

Our implementation ofresumedoes not need to change
becausestore-unsafe-on-serverperfectly prepares the native
continuations for use as if they are serializable, as it expects.
However, there is still one problem: we are still refusing to
construct the continuation, because all theSAFE? marks are
not true. We must adapt so that falseSAFE? marks only mat-
ter if they are not immediately followed byUNSAFE-PART

marks.
We redefinesafe?in call/cc as:

(definesafe?(c-c-mSAFE? UNSAFE-PART))

and rewritesafe-context?as:

(define(safe-context? safe?+unsafe-part-marks)
; We start off in a non-native context
(safe-context?/native-context
safe?+unsafe-part-marks
false))

(define(safe-context?/native-context
safe?+unsafe-part-marks
in-native?)

(match safe?+unsafe-part-marks
; We cannot end in a non-native context
[(list) (not in-native?)]
[(cons(vector safe? unsafe-part) rest)
(and

; If we are in a native context, then we must have
; captured a native continuation. Otherwise, this
; context is unsafe.
(if in-native?

unsafe-part
true)

; If this part of the context is safe, we recur;safe?
; tells us if the context is native or transformed.
(safe-context?/native-context rest(not safe?)))]))

We now have all the machinery in place to allow contin-
uation capture in the higher-order arguments to third-party
higher-order libraries. The key is atwo-statesolution, where
some parts of the state stay on the server, while other parts
are serialized to the client. Delimited continuations allow us
to simply specify the part of the context that must remain
on the server. Existing machinery for managing server-sided
resources can be applied to these delimited native continua-
tions.

4. Formal Treatment
In this section, we formalize the transformation where cap-
turing continuations in unsafe contexts is detectable.

4.1 Source Language

Figure 2 presents grammar for the source language (SL). It
is a modified version of A-Normal form (ANF) (Flanagan
et al. 2004) because the continuation is always syntactically
obvious (in the firstw of applications.) It usesλ rather than
let and has applications of arbitrary length. The language is
extended withcall/cc, pattern matching on algebraic data
types, andletrec for recursive binding.

Identifiers bound byletrec (σ, e.g. map) are typeset
differently than normal identifiers (x, e.g.map) to easily
distinguish them.

Instances of algebraic data types are created with con-
structors (K) and destructured withmatch. Constructors
(e.g. CONS) are typeset differently than identifiers (e.g.
cons) to easily distinguish them.

The most significant non-standard aspect of the language
is the presence ofλ. These represent functions that are from
third-party libraries where the source code is unavailable.
They behave identically to normal functions, but provide a
cue to the transformation. When we discuss the transforma-
tion (Section 4.3), we will point out that the transformation
does not apply to their bodies.

The operational semantics is specified via the rewriting
system in Figure 3 (top and middle.) The→ is used to denote
reduction; the⇒ is used to denote reduction that is invariant
on the store; and the is used to denote reduction in a
context (E) that is invariant on the store.

The semantics is heavily based on source language se-
mantics of Pettyjohn et al. (2005). The [beta] and [beta (unsafe)]
rules are the standardβv-rewriting rule for call-by-value
languages (Plotkin 1975). The [match] rule handles pattern

e e′

E [e]⇒ E [e′]

e⇒ e′

Σ, e→ Σ, e′

Shared reductions

((λ (x . . .) e) v . . .) e[x← v] . . . [beta]

(match (K v . . .) [(K x . . .) ⇒ e] l . . .) e[x← v] . . . [match]

(match (K1 v . . .) [(K2 x . . .) ⇒ e] l . . .) (match (K1 v . . .) l . . .) [match (next)]

where K1 6= K2

(match v [else ⇒ e] l . . .) e [match (else)]

Σ, E [(letrec ([σ v] . . .) e)] → Σ[σ 7→ v] . . . , E [e] [letrec]

Σ, E [(σ v . . .)] → Σ, E [(Σ(σ) v . . .)] [σ + apply]

Σ, E [(match σ l . . .)] → Σ, E [(match Σ(σ) l . . .)] [σ + match]

SL reductions

((λ (x . . .) e) v . . .) e[x← v] . . . [beta (unsafe)]

E [(call/cc v)] ⇒ E [(v κ.E)] [call/cc]

