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Continuation-based Web servers provide advantages oveft al. 2006; Krishnamurthi et al. 2007; McCarthy 2_009)'
traditional Web application development through the in- _ Unfortunately, these frameworks rely on techniques that
crease of expressive power they allow. This leads to fewer '0fce users to make all-or-nothing trade-offs between pro-
errors and more productivity for the programmers that adopt 9/am expressiveness and industrial scalability. Whole pro
them. Unfortunately, existing implementation techniques gram c_ompllerS a_lch|e_ve scalability but sacrifice inteati
force a hard choice between scalability and expressiveness with third-party libraries (Matthews et al. 2004; Cooper

Ourtechnique allows a smoother path to scalable, confonuit & 2006). Modular compilation techniques (Pettyjohn

based Web programs. We present a modular program trans&t al- 2005; McCarthy 2009) achieve scalability but sacri-

formation that allows scalable Web applications to use fice higher_—ordq interaction with third-party librariésrst-
third-party, higher-order libraries with higher-ordergar class continuation-based Web servers (Ducasse et al. 2004;

ments that cause Web interaction. Consequently, our syster‘r{mSh”amurthi etal. 2007) doot aghieve scalability (Welsh
provides existing Web applications with more scalability and Gurnell 2007), but doot sacrifice any expressiveness.

through significantly less memory use than the traditional Worse still, each of these techniques must essentially be
used in isolation; it is not possible to gradually contra th

technique. f )
trade-off between expressiveness and scalability.
Categories and Subject Descriptors D.3.3 [Language We present an implementation technique, and its formal
Constructs and FeaturgsControl structures model, that allows controlled scalability for Web applica-
tions that use higher-order third-party libraries andltetal-
General Terms ~ Languages, Performance, Theory ability for those that do not use these libraries. This atlow
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2. Background

1. Introduction o o
Web computations are described by the capture and resump:rhe central problem of Web application implementation is

i p tinuati the Web This i ted caused by the statelessnessHafrp: when the server re-
ion of continuations on he Web Server. 1his Is accepte sponds to a client’s request, the connection is closed and th
wisdom now in the functional programming community

] : ] server program exits. If the client needs to communicate wit
_(I-_|ughes 2000,_Que|nn_ec 2000; Graha”? 2001). Furth_erm_orethe server program, its next request must contain enough in-
it is the theoretical basis for many practical Web applaati

formation to resume the computation.
development frameworks (Matthews et al. 2004; Ducasse ,

P ( All Web programmers understand this problem, but func-
tional programmers understand that this resumption infor-
mationis the continuation. This is easily demonstrated by
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(define (get-number)i (define (sum how-many

(prompt"Please provide number #~a:\n" (add1 ))) (definethe-sum
(num-sunbuild-list how-many get-numbg}
(define (sum how-manjy (format"Sum of ~a is “a.\n" how-many the-sujn

(definethe-sumnum-sunybuild-list how-many get-numby)

(printf "Sum of “a is ~a.\n" how-many the-sujj This is possible becauseeb-promptaptures the precise

continuation that resumes the computation when the user’s

The programsum when given an integer, requests that input is available. Unfortunately, first-class continoati
many numbers from the user and returns their sum. When thebased Web application frameworks have much worse scala-
user is providing the third of four numbers, the continuatio bility properties than other approaches (see Welsh and Gur-
is nell (2007) for an anecdote.)

The heart of the problem is that in many languages, espe-
cially those that mix a high-level language with a C-based
infrastructure, continuation serialization is simply rex-
pressiblé. Thus native continuations are typically stored in
the server's memory and the client is provided with a unique
where[] represents the hol&his is the continuation that identifier for each continuation. These continuations a&re p
must be captured and given to the clientin a Web application session server state and their unique identifiers aregew
version to resume the computation appropriately. roots. Because there is soundway to reclaim these con-

Traditional Web programmers manually produce code tinuations, they must be retained indefinitelywrsoundly
that makes this continuation explicit, and many whole pro- deleted.
gram transformation-based Web application frameworksdtfhas Luckily, there is at least one more functional implementa-
et al. 2004) automatically compile code that represenss thi tion strategy for continuation-based Web applicationsdmo
continuation. Both the programmers and the tools produceular program transformation based on continuation marks
code like: (Pettyjohn et al. 2005; McCarthy 2009). These work by
transforming part of the code to duplicate the continua-
tion components (stack frames) into continuation marks
(Clements et al. 2001). Continuation marks are a general-
ization of the stack inspection found in other languages (fo
example, Java security through stack inspection or excep-

(definethe-sum

(num-sum

(listx 42 1830 [] (build-list 1 get-numbe))))
(printf "Sum of "a is "a.\n" 4 the-sum

(define (get-number/k i k
(web-prompt
k "Please provide number #a:\n" (add1 )))

(define (got-numbers how-many | tion handling). By copying the continuation into the marks,
(num-sum/k | the continuation can be extracted when user interaction is
(make-kont got-sum requiredandthere is representation freedom, so they can be
(list (cons’ how-many how-many)))) serialized to the client.
Unfortunately, this strategy relies on the insertion of
(define (got-sum how-many sym marks during the entire context up to continuation capture.
(format"Sum of "a is “a.\n" how-many su) The implication of this is that continuations can only be-cap
tured in transformed contexts, such as during the evaluatio
(define (sum how-many of higher-order arguments to higher-order third-partydity
(build-list’/k how-many get-number/k functions. Our example does this in the calbtdld-list, so if
(make-kont got-numbers we use the mark-based serialization strategy we would need
(list (cons’how-many how-many)))) to reimplemenbuild-list to expose it to the transformation.

