
Bithoven
Gödel Encoding of Chamber Music and Functional 8-Bit Audio Synthesis

Jay McCarthy
University of Massachusetts Lowell, USA

jay@racket-lang.org

Abstract
Bithoven is a prolific composer of approximately 1.079363ˆ10239

different compositions based on four-part harmony and basic chord
progressions. It is combined with a purely functional audio synthe-
sis engine based on the Ricoh RP2A03, found in the 1985 Nintendo
Entertainment System (NES). The synthesis engine is parameter-
ized over a band of instruments and styles of play, so each com-
position can be played in one of approximately 4.22234 ˆ 1041

different arrangements or "NEStrations".

Categories and Subject Descriptors H.5.5 [Sound and Music
Computing]: Methodologies and techniques

Keywords Audio Synthesis, Computer Music, NES Emulation

1. Introduction
As children of the nineteen eighties age, the cultural prominence
of the nostalgic sights and sounds of their youth is growing more
present. For example, media productions with tens of millions of
consumers, like Wreck-It Ralph, Ready Player One, Steven Uni-
verse, and Scott Pilgrim vs the World, casually reference retro-
computer culture that was only popular among a vastly smaller
population. This is most prevalent in the popularity of so-called
"video game beats" in music. For example, the best-selling single
of 2010, Ke$ha’s TiK ToK features an 8-bit synthesized beat, while
other acts like Anamanaguchi and Deadmau5 use authentic eighties
hardware in their live performances.

In this paper, we discuss the design and implementation of
Bithoven, an algorithmic choral composer, and SRPNT, an audio
synthesizer that was inspired by the Ricoh RP2A03, which was
the audio processing unit (APU) used in the 1985 Nintendo En-
tertainment System (NES). SRPNT is purely functional synthesis
that uses a series of DSLs to define and play 8-bit music. Bithoven
is an enumeration of all choral