E1[(κ.E2 v)] ⇒ E2[v] [cont invoke]

TL reductions

E [(abort e)] ⇒ e [abort]

E [(wcm ([vk1 vv1] . . .) (wcm ([vk2 vv2]) e))] ⇒ E [(wcm merge[([vk1 vv1] . . . [vk2 vv2] . . .)] e)] [wcm (merge)]

where E 6= E ′[(wcm ([v′k v′v] . . .) [])]

E [(wcm ([vk vv] . . .) vret)] ⇒ vret [wcm (return)]

where E 6= E ′[(wcm ([v′k v′v] . . .) [])]

E [(ccm vk . . .)] ⇒ E [extract[E , vk . . .]] [ccm]

merge[([vki vvi] . . .)] = ([vk ω(vk)] . . .)

whereω = ∅[vki 7→ vvi] . . .

vk = dom(ω)

extract[[], vt . . .] = (NIL)

extract[(v . . . E), vt . . .] = extract[E , vt . . .]

extract[(wcm ([vk vv] . . .) F), vt . . .] = (CONS(VECTOR vi . . .) extract[F , vt . . .])

wherevi = (SOME vv) for eachvk = vt and(NONE) otherwise

Figure 3. Reductions

e ::= a

| (w . . . e)

| (letrec ([σ v]) e)

| (match w l . . .)

| (call/cc w)

l ::= [(K x . . .) ⇒ e]

| [else ⇒ e]

a ::= w

| (K a . . .)

w ::= v

| x

v ::= σ

| (λ (x . . .) e)

| (λ (x . . .) e)

| (K v . . .)

| κ.E

Σ ::= ∅

| Σ[σ 7→ v]

E ::= []

| (v . . . E)

Figure 2. SL grammar

matching; [match (next)] handles unused cases; [match (else)]
handles the default case of a pattern matching. The [letrec],
[σ + apply], and [σ + match] rules specify the semantics of
letrec. Bindings established byletrec are maintained in a
global store,Σ. For simplicity, store references (σ) are dis-
tinct from identifiers bound in lambda expressions (Felleisen
and Hieb 1992). Furthermore, to simplify the syntax for
evaluation contexts, store references are treated as values,
and de-referencing is performed when a store reference ap-
pears in an application ([σ + apply]) or in a match expression
([σ + match]). The final rules for continuations are standard.

4.2 Target Language

The target language (Figure 4) is similar to the source lan-
guage, except thatλ andcall/cc are removed, whilewcm,
ccm, andabort have been added.

The semantics (top and bottom of Figure 3) is similar
to the source language’s as well, except that because of
continuation marks the evaluation contexts are structuredto
avoid adjacent marks.

There are four new reduction rules that make use of a few
meta-functions (Figure 3, bottom). The first rule implements
abort by abandoning the context. The second implements

e ::= a

| (w . . . e)

| (letrec ([σ v]) e)

| (match w l . . .)

| (wcm ([w w] . . .) e)

| (ccm w . . .)

| (abort e)

l ::= [(K x . . .) ⇒ e]

| [else ⇒ e]

a ::= w

| (K a . . .)

w ::= v

| x

v ::= σ

| (λ (x . . .) e)

| (K v . . .)

Σ ::= ∅

| Σ[σ 7→ v]

E ::= (wcm ([v v] . . .) F)

| F

F ::= []

| (v . . . E)

Figure 4. TL grammar

the tail-calling semantics ofwcm, where adjacent marks are
collapsed and overridden. The meta-functionmerge replaces
outer marks by inner marks when their keys are equal. The
rule is applied whenever the structured evaluation context
forces adjacentwcms to be treated as a redex. The third new
rule returns final values fromwcm bodies. These two rules
are deterministic because the side-condition onE forces
[wcm (merge)] to be applied from outside to inside. The rule
for ccm uses the meta-functionextract to extract the marks
from the context in the format:

marks ::= (NIL)

| (CONSmarkset marks)

markset ::= (VECTOR maybe . . .)

maybe ::= (NONE)

| (SOME v)

4.3 Continuation Mark Transformation

Translating from SL to TL follows Pettyjohn et al. (2005)
with the CMT (ContinuationMark Transformation) shown

in Figure 5. The translation when applied to full expressions
(CMTe[]) first decomposes a term into a context and a redex
by the grammar

r ::= (w . . . a)

| (letrec ([σ w]) e)

| (match w l . . .)

| (call/cc w)

E ::= []

| (w . . . E)

The decomposition is unique and thus the translation is
well-defined.