This code is striking because the third-party libraries Our codeis close to the original version:

num-sunan(ljbcléilc;)-li(stmuhst be rew)rittenhto ?e in cc;n;c}inuation- (define (get-number)
passing styleqp9 (Fischer 1972) in the form of the new } " : ~ A\ pn
functionsnum-sum/kand build-list/k. This is only accept- ( Please provide number #7a:\n" (add19))
able when all the source code for the application is availabl
for programmer rewriting or compiler transformation. (define (sum how-many
In contrast, most first-class continuation-based Web ap- (definethe-sum
plication frameworks support the original program withyonl (num-su how-many get-numbg)
small modifications. The Racket Web Server (Krishnamurthi  (format"Sum of ~a is ~a.\n" how-many the-suh
et al. 2007) version is almost identical to the original:

defi t ber) 20f course, some systems (Cejtin et al. 1995) do supportenatintinua-
( e 'ne(ge -num er)' tion serialization. Given that so many system do not allow, thur work is
( "Please provide number #~a:\n" (add1)))  widely applicable.



Strategy Scalable Automated num-suntnchanged build-list Unchanged
Manual Yes Yes

CPS Yes Yes

First-Class Yes Yes Yes
Modular Yes Yes Yes

Two-State Yes Yes Yes Yes

Table 1. Web Application Implementation Options

Compared to whole-program transformations, this strat-  The Pettyjohn et al. (2005) transformation relies on the
egy is a win because onlyuild-list needs a reimplementa- modular A-Normal Form4ANF) transformation to name con-
tion (my-build-lis), notnum-sum tinuation components (Flanagan et al. 2004) and stack in-

At this point we have exhausted existing implementation spection through continuation marks to provide the “captur
choices. Our options are depicted in Table 1. Obviously we ing” part of call/cc.
need a strategy that is scalable and automated, and does not ANF is a canonical form that requires all function argu-
require us to rewrite any third-party libraries. We present ments to be named. This has the implication that the en-
such an implementation technique. In the end, our programtire program is a set of nestdelt expressions with simple
will look like: function calls for bodies. If théets are expanded intas,
then the continuation of every expression is syntactiazily
vious. Any expression can be modularly transformed into
ANF without modifying the rest of the program in contrast
to naivecpPs

Many programming languages and environments al-
low access to the run-time stack in one way or another.

(define (get-number)i
(native—serial
(web-prompt
"Please provide number #~a:\n" (add1l ))))

(define (sum how-many Examples include Java security through stack inspection,
(definethe-sum privileged access for debuggers iNET, and exception
(num-sum handlers in many languages. An abstraction of all these
(serial—native puild-list how-many get-numbpgp) mechanisms is provided by Racket in continuation marks
(format"Sum of “a is “a.\n" how-many the-sujp (Clements et al. 2001). Using thréth-continuation-mark

- o S (w-c-m) language form, a developer can attach values to
IntUItlver, we use delimited continuations to capture the the control stack. Later, the Stack-wa]king primitwrent_
native continuations that the mark-based serializable con Continuation_marks{c_c_rr) can retrieve those values from
tinuations cannot capture. The functions seriabtive and  the stack. Continuation marks are parameterized by keys and
native—serial correspond, respectivelyyith-continuation-  do not interfere with Racket's tail-call optimization. Hee

prompandcall-with-delimited-continuation ~ two mechanisms allow marks to be used without interfering
Thus, we use two different kinds of state: server-side jth existing code.

state for the small native delimited continuations andntlie A pedagogic examp|e of continuation mark usage is pre-

side state for the larger serializable continuations. Quio* sented in Figure Xactis the factorial function with instru-

state” solution is much more scalable than the first-class co mentation using continuation markg:c-mrecords function

tinuation approach and only slightly worse than the modular arguments on the stack with tHac¢t mark, even function ar-
approach. It provides an essential way point between nativeguments on the stack with theven mark, anc:-c-mcollects

(first-class) continuations and serializable (modulanjtite both mark values in the base case. In the resudt@imstack

uations for developers to use when reimplementation and re-frames that have n@ven mark are recorded af to ensure

compilation is not possible or is otherwise prohibitive. that the relation on the stack between the different marks is
discerniblefact-tr is a tail-recursive version of factorial that

3. Intuition appears to be an identical usage of continuation marks, but

because they preserve tail-calling space usage, the ieterm
diate marks are overwritten, leaving only the final mark for
fact and the only mark foreven.

The main insight of Pettyjohn et al. (2005) was tbat-m
can “capture” the continuation, just likaall/cc, if the com-
| Ponents of the continuation are installed wac-m. Their
transformation does this by duplicating the continuatido i

Our implementation can be seen as an extension to our
prior work on modular serializable continuations (McCgrth |
2009); however, the essence is captured by an extension to
the work that our work was based on: the Pettyjohn et al.
(2005) transformation. Therefore, we will present our intu
ition and formalism in that context, even though the actual
implementation supports our continuation mark extensions



(define-syntax-rule(mark-if-even n g
(if (even? i
(w-c-m’even n €

€))

(define(fact n)
(if (zero? )
(begin (display(c-c-m’fact 'even))
1)
(mark-if-even n
(w-c-m’fact n (x n (fact (subl n))))))
(fact3)

console output: (#(1 #f) #(2 2) #(3 #1))

computed value: 6

(define(fact-trn @
(if (zero? )
(begin (display(c-c-m’ fact 'even))
a)
(mark-if-even n
(w-c-m’fact n (fact-tr (subl ) (x n a))))))

(fact-tr31)
—
console output: (#(12))
computed value: 6

Figure 1. Factorial with Continuation Marks

This transformation produce=e sTful Web applications,
because standard modulsdifting and defunctionalization
transformations encode all values into serializable rsge
tations that can be sent to the client.

The main deficiency of this transformation is tleatl/cc
is useless when called from an untransformed context. For
example, in the program

(4 1 (build-list how-many(X (i) (calllce (A (K) . .. )

wherebuild-list is not available to the transformation, the
continuationk is generated from theQUARE marks and
therefore does not contain the code farild-list, because
it was never transformed to creasd®UARE marks. That is,
the continuation is recreated as ( []) rather than the true
context insidebuild-list.

The first step will be to formalize the implementation
Pettyjohn et al. (2005) used to detect such problematic uses
of call/cc.3 The second step will be to use thietection
technique as a hook teliminatethe problem and provide
access to the actual part of the native continuation that was
not captured by the mark-based transformation.

3.1 Third-Party Higher-Order Libraries with
Higher-Order Arguments That Capture
Continuations

The essence of the problem is that when untransformed code
is called, it is unsafe to try and capture the continuatidtsin
dynamic context, because tB@UARE marks are not avail-
able. Therefore, we need to learn whetedl/cc attempt oc-

curs in the dynamic context of untransformed code. The real

marks. This is easy becaussF makes these continuations question, then, is how do we observe our dynamic context?
ObViOUS, and the tail—calling property of marks mirrorsttha This, of course, is the purpose of continuation marks.
of continuations themselves, so the two stay synchronized. \We can create a continuation mark key callesFe? that

Function applications, likek(a), are transformed as marks whether the context is safe for continuation capture.
Our implementation o€all/cc will extract these marks and
ensure that each is true:

(define(call/cc @
(defineks(c-c-mSQUARE))

_ (definesafe?(c-c-msSAFE?))

(define(call/cc & (if (safe-context? saf¢?
(defineks(c-c-mSQUARE)) (e (A (X) (abort (resume ks)}))
(e (A (X) (abort (resume ks)}))) (error ’call/cc "Unsafe context")))

(k (w-c-m SQUAREK @)

wheresQUARE is a special key known only to the transfor-
mation. This effectively duplicates the continuation irpa-s
cial mark. Thercall/ccis defined as

where A constructs a serializable closure by generating a ) 5 5
fresh structure that runs its-lifted (Johnsson 1985) body (deflne(safe—co!'ltext. soafe. -majks
when applied; andesumerestores the continuation record ~ (@ndmap identity safe?-marjs

from thesQUARE marks into an actual control stagkesume This, however, assumes that we mark unsafe contexts by

must also reinstall theQUARE marks so subsequentinvoca- wrapping them inSAFE? continuation marks. But how do

tions ofcall/ccare correct. we know if a context is unsafe before entering it?

(define (resume | In_ an |mplementat_|on there are many qptlons, s_u_c_h as
(match| looking at the exporting module of a function’s definition
[(list) X and a flow-analysis to determine if lexical identifiers are

[(cons k)
(k (w-c-m sQUAREK (resume | Y))]))

3The intuitive description of this implementation is foumdiiem 2 of the
list at the end of section 4.1 of their paper, roughly on page 8



bound to third-party functions. But in our theory, we can sions of continuation components that are serializable. Fo
be conservative and assume that all contexts are unsafe, buinstance, in this program
explicitly mark contexts that we know are safe.

We wrap all function application in a continuation mar
that signifies its unsafety: the applicatidd] is transformed if mapwere not transformed but the rest of the program
as were, then the native continuation capturedyive-call/cc

would be:

K (+ 5 (map(X (x) (native-call/cc. . .)) (list 1)))

(w-c-m sAFE? false(k (w-c-m SQUAREK a)))
(+ 5 (w-c-m SQUARE (A (X) (+ 5 X))
This mark will be available in the dynamic contextika (w-c-m sAFE? false(list [)))))
detect that the context is unsafe. Of course, not all coastext o .
are unsafe so we must explicitly mark the safe context as Even though we have a serializable representation of the

such. The safe contexts are inside safe functions; and theapphcatlon of+, we would still capture that part of the

safe functions are the ones that are transformed, so if weContinuation natively. o . .
transform all function definitions, we will track safety. . Fortunately for us, practical implementations dglim-
The function @ (x...) expr. .. ) will be transformed to ited continuations are already well developed (Gasbichler

and Sperber 2002; Dyvbig et al. 2007; Flatt et al. 2007).

(A(x...) While a full continuation captures the entire program con-
(w-c-m SAFE? true text, delimited continuations provide two operationgth-
expr...)) continuation-promptwhich installs a “prompt” that serves

as the upper bound of delimited capture, aal-with-

When a transformed function is called, it adds a safety gejimjted-continuationwhich captures the context up to the
mark to its context. If the function is called from a safe [ ogrest dynamic prompt.

(transformed) context, then there is already an unsafetik ma What we need is not just to mark delimited contexts
on the context; but the tail call property of continuation g safe, but rather capture those contexts for later use. We

marks ensures that th_eafetymark will overwrite theun- require that programmers explicitly specify that they are
safetymark, socall/ccwill succeed. o willing to pay for this behavior by annotating the entry into

In contrast, when a transformed functionis called froman | iransformed code with seriahative and the return to
unsafe (third-party) context, unless the call is in tailifos, transformed code with nativeserial. For example

the continuation frame doew®t contain an unsafety mark, _ .
so the safety mark does not override any marks. However, (+ 5 (serial=native

call/cc will fail because when it captures trsaFe? marks (map(A (X) (native—serial €all/cc. ..))) (list 1))))

with c-c-m it will extract a list like (ist ... false t.rue. ) Intuitively, serial-native is with-continuation-prompt
where the frames betweéalseandtruewere the third-party  ang native’serial is call-with-delimited-continuationbut
context. there are some subtleties. Here is a first attempt at the-trans

An interesting subtle point is that continuation capture ¢yrmation:
is safe in the higher-order arguments to third-party higher
order functions if they are always called from tail-pogitio ~ (+ 5 (W-c-m SAFE? false