Lemma 1 (Unique Decomposition). Let e ∈ SL. Either
e ∈ a or e = E [r] for a single redexr and contextE .

The translation relies on particular definitions forresume
and call/cc, given in Figure 6. The translation rules are
mostly straightforward. Continuation values are converted
directly into functions that applyresume, but the captured
SL context must be translated into a set of marks that match
the format expected byresume. This is handled by theE
case of theCMT[] meta-function. Safeλs are translated by
translating their bodies and annotating the body context with
a safety mark, as discussed in Section 3.1. In contrast, the
bodies ofλs arenot translated. (This makes the translation
ill-defined onλs that embed otherλs, continuation values,
or call/cc. We discuss this below.)

The next interesting rule is for function application
((w...a)); in this rule, the call has to be explicitly marked
as unsafe in case the function applied is anλ. Direct calls to
call/cc are replaced with calls to the TL implementation of
call/cc. Finally, context compositions ((w...E)) are replaced
with applications where the syntactic continuations are du-
plicated into the(SQUARE) marks to communicate with the
implementation ofcall/cc.

We now turn our attention to the definitions ofresume
andcall/cc (Figure 6).resumeworks by reconstructing the
evaluation context from the list of(SQUARE) marks, includ-
ing restoring the marks themselves.call/cc works by ex-
tracting the(SAFE?) marks and callsall-safe?with that list.
all-safe?ensures that every frame is marked as safe.call/cc
then extracts the(SQUARE) marks and constructs a contin-
uation value (aλ that callsresume) before giving it to its
argument,f .

4.4 Correctness

We define “reasonable SL programs” as those where the
bodies ofλs are syntactically TL expressions and do not
override the standard library functionsresumeandcall/cc,
or the functions they rely on. This is a low standard of rea-
sonableness; we are not hiding triviality behind this defini-
tion. Furthermore, these constraints ensure that SL programs

(letrec
([resume

(λ (l v)
(match l
[(NIL)⇒ v]
[(CONScm l)⇒
(match cm
[(VECTORmk)⇒
(match mk
[(SOME k)⇒
(k (wcm([(SQUARE) k]) (resumel v)))])])]))]

[all-safe?
(λ (marks)
(match marks
[(NIL)⇒ (TRUE)]
[(CONSml)⇒
(match m
[(VECTORs)⇒
(match s
[(SOME v)⇒
(match v
[(TRUE)⇒ (all-safe?l)]
[(FALSE)⇒ (FALSE)])])])]))]

[call/cc
(λ (f)
((λ (is-safe?)

(match is-safe?
[(TRUE)⇒
((λ (k) (f k))
((λ (m)

(λ (x) (abort (resumem x))))
(ccm(SQUARE)))]

[(FALSE)⇒
(abort (UNSAFE CONTEXT))]))

(all-safe?(ccm(SAFE?)))))])
. . .)

Figure 6. CMT library

more closely model the reality that unsafe programs will not
include fragments of safe programs.

Theorem 1. For every reasonable SL programe, if ∅, e
reduces to a value,v, thenCMTe[e] reduces toCMTv[v]
or (UNSAFE CONTEXT).

This theorem states that the transformation preserves the
meaning of the program or errors because the program cap-
tures a continuation in an unsafe context.

We define “pure SL programs” as those that do not con-
tainλs and that do not override the standard library functions
resume, call/cc, orall-safe?. This corresponds to real world
programs that do not interact with third-party libraries.

CMTv[κ.E] = (λ (x) (abort (resumeCMTE [E] x))

CMTv[(λ (x . . .) e)] = (λ (x . . .) (wcm ([(SAFE?) (TRUE)]) CMTe[e]))

CMTv[(λ (x . . .) e)] = (λ (x . . .) e)

CMTv[σ] = σ

CMTv[(K v . . .)] = (K CMTv[v] . . .)