At this point, we have an account of how to detect and (with-continuation-prompt
avoid continuation capture when the context is not trans- (map(A (x)
formed and does not contain tls®UARE marks that make (W-c-m SAFE? true
capture safe and sound. In the next section, we will trans- (call-with-delimited-continuation
form unsafe contexts into safe contexts. (A (do) (call/ce. ... )))) (list 1))))

But, of course, we need to communicate the delimited con-

3.2 Delimiting the Native Continuation tinuation @c) to the serializableall/ccimplementation:

In the previous section, we effectively used gvrE? mark
to delimitthe part of the continuation where the transforma- (+5 (w—p-m SAF_E? fa]se
tion was not run and thus where t8@UARE marks are not (with-continuation-prompt
available. This allows us to detect that the user-leadfcc, (map(A (x)
implemented by extractingQUARE marks, would fail be- (w-c-m _SAFE?_tru_e _ i
cause it misses part of the continuation during reconstruc- (call-with-delimited-continuation
tion. In the context of Web applications all is not lost, be- (A (d9
cause we can always capture a native continuation and store (w-c-m UNSAFE-PART dc
it on the server. However, that severely limits our scaighbil (callice...))) (list 1))))

If we were to capture a complete native continuation, 45 most implementations, including Rackets, continuatirompts are
we'd be doing something even worse: capturing native ver- “tagged” to support multiple distinct prompts.




This sets things up so thedll/cccan extract theNSAFE-PART

marks in addition to theQUAREmarks. These native contin-

; If we are in a native context, then we must have
; captured a native continuation. Otherwise, this

uations can then be stored on the server in a global hash ta- ; context is unsafe.
ble, like normal native continuations are; synthet@UARE (if in-native?
marks can be generated that look up and execute these native unsafe-part
continuations: true)

(define(call/cc @
(definekst+unsafe(c-c-mSQUARE UNSAFEPART))
(defineks(store-unsafe-on-serverksinsaf¢)
(definesafe?(c-c-msAFE?))

(if (andmap identity saf§?
(e(A (¥) (abort (resume ks)}))
(error ’call/cc "Unsafe context")))

(definestore-unsafe-on-server
(match-lambda
[(list) (list)]
[(list (vector k#f) 1)
(cons k(store-unsafe-on-servep)]
[(list (vector#f unsafé 1)
(definecont-id (store-on-server! unsafe
(cons(\ args
(apply (lookup-on-server cont-jargs))
(store-unsafe-on-servey)]))

wherestore-on-serverktores a value on the server and re-

; If this part of the context is safe, we recsgfe?
; tells us if the context is native or transformed.
(safe-context?/native-context réabt safey))]))

We now have all the machinery in place to allow contin-
uation capture in the higher-order arguments to thirdypart
higher-order libraries. The key ist&o-statesolution, where
some parts of the state stay on the server, while other parts
are serialized to the client. Delimited continuationsalles
to simply specify the part of the context that must remain
on the server. Existing machinery for managing servereside
resources can be applied to these delimited native continua
tions.

4. Formal Treatment

In this section, we formalize the transformation where cap-
turing continuations in unsafe contexts is detectable.

4.1 Source Language

Figure 2 presents grammar for the source language (SL). It

turns a serializable value that can be used to fetch the valueS @ modified version of A-Normal formair) (Flanagan

later.

Our implementation ofesumedoes not need to change
becausatore-unsafe-on-serveerfectly prepares the native
continuations for use as if they are serializable, as it etgpe
However, there is still one problem: we are still refusing to
construct the continuation, because all $E? marks are
nottrue. We must adapt so that false FE? marks only mat-
ter if they are not immediately followed byNSAFE-PART
marks.

We redefinesafe?in call/cc as:

(definesafe?(c-c-mSAFE? UNSAFE-PART))
and rewritesafe-contextas:

(define (safe-context? safeunsafe-part-marks
; We start off in a non-native context
(safe-context?/native-context

safe?-unsafe-part-marks
false)

(define (safe-context?/native-context
safe?-unsafe-part-marks
in-native?

(match safe?-unsafe-part-marks
; We cannot end in a non-native context
[(list) (not in-native?]
[(cons(vector safe? unsafe-panes?)
(and

et al. 2004) because the continuation is always syntaltical
obvious (in the firstv of applications.) It usea rather than

let and has applications of arbitrary length. The language is
extended withcall/cc, pattern matching on algebraic data
types, andetrec for recursive binding.

Identifiers bound byletrec (o, e.g. map) are typeset
differently than normal identifiersz( e.g. map) to easily
distinguish them.

Instances of algebraic data types are created with con-
structors () and destructured withnatch. Constructors
(e.g. cong are typeset differently than identifiers (e.g.
cons) to easily distinguish them.

The most significant non-standard aspect of the language
is the presence of. These represent functions that are from
third-party libraries where the source code is unavailable
They behave identically to normal functions, but provide a
cue to the transformation. When we discuss the transforma-
tion (Section 4.3), we will point out that the transformatio
does not apply to their bodies.

The operational semantics is specified via the rewriting
system in Figure 3 (top and middle.) Theis used to denote
reduction; the= is used to denote reduction that is invariant
on the store; and the- is used to denote reduction in a
context €) that is invariant on the store.

The semantics is heavily based on source language se-
mantics of Pettyjohn et al. (2005). The [beta] and [beta g
rules are the standard,-rewriting rule for call-by-value
languages (Plotkin 1975). The [match] rule handles pattern



e~ e e=¢
Ele] = Ele']  T,e— 3¢

Shared reductions

(A(x ...)e)v ...) ~ el —v] ...

(match (Kv ...)[(Kx ...) =e¢]l...) ~ elx —v] ...
(match (Kyv ...)[(Kex ...) =€]l...) ~ (match (Kyv ...)1...)
where Ky # Ky

(match v [else = €]l ...) ~ e

%, E[(letrec ([o v] )e)] — Yo — v]...,E[e]

%, El(gv .. — %, 5[(2() )]

Y, E[(match ol ...)] — %, E[(match (o) 1 ...)]

SL reductions

(A(x...)e)v...) ~ el —v] ...
El(call/ccv)] = E[(v k.E)]
E1[(k.E2 V)] = Ealv]
TL reductions
E[(abort e)] = e
El(wem ([vkr vu1] --.) (wem ([ugze ve2)]) €))] = E[(wem merge[([k1 Vo1 ] -+ [Vk2 Vu2 | .. .)] €)]
where E # E'(wem ([v, v))] ...) [])]
El(wem ([vk vy] - -.) Vret)] = Upet
where E # E'(wem ([vy, v))] ...) [])]
El(cem vy ...)] = Elextract[E, vy .. .]]

merge[([Vgi Vyi] -..)] = (Jog w(vg)] ...)
wherew = B[vg; — vy - ..
vg = dom(w)
extract[[J, vt ...] = (NIL)
extract[(v ...E), v ...] = extract[€,v; ...]
extract[(wem ([vg vy] ...) F),v ...] = (CONS(VECTORWY; ...) extract[F,v; ...])
wherev; = (SOME v, ) for eachv,, = v; and(NONE) otherwise

[betd
[match
[match (next)

[match (elsd)
[letred

[o + apply
[c + match

[beta (unsafé)
[call/cd

[cont invoké

[abort
[wem (mergel)

[wem (return)

[cem

Figure 3. Reductions




| (w...e) | (w...e)
| (letrec ([o v]) e) | (letrec ([o v]) e)
| (matchwl ...) | (matchwl ...)
| (call/cc w) | (wem ([ww] ...)e)
lo=[(Kz...) = € | (cemw ...)
| [else = €] | (abort e)
a:=w lo=[(Kz...) = €
[(Ka...) | [else = €]
| [(Ka...)
O ) e) E
|(A(z...)e) vi=o0
(Ko 0@ .)e)
| 5B (Ko ...)
=0 Yo=10
| X[ — v] | X[o — v]
£ = | £ = (wem (fou] ...) )
[ (v ... &) | F
F =]
Figure 2. SL grammar (v ... &)
matching; [match (next)] handles unused cases; [matcb){els Figure 4. TL grammar

handles the default case of a pattern matching. The [letrec]
[o + apply], and § + match] rules specify the semantics of
letrec. Bindings established bietrec are maintained in a
global store .. For simplicity, store references) are dis-
tinct from identifiers bound in lambda expressions (Fedlieis

the tail-calling semantics abcm, where adjacent marks are
collapsed and overridden. The meta-functiasrge replaces
outer marks by inner marks when their keys are equal. The
rule is applied whenever the structured evaluation context

andl H't_eb 199?' tFurt?ermorfe, to S|mpl|fytthet sglntax f?r forces adjacenbems to be treated as a redex. The third new
evaiuation contexts, store relerences are trealed assyalu€ 1o ratrns final values fromvem bodies. These two rules

and d(.e-referenqnglls performed When a store referenpe aP3re deterministic because the side-condition &orces
pears in an applicationd[+ apply]) or in a match expression

: . ; [wem (merge])to be applied from outside to inside. The rule
([c + match]). The final rules for continuations are standard. for cem uses the meta-functicsxtract to extract the marks

4.2 Target Language from the context in the format:
The target language (Figure 4) is similar to the source lan- marks := (NIL)
guage, except that andcall/cc are removed, whilevem, | (cONSmarkset marks)

cem, andabort have been added.

The semantics (top and bottom of Figure 3) is similar
to the source language’s as well, except that because of maybe ::= (NONE)
continuation marks the evaluation contexts are structtoed | (SOME W)
avoid adjacent marks.

There are four new reduction rules that make use of a few
meta-functions (Figure 3, bottom). The first rule implensent Translating from SL to TL follows Pettyjohn et al. (2005)
abort by abandoning the context. The second implements with the CMT (ContinuationMark Transformation) shown

markset ::= (VECTORmaybe ...)

4.3 Continuation Mark Transformation



in Figure 5. The translation when applied to full expression

. ) (letrec
(CMT.[]) first decomposes a term into a context and a redex ([resume
by the grammar O (V)

(match |
ru=(w...a) [(NIL)éV]l
| (letrec ([0 w)) e) [((T?L(;;\I;C:rln )=
| (matchwl ...) [(vECTORME) =
| (call/ccw) (match mk
Ea=] [(soMEK) =
- (k (wem([(sQUARE) K]) (resumel v)))))])]))]
[(w ... &) [all-safe?
(A (mark9

The decomposition is unique and thus the translation is (match marks

well-defined. [(NIL) = (TRUE)]
Lemma 1 (Unique Decomposition)Let e € SL. Either [(consml) =
e € a ore = &[r] forasingle redex and context. (match m
The translation relies on particular definitions fesume [(vECTORS) =
and call/cc, given in Figure 6. The translation rules are (match s
mostly straightforward. Continuation values are conuerte [(somEv) =
(match v

directly into functions that applyesume but the captured
SL context must be translated into a set of marks that match [(TRUE) = (all-safe?])]

the format expected byesume This is handled by th& [(FALSE) = (FALSE)DD])]
case of theCMT ] meta-function. Safes are translated by [call/cc

translating their bodies and annotating the body contetkt wi (A (f)_

a safety mark, as discussed in Section 3.1. In contrast, the (A (|s-saf_e’g)

bodies of\s arenot translated. (This makes the translation (match is-safe?

il-defined on\s that embed othexs, continuation values, [(T/\RL;(E):(
or call/cc. We discuss this below.) « /\( ) (F K)
The next interesting rule is for function application (A (m)

(A (%) (abort (resumem X)))
(ccm(SQUARE)))]
[(FALSE) =
(abort (UNSAFE CONTEXT)]))
(all-safe?(ccm(sAFE?)))])