CMTw[x] = x

CMTw[v] = CMTv[v]

CMTa[w] = CMTw[w]

CMTa[(K a . . .)] = (K CMTa[a] . . .)

CMTl[[(K x . . .) ⇒ e]] = [(K x . . .) ⇒ CMTe[e]]

CMTl[[else ⇒ e]] = [else ⇒ CMTe[e]]

CMTr[(w . . . a)] = (wcm ([(SAFE?) (FALSE)]) (CMTw[w] . . . CMTa[a]))

CMTr[(letrec ([σ w] . . .) e)] = (letrec ([σ CMTw[w]] . . .) CMTe[e])

CMTr[(call/cc w)] = (call/ccCMTw[w])

CMTr[(match w l . . .)] = (match CMTw[w] CMTl[l] . . .)

CMTE [[]] = []

CMTE [(w . . . E)] = (κ (wcm ([(SQUARE) κ]) CMTE [E]))

whereκ = (λ (x) (CMTw[w] . . . x))

CMTe[a] = CMTa[a]

CMTe[E [r]] = CMTE [E][CMTr[r]]

CMTE [[]] = (NIL)

CMTE [(v . . . E)] = (CONS(VECTOR (SOME (λ (x) (CMTv[v] . . . x)))) CMTE [E])

Figure 5. CMT definition

Theorem 2. For every pure SL programe, if ∅, e reduces to
a value,v, thenCMTe[e] reduces toCMTv[v].

5. Real World Issues
Once third-party higher-order library functions can be called
with arguments that capture continuations, there are stilla
few practical problems and extensions that can be made to
make real Web programming easier and scalable. In this
section, we discuss a few.

5.1 Native Function Interfaces

The two-state solution allows us to write code like

(serial→native
(build-list
how-many
(λ (i)
(native→serial
(web-prompt
"Please provide number #˜a:\n" (add1 i))))))

where the native part of the continuation is captured sep-
arately and stored on the server. This increases expressiv-
ity, but it is overly verbose and forces programmers to think
about how functions are implemented whenever they are
used.

This additional cognitive task is valuable, because server
resources are scarce, but it is often too inconvenient for the
prototyping stage. For that reason, the Racket Web frame-
work supports thedefine-nativeform for creating a wrapper.
define-nativeis given a new identifier to bind, a specification
of which higher-order arguments may capture continuations,
and a native implementation. For example, the wrapper for
build-list is defined:

(define-native(build-list/safe ho) build-list)

Programmers can then write:

(build-list/safe
how-many
(λ (i)
(web-prompt
"Please provide number #˜a:\n" (add1 i))))

This simple macro is incredibly effective at reducing the
burden on Web programmers that seek scalability and con-
venience.

5.2 Managing Native Continuations

The fundamental problem for scalability with native con-
tinuations is that they cannot be removed from memory
or reclaimed because references to them may be stored by
users in untraceable ways. For example, users can book-
mark a page or otherwise remember a URL indefinitely,
yet expect the page to be available whenever they request
it. This creates a serious resource management problem for

continuation-based Web applications that mirrors the “ses-
sion state management” problem of traditional Web applica-
tions. The standard scalability technique is to time out ses-
sions after periods of inactivity and provide seamless ways
for users to authenticate and restore their session.

The two-state solution does not remove the server-state
management problem, but it does minimize it by storing
only the smallest necessary delimited continuations. There-
fore, we have to have some policy for managing the server
resources consumed by native components in the two-state
solution.

The Racket Web framework associates amanagerwith
each Web program. This manager is essentially a hash table
mapping unique, serializable identifiers with opaque, non-
serializable values, like continuations. When each value is
stored, it is given anexpiration-handlerthat is returned when
the manager reclaims the value’s resources. One other com-
plicating factor is that the values are stored indexed byin-
stance(distinct invocation of the application); this is use-
ful because it allows an instance to explicitly remove values
from the managers (such as on logout).

Programmers often write their own custom managers, but
there are a few standard managers.

Thenull manager never uses server resources and always
returns the expiration handler. This manager is the defaultfor
scalable Web applications and must be explicitly removed. It
is useful to ensure that native continuations are not acciden-
tally stored.

The timeout manager implements the standard timeout
policy: instances and values are reclaimed after a config-
urable number of seconds have elapsed since their last ac-
cess. This is very problematic for large deployments because
the behavior does not change in response to observed use.