((w...a)); in this rule, the call has to be explicitly marked
as unsafe in case the function applied iS\airect calls to
call/cc are replaced with calls to the TL implementation of
call/cc. Finally, context compositiong«...£)) are replaced
with applications where the syntactic continuations are du
plicated into thg SQUARE) marks to communicate with the
implementation otall/cc. Figure 6. CMT library

We now turn our attention to the definitions @fsume
andcall/cc (Figure 6).resumeworks by reconstructing the
evaluation context from the list g6QUARE) marks, includ-
ing restoring the marks themselvesll/cc works by ex-
tracting the(SAFE?) marks and callsll-safe?with that list.
all-safe?ensures that every frame is marked as szd#licc
then extracts th€sQUARE) marks and constructs a contin-  Theorem 1. For every reasonable SL program) if 0, ¢
uation value (a\ that callsresume) before giving it to its reduces to a valuey, then CMT.|e] reduces toCMT,[v]
argument. or (UNSAFE CONTEXT).

more closely model the reality that unsafe programs will not
include fragments of safe programs.

4.4 Correctness This theorem states that the transformation preserves the
We define “reasonable SL programs” as those where themeaning of the program or errors because the program cap-
bodies of\s are syntactically TL expressions and do not tures a continuation in an unsafe context.

override the standard library functionssumeand-call/cc, We define “pure SL programs” as those that do not con-
or the functions they rely on. This is a low standard of rea- tain As and that do not override the standard library functions
sonableness; we are not hiding triviality behind this defini resume call/cc, or all-safe? This corresponds to real world
tion. Furthermore, these constraints ensure that SL pnagira programs that do not interact with third-party libraries.



CMT,[k.E] = (A (z) (abort (resumeCMT¢[€] ))
CMTL[A (z ...) €)= (A (z ...) (wem ([(SAFE?) (TRUE)]) CMT.[e]))
CMT,[(A(z ...)e)] =\ (z ...)e)
|=0
]

CMT,,[v] = CMT, [v]

CMT,[w] = CMT [w]
CMTW[(Ka...)] = (K CMTu[d] ...)

CMT[[(Kz...) = ¢]]=[(Kz ...) = CMT_[]]
CMT[[else = e¢]] = [else = CMT,e]]

CMT,[(w ... a)
CMT,.[(letrec ([o w] .. ) e)
CMT, [(call/cc w)
CMT,[(matchwl ...)

(wem ([(SAFE?) (FALSE)]) (CMT,[w] ... CMT,[a]))
(letrec ([ CMT,[w]] ...) CMT.[e])
(
(

call/lcc CMT,, [w])

]
]
]
| = (match CMT ,[w] CMT,[I] ...)

CMTe[[]] =1
CMTg[(w ... E)] = (k (wem ([(SQUARE) k]) CMT¢[E]))
wherex = (A (z) (CMTy[w] ... z))

CMT,[a] = CMT,[a]
CMT.[E]r]] = CMT¢[E][CMT, [r]]

CMT¢[[]] = (NIL)
CMTg[(v ... )] = (CONS(VECTOR (SOME (A (z) (CMT,[v] ... x)))) CMT¢[E])

Figure 5. CMT definition




Theorem 2. For every pure SL program, if (), e reduces to continuation-based Web applications that mirrors the-“ses

avalue,v, thenCMT,[e] reduces toCM T, [v]. sion state management” problem of traditional Web applica-
tions. The standard scalability technique is to time out ses
5. Real World Issues sions after periods of inactivity and provide seamless ways

for users to authenticate and restore their session.

The two-state solution does not remove the server-state
management problem, but it does minimize it by storing
only the smallest necessary delimited continuations. &her
fore, we have to have some policy for managing the server
resources consumed by native components in the two-state
5.1 Native Function Interfaces solution.

The Racket Web framework associatemanagerwith
each Web program. This manager is essentially a hash table

Once third-party higher-order library functions can beezl
with arguments that capture continuations, there aresstill
few practical problems and extensions that can be made to
make real Web programming easier and scalable. In this
section, we discuss a few.

The two-state solution allows us to write code like

(serial~native mapping unique, serializable identifiers with opaque, non-
(build-list serializable values, like continuations. When each vadue i
how-many stored, it is given aexpiration-handlethat is returned when
(A () the manager reclaims the value’s resources. One other com-
(native—serial plicating factor is that the values are stored indexednby
(web-prompt stance(distinct invocation of the application); this is use-
"Please provide number #~a:\n" (add1 )))))) ful because it allows an instance to explicitly remove value

h h i ¢ of th tinuation i tured from the managers (such as on logout).
w ?rle ednatlvedpar ?h € con '_rll_llf‘ lon 1S captured sep- Programmers often write their own custom managers, but
arately and stored on the server. This increases expressivy, .o - o te\v standard managers,
ity, but it is overly verbose and forces programmers to think

bout how funci imol ted wh th Thenull manager never uses server resources and always
3523 ow functions are implemented whenever they are oy rns the expiration handler. This manager is the deflault

This additional tive task i luable. b scalable Web applications and must be explicitly remowved. |
IS additional coghitive task IS valuable, DECaUSe SEIVET, .\ <o to ensure that native continuations are not aneide
resources are scarce, but it is often too inconvenient #®r th

totyping stage. For that the Racket Web frame- "2, >tored:
prolfyplng f at?]il' f.or at' r:gsor;, € ?C et YVeb frame- The timeoutmanager implements the standard timeout
work supports théeline-nativeorm for creating a wrapper. policy: instances and values are reclaimed after a config-
define-nativés given a new identifier to bind, a specification

¢ which hiah 4 ‘ . " . urable number of seconds have elapsed since their last ac-
orwhich higher-order arguments may capture con Inuations cess. This is very problematic for large deployments bexaus
and a native implementation. For example, the wrapper for