TheLRU manager implements a more sophisticated tech-
nique: each value has a “life count” that is initialized to
start, if it ever reaches0, then the value is reclaimed. The
life count is decremented by one whenever the reclamation
routine is run. The reclamation routine runs everycollect
seconds and everycheck seconds whencheck? returns true.
These four parameters (start, collect, check, andcheck?)
allow a wide array of management policies. A common
policy configuration is the “threshold” policy:start is 24,
collect is 10 minutes,check is 5 seconds, andcheck? de-
termines if the memory used by the manager is greater than
threshold megabytes. This ensures that values are available
for at most four hours and at least two minutes. It also en-
sures that a particular memory limit is never exceeded for
long, because once it is, old values are rapidly reclaimed un-
til the problem is defeated.

We find that in practice theLRU threshold policy is essen-
tial for running scalable and reasonable Web applications.
This practical finding is backed up by experimental results
discussed in Section 6.

5.3 Soft State

Managers allow stateless Web applications to interact seam-
lessly with server state when it is inconvenient or impossible
to serialize that state to the Web clients. Once this mecha-
nism is in place, it is tempting to use it to access other kinds
of state, such as data that is too large to transmit or too sen-
sitive to put in the hands of the untrusted. For example, it
is common for Web applications to make use of “soft state”:
state that is stored on the server, but can be recomputed when
necessary so it is allowed to be forgotten at any time. A com-
mon use is a cache of a user’s information from a database.

Our implementation of soft state provides two calls: (soft-
state expr), which creates a piece of soft state that has the
same value asexpr, butexprmay be evaluated many times to
compute it; and (soft-state-ref ss), which extracts the value
of the soft state bound tossand may evaluate the soft state
expression to compute it.

The implementation uses managers to store the value of
the soft-state such that the expiration handler recomputesthe
value if the manager reclaims it. The soft-state serializesto
the manager’s identifier and a serializable thunk that recom-
putes the value, rather than the value itself, ensuring thatthe
soft-state can be safely serialized to the client and recom-
puted as needed. This implementation is entirely local and
requires no additional cooperation from the rest of the Web
application.

6. Evaluation
The formal model of Section 4 helps to establish the sound-
ness of the two-state implementation technique, but it cannot
tell us anything about the savings or costs of its use. Since
the use of the two-state solution cannot be divorced from the
use of server-side state managers, we evaluate their perfor-
mance as well.

6.1 Managers

We measured the performance of server-side state managers
on two metrics.

First, we measured what percentage of all continuations
ever stored on the server were available as the application
ran. If this percentage is high, then users will not follow links
or bookmarks and find the page unavailable. If this percent-
age is low, then they will, unless the application has estab-
lished other ways to restore a user’s session. It is important to
realize, however, that users may not actually care about one
of these expired values. For example, after users have totally
finalized their online purchase, they have no need to access
the continuation that sets the shipping address. Thus this per-
centage establishes an imperfect bound on user happiness; a
low percentage does not, in practice, mean the application is
unusable.

Second, we measured the total memory used by the
server. If this is high or is proportional to server use, then

the server is unlikely to be scalable because memory will
invariably be exhausted during periods of high activity.

All measurements of managers are based on logs of the
use of theCONTINUE conference manager by an elite con-
ference during the periods of its highest activity: just before
the paper and review submission deadlines. These periods
of activity were characterized as a six hour window with 30
active users at any time performing a total of about 3,000
interactions distributed throughout the entire period.

In these experiments, the defaultLRU manager was con-
figured with a threshold that limits the number of continu-
ations to approximately 2000 and thetimeoutmanager was
used with a one hour, two hour, and four hour timeout.

These experiments do not constitute stress tests; they are
just enough activity to identify and compare the trends of
each manager.

Continuation Availability. Figure 7 (top) presents the per-
centage of available continuations that were available to
users at a number of points in the run. The X-axis shows
the progress of time, while the Y-axis show the percentage
of all continuations ever stored that were available for in-
vocation by users. Naturally, every manager starts off with
100% of the continuations available, but thetimeoutman-
agers slowly lose availability as more continuation timeouts
expire. In contrast, theLRU manager delivers 100% avail-
ability approximately as long as the 2-hourtimeoutmanager,
but loses availability more slowly before leveling out.

Memory Usage. Figure 7 (bottom) presents the amount of
memory used by the managers at each sampled point in the
run. The graphs show the usage of theLRU manager and
one of thetimeoutmanagers. The first row shows the 1-hour
and 2-hourtimeoutmanagers. The second row shows the 4-
hour and 6-hourtimeoutmanagers. (The oscillation in these
graphs are a side-effect of the sampling thread competing
with the manager thread, because Racket does not have truly
concurrent threads. Since the higher timeout threads do less
work, they compete less and therefore the sampler takes
more samples.)

TheLRU manager uses consistently less memory, despite
giving better availability than the 1- and 2-hourtimeout
managers always and the 4-hour manager after the timeout.
The 6-hourtimeoutmanager (not shown on top because it
always has 100% during the 6-hour experiment) shows the
memory cost of never expiring server-side continuations.

These experiments show that while thetimeoutmanager
can guarantee 100% availability before the timeout, theLRU
provides strong memory bounds without sacrificing avail-
ability too severely. For example, the 4-hourtimeoutman-
ager has 100% availability until 4 hours, whereas theLRU
manager only has 50%; but after 2 more hours, both man-
agers have the same availability.

25%

50%

75%

1hr 2hr 3hr 4hr 5hr

LRU
Timeout (1 hour)

Timeout (2 hours)
Timeout (4 hours)
Timeout (6 hours)

5 MB

10 MB

15 MB

20 MB

1hr 2hr 3hr 4hr 5hr

LRU
Timeout (1 hour)

5 MB

10 MB

15 MB

20 MB

1hr 2hr 3hr 4hr 5hr

LRU
Timeout (2 hours)

5 MB

10 MB

15 MB

20 MB

1hr 2hr 3hr 4hr 5hr

LRU
Timeout (4 hours)

5 MB

10 MB

15 MB

20 MB

1hr 2hr 3hr 4hr 5hr

LRU
Timeout (6 hours)

Figure 7. Memory Usage of Different Managers

6.2 Two-State Solution

We measured four different comparisons between native
continuations, two-state continuations, and serializable con-
tinuations. First, we repeated the manager tests after special-
izing them for each of these techniques, then we performed
two separate timing tests.

Continuation Availability. We ran a native and two-state
version of the same Web application through the workload
above. The average continuation size of the native version
was approximately 2KB, whereas the server-part of the two-
state continuations were on average only 512B. The LRU

manager was used for both versions and was configured with
a memory threshold of 4MB.

Figure 8a presents the availability of continuations during
the test. It verifies our expectation that the two-state solution
provides more access to server state, by reducing the size of
each continuation, but after the threshold is reached, the two
have similar performance.

It does not make sense to compare these to serializable
continuations, because all serializable continuations are al-
ways available.

Memory Usage. Figure 8b shows the memory usage for
the same experiment. It verifies that the native continuations

25%

50%

75%

1hr 2hr 3hr 4hr 5hr

Two-State LRU
Native LRU

2 MB

4 MB

6 MB

1hr 2hr 3hr 4hr 5hr

Two-State LRU
Native LRU

(a) (b)

Figure 8. Native and Two-State Continuation Availability and MemoryUsage

take more space on the server, but that theLRU manager
controls memory usage regardless of what the server state
is.

It may seem surprising that the two-state solution some-
times uses more memory than the native solution, such as
between two and three hours. This has to do with when recla-
mation occurs. Since the native solution exhausts the mem-
ory limit faster, it causes a reclaiming just before the two-
hour mark. At that point the two-state solution uses more
memory because it hasn’t expired anything. Once it does
(around three hours), it use less memory than native con-
tinuations, until the process repeats just before four hours.

It does not make sense to compare these to serializable
continuations, because serializable continuations do notcon-
sume server memory resources.

Compilation Time. The two-state solution relies on a com-
plex transformation that intuitively increases compilation
time relative to using native continuations. We measured this
by compiling three versions of the our example application
from Section 2 one hundred times and averaging the compi-
lation times.