S , the behavior does not change in response to observed use.
build-listis defined: ThelLRU manager implements a more sophisticated tech-
(define-nativebuild-list/safe_ ho) build-list) nique: each value has a “life count” that is initialized to

start, if it ever reache$), then the value is reclaimed. The

Programmers can then write: life count is decremented by one whenever the reclamation

(build-list/safe routine is run. The reclamation routine runs eveoyiect
how-many seconds and evenheck seconds whenheck? returns true.
O () These four parameterst@rt, collect, check, andcheck?)
(web-prompt allow a wide array of management policies. A common
"Please provide number #~a:\n" (add1 )))) policy configuration is the “threshold” policytart is 24,

collect is 10 minutescheck is 5 seconds, andheck? de-

This simple macro is incredibly effective at reducing the  termines if the memory used by the manager is greater than
burden on Web programmers that seek scalability and con-¢j,;.¢shold megabytes. This ensures that values are available
venience. for at most four hours and at least two minutes. It also en-
sures that a particular memory limit is never exceeded for
long, because once it is, old values are rapidly reclaimed un
The fundamental problem for scalability with native con- il the problem is defeated.
tinuations is that they cannot be removed from memory  we find that in practice theRU threshold policy is essen-
or reclaimed because references to them may be stored byial for running scalable and reasonable Web applications.

users in untraceable ways. For example, users can book-Thijs practical finding is backed up by experimental results
mark a page or otherwise remember a URL indefinitely, discussed in Section 6.

yet expect the page to be available whenever they request
it. This creates a serious resource management problem for

5.2 Managing Native Continuations



5.3 Soft State the server is unlikely to be scalable because memory will
invariably be exhausted during periods of high activity.

All measurements of managers are based on logs of the
use of thecONTINUE conference manager by an elite con-

Managers allow stateless Web applications to interact seam
lessly with server state when it is inconvenient or impdssib

to serialize that state to the Web clients. Once this mecha- ) ) o J
nism is in place, it is tempting to use it to access other kinds ference during the periods of its highest activity: justdref

of state, such as data that is too large to transmit or too sen-N€ paper and review submission deadlines. These periods

sitive to put in the hands of the untrusted. For example, it of activity were characterized as a six hour window with 30

is common for Web applications to make use of “soft state”: active users at any time performing a total of about 3,000

state that is stored on the server, but can be recomputed wheif'teractions distributed throughout the entire period.

necessary so itis allowed to be forgotten at any time. A com- N these experiments, the defalRU manager was con-
mon use is a cache of a user’s information from a database. f19ured with a threshold that limits the number of continu-

Our implementation of soft state provides two calff- ations to approximately 2000 and tlimeoutmanager was
state exp), which creates a piece of soft state that has the US€d with a one hour, two hour, and four hour timeout.
same value asxpr, butexprmay be evaluated many timesto These experl_m.ents dp nqt constitute stress tests; they are
compute it: andgoft-state-ref §s which extracts the value just enough activity to identify and compare the trends of
of the soft state bound tssand may evaluate the soft state ©2ch manager.
expression to compute it.

The implementation uses managers to store the value of
the soft-state such that the expiration handler recompluges
value if the manager reclaims it. The soft-state serialines
the manager’s identifier and a serializable thunk that recom

Continuation Availability. Figure 7 (top) presents the per-
centage of available continuations that were available to
users at a number of points in the run. The X-axis shows

putes the value, rather than the value itself, ensuringligat the progress of time, while the Y-axis show the percentage

soft-state can be safely serialized to the client and recom-©f all continuations ever stored that were available for in-
puted as needed. This implementation is entirely local and vocation by users. Naturally, every manager starts off with

requires no additional cooperation from the rest of the Web 100% of the °°”“”“"’?“°r.‘? available, but F*""*‘e‘.’“‘”.‘a”
agers slowly lose availability as more continuation timtsou

application. _ . .
PP expire. In contrast, theRU manager delivers 100% avail-
ability approximately as long as the 2-hdimeoutmanager,
6. Evaluation but loses availability more slowly before leveling out.

The formal model of Section 4 helps to establish the sound-
ness of the two-state implementation technique, but iteann
tell us anything about the savings or costs of its use. Since
the use of the two-state solution cannot be divorced from the
use of server-side state managers, we evaluate their perfor
mance as well.

Memory Usage. Figure 7 (bottom) presents the amount of
memory used by the managers at each sampled point in the
run. The graphs show the usage of ttRU manager and
one of theimeoutmanagers. The first row shows the 1-hour
and 2-houtimeoutmanagers. The second row shows the 4-
hour and 6-houtimeoutmanagers. (The oscillation in these
graphs are a side-effect of the sampling thread competing
We measured the performance of server-side state managerwith the manager thread, because Racket does not have truly
on two metrics. concurrent threads. Since the higher timeout threads do les
First, we measured what percentage of all continuationswork, they compete less and therefore the sampler takes
ever stored on the server were available as the applicationmore samples.)
ran. If this percentage is high, then users will not follomkk TheLRU manager uses consistently less memory, despite
or bookmarks and find the page unavailable. If this percent- giving better availability than the 1- and 2-hotimeout
age is low, then they will, unless the application has estab- managers always and the 4-hour manager after the timeout.
lished other ways to restore a user’s session. Itisimptidan  The 6-hourtimeoutmanager (not shown on top because it
realize, however, that users may not actually care about onealways has 100% during the 6-hour experiment) shows the
of these expired values. For example, after users havétotal memory cost of never expiring server-side continuations.
finalized their online purchase, they have no need to access These experiments show that while tiraeoutmanager
the continuation that sets the shipping address. Thuséhis p  can guarantee 100% availability before the timeout 1R&)
centage establishes an imperfect bound on user happiness; provides strong memory bounds without sacrificing avail-
low percentage does not, in practice, mean the application i ability too severely. For example, the 4-hdimeoutman-
unusable. ager has 100% availability until 4 hours, whereas ltRtJ
Second, we measured the total memory used by themanager only has 50%; but after 2 more hours, both man-
server. If this is high or is proportional to server use, then agers have the same availability.