Native 661 ms
Two-State 1007 ms

Serial 1048 ms

Native compilation is almost fifty percent faster than ei-
ther transformation-based compilations, while the two-state
compilation is only slightly faster—presumably because
there is less code to compile since third-party higher-order
library functions are not examined.

In our experience, the increased compilation time for us-
ing non-native continuations is quickly noticed by program-
mers but easy to ignore during development.

Execution Time. The two-state solution uses a combina-
tion of serializable closures and native delimited continua-
tions to simulate full continuations that are implemented na-
tively. It is natural to assume that the Racket compiler and

runtime perform better with native continuations than simu-
lated continuations, because they have been optimized over
many years, while these simulated continuations have not.
This assumption is true for continuationinvocation, but false
for continuationcapture.

We created a micro-benchmark that captures 200 contin-
uations and averaged 1,000 runs per implementation.

Native 1.5975 ms
Two-State 0.1528 ms

Serial 0.6744 ms

It is ten times cheaper to capture our simulated continu-
ations. The intuitive explanation is that the native continua-
tion capture has to copy large parts of the stack and check
if previous stack tails have already been captured so they
may share and thus reduce the overall space consumed by
continuations. A tail-sharing continuation representation re-
duces space consumption in most Web applications because
many intermediate computations return to the same points.
For example, each stage of a purchase returns to the same
“Shipping Confirmation” page generator.

The simulated continuation capture is faster because it
only inspects the stack and copies a few small pointers that
were set up when the continuation component was added in
a continuation mark. There would be no space savings if we
were to implement tail sharing, because these continuations
are not stored on the server and the entire continuation must
be serialized to the client.

A different implementation of native continuation capture
may not have this performance difference (Hieb et al. 1990;
Clinger et al. 1999). The difference that exists, however, can
be significant because most Web applications capture many
more continuations than they invoke, because most pages
have many links and the majority are not chosen.

We created a micro-benchmark that capturesand invokes
200 continuations and averaged 1,000 runs per continuation
implementation.

Native 1.7609 ms
Two-State 49.6306 ms

Serial 13.8949 ms

It is almost thirty times more expensive to invoke our
simulated continuations than native continuations, especially
when we also must install a continuation prompt and capture
and invoke a native delimited continuation.

Despite these micro-benchmarks, none of these differ-
ences are actually observable by end users of Web applica-
tions, given the already long network delays users are accus-
tomed to. A 50ms delay is dwarfed by the typical network
latency over the Internet.

Ease of Use. A frustrating aspect of the two-state solu-
tion is that foreign code must be explicitly identified and call
must be wrapped in serial→native and the higher-order ar-
guments must be wrapped in native→serial. This limits the
ease of porting a code-base from the purely native continua-
tion technique to the two-state solution.

Fortunately, it is safe to insert paired calls to serial→native
and native→serial anywhere. Therefore, we have experi-
mented with automatically inserting them around every call
to a function from another module—the only functions that
could be foreign. We measured two situations where this
could impose costs.

First, we tested when the possibly foreign function doesn’t
actually have higher-order arguments, so there is no reason
to use serial→native. We timed and averaged 20,000 calls
with this profile.

Without Wrapping 0.0843 ms
Wrapping 0.0860 ms

There is only about a 2% performance penalty and the abso-
lute values are tiny. This essentially is a measurement of the
cost of serial→native.

Second, we tested when the possibly foreign function
has higher-order arguments, but they don’t capture continu-
ations. We timed and averaged 20,000 calls with this profile.

Without Wrapping 0.0841 ms
Wrapping 0.0905 ms

There is about an 8% performance penalty for extraneous
uses of both serial→native and native→serial.

These experiments suggest that it is not prohibitive to run-
time performance to automatically use the two-state solu-
tion. However, we are philosophically opposed to obscuring
when server state is used from programmers and prefer that
this decision be made explicitly with an idea to the overall
scalability of the Web application.

7. Conclusion
We presented an implementation technique that allows scal-
able and stateless Web programs written in direct style to
make use of third-party higher-order library functions with
higher-order arguments that capture continuations and cause

user interaction. We have presented a formal model of a por-
tion of this implementation technique. We have discussed
extensions necessary for real deployment and additional fa-
cilities easily provided by this infrastructure. We have evalu-
ated this work and found that it increases scalability com-
pared to purely native continuations and reduces the bur-
den of reimplementation compared to purely serial contin-
uations. Overall, the two-state solution works.