6.1 Managers
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Figure 7. Memory Usage of Different Managers
6.2 Two-State Solution manager was used for both versions and was configured with
We measured four different comparisons between native @ Memory threshold ofvs. o _
continuations, two-state continuations, and serializabh- Figure 8a presents the availability of continuations dyirin

tinuations. First, we repeated the manager tests aftetapec the test. It verifies our expectation that the two-statetgmiu

izing them for each of these techniques, then we performedprOVideS more access to server state, by reducing the size of
two separate timing tests. each continuation, but after the threshold is reachedytbe t

have similar performance.
It does not make sense to compare these to serializable
Continuation Availability. We ran a native and two-state continuations, because all serializable continuatioesasr
version of the same Web application through the workload Ways available.
above. The average continuation size of the native version
was approximately®s, whereas the server-part of the two- Memory Usage. Figure 8b shows the memory usage for
state continuations were on average only &1Phe LRU the same experiment. It verifies that the native continaatio
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Figure 8. Native and Two-State Continuation Availability and Memtyage

take more space on the server, but that ltR&J manager

runtime perform better with native continuations than simu

controls memory usage regardless of what the server statdated continuations, because they have been optimized over

IS.

It may seem surprising that the two-state solution some-

many years, while these simulated continuations have not.
This assumption is true for continuatimvocation but false

times uses more memory than the native solution, such asfor continuatiorcapture

between two and three hours. This has to do with when recla-

We created a micro-benchmark that captures 200 contin-

mation occurs. Since the native solution exhausts the mem-uations and averaged 1,000 runs per implementation.

ory limit faster, it causes a reclaiming just before the two-
hour mark. At that point the two-state solution uses more

memory because it hasn't expired anything. Once it does
(around three hours), it use less memory than native con-

tinuations, until the process repeats just before four siour

Native 1.5975 ms
Two-State 0.1528 ms
Serial 0.6744 ms

It is ten times cheaper to capture our simulated continu-

It does not make sense to compare these to serializableytions. The intuitive explanation is that the native comdin

continuations, because serializable continuations doaot
sume Server memory resources.

Compilation Time. The two-state solution relies on a com-
plex transformation that intuitively increases compdati

tion capture has to copy large parts of the stack and check
if previous stack tails have already been captured so they
may share and thus reduce the overall space consumed by
continuations. A tail-sharing continuation representatie-

time relative to using native continuations. We measurisd th - duces space consumption in most Web applications because
by compiling three versions of the our example application many intermediate computations return to the same points.
from Section 2 one hundred times and averaging the compi- For example, each stage of a purchase returns to the same

lation times.
Native 661 ms
Two-State 1007 ms
Serial 1048 ms

Native compilation is almost fifty percent faster than ei-
ther transformation-based compilations, while the tvatest
compilation is only slightly faster—presumably because
there is less code to compile since third-party higher-orde
library functions are not examined.

In our experience, the increased compilation time for us-
ing non-native continuations is quickly noticed by program
mers but easy to ignore during development.

Execution Time. The two-state solution uses a combina-
tion of serializable closures and native delimited cordainu
tions to simulate full continuations that are implemented n

“Shipping Confirmation” page generator.

The simulated continuation capture is faster because it
only inspects the stack and copies a few small pointers that
were set up when the continuation component was added in
a continuation mark. There would be no space savings if we
were to implement tail sharing, because these continuation
are not stored on the server and the entire continuation must
be serialized to the client.

A differentimplementation of native continuation capture
may not have this performance difference (Hieb et al. 1990;
Clinger et al. 1999). The difference that exists, howevam, ¢
be significant because most Web applications capture many
more continuations than they invoke, because most pages
have many links and the majority are not chosen.

We created a micro-benchmark that captwed invokes
200 continuations and averaged 1,000 runs per continuation

tively. It is natural to assume that the Racket compiler and implementation.



Native 1.7609 ms user interaction. We have presented a formal model of a por-
Two-State 49.6306 ms tion of this implementation technique. We have discussed
Serial 13.8949 ms extensions necessary for real deployment and additional fa
It is almostthirty times more expensive to invoke our cilities gasily provided by this infrgstructure.We hay_alew
simulated continuations than native continuations, daigc ated this work and found that it increases scalability com-

when we also must install a continuation prompt and capture pared to _purely natlvt_a continuations and reduce_s the pur-

and invoke a native delimited continuation. den of reimplementation compared to purely serial contin-
Despite these micro-benchmarks, none of these differ- ua‘E:_(;]r_ls. Oviralll,_ the twor-]state SOlL:ct'?]n WO”.(S' Ki

ences are actually observable by end users of Web applica-, ' 'S dwor re |(|es.on the state-of-t e-ar‘;sg\ ds(;aﬁ _msdpec-

tions, given the already long network delays users are accus tion and manipulation—continuation mar elimite

tomed to. A 50ms delay is dwarfed by the typical network continuations—thereforeit is only directly applicablgto-
latency over the Internet gramming languages in the Racket family.

Ease of Use. A frustrating aspect of the two-state solu- Acknowledgments We thank Matthew Flatt for his su-
tion is that foreign code must be explicitly identified anti ca ~ Perlative work on Racket, where our implementation lives.
must be Wrapped in serialnative and the higher-order ar- We thank Robby Findler for his fabulous work on RedeX,
guments must be wrapped in nativserial. This limits the where our model lives. We thank Casey Klein for his work
ease of porting a code-base from the pure'y native Continua_on the randomized testing faC|I|ty Of Redex, Wh|Ch aided our
tion technique to the two-state solution. model development effort.
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