This work relies on the state-of-the-art in stack inspec-
tion and manipulation—continuation marksand delimited
continuations—therefore it is only directly applicable topro-
gramming languages in the Racket family.

Acknowledgments We thank Matthew Flatt for his su-
perlative work on Racket, where our implementation lives.
We thank Robby Findler for his fabulous work on Redex,
where our model lives. We thank Casey Klein for his work
on the randomized testing facility of Redex, which aided our
model development effort.

References
Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-

order distributed objects.ACM Transactions on Programming
Languages and Systems, September 1995.

John Clements, Matthew Flatt, and Matthias Felleisen. Modeling
an algebraic stepper. InEuropean Symposium on Programming,
April 2001.

William D. Clinger, Anne H. Hartheimer, and Eric M. Ost. Imple-
mentation strategies for first-class continuations.Higher Order
and Symbolic Computation, 12(1):7–45, 1999.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web programming without tiers. InFormal Methods for
Components and Objects, 2006.

Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside
— a multiple control flow web application framework. InEuro-
pean Smalltalk User Group - Research Track, 2004.

R. Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. A monadic
framework for delimited continuations.Journal of Functional
Programming, 17(6):687–730, 2007.

Matthias Felleisen and Robert Hieb. The revised report on the
syntactic theories of sequential control and state.Theoretical
Computer Science, 102:235–271, 1992.

M. J. Fischer. Lambda calculus schemata.ACM SIGPLAN No-
tices, 7(1):104–109, 1972. In theACM Conference on Proving
Assertions about Programs.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias
Felleisen. The essence of compiling with continuations.SIG-
PLAN Notices, 39(4):502–514, 2004.

Matthew Flatt and PLT. Reference: Racket. Tech-
nical Report PLT-TR2010-1, PLT Inc., June 7, 2010.
http://racket-lang.org/tr1/.

Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias
Felleisen. Adding delimited and composable control to
a production programming environment. InInternational

Conference on Functional Programming, 2007. URL
http://www.cs.utah.edu/plt/delim-cont/.

Martin Gasbichler and Michael Sperber. Final shift for call/cc::
direct implementation of shift and reset.SIGPLAN Notices, 37
(9):271–282, 2002.

Paul Graham. Lisp for web-based applications, 2001.
http://www.paulgraham.com/lwba.html.

Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing
control in the presence of first-class continuations. InACM
SIGPLAN Conference on Programming Language Design and
Implementation, 1990.

John Hughes. Generalising monads to arrows.Science of Computer
Programming, 37(1–3):67–111, May 2000.

Thomas Johnsson. Lambda lifting: transforming programs tore-
cursive equations. InFunctional Programming Languages and
Computer Architecture, pages 190–203, 1985.

Shriram Krishnamurthi, Peter Walton Hopkins, Jay McCarthy,
Paul T. Graunke, Greg Pettyjohn, and Matthias Felleisen. Im-
plementation and Use of the PLT Scheme Web Server.Higher-
Order and Symbolic Computation, 2007.

Jacob Matthews, Robert Bruce Findler, Paul T. Graunke, Shriram
Krishnamurthi, and Matthias Felleisen. Automatically restruc-
turing programs for the Web.Automated Software Engineering,
11(4):337–364, 2004.

Jay McCarthy. Automatically restful web applications or, marking
modular serializable continuations. InInternational Conference
on Functional Programming, 2009.

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishna-
murthi, and Matthias Felleisen. Continuations from general-
ized stack inspection. InInternational Conference on Functional
Programming, September 2005.

Gordon D. Plotkin. Call-by-name, call-by-value, and theλ-
calculus.Theoretical Computer Science, 1975.

Christian Queinnec. The influence of browsers on evaluatorsor,
continuations to program web servers. InInternational Confer-
ence on Functional Programming, pages 23–33, 2000.

Peter Thiemann. Wash server pages.Functional and Logic Pro-
gramming, 2006.

Noel Welsh and David Gurnell. Experience report: Scheme in com-
mercial web application development. InInternational Confer-
ence on Functional Programming, September 2007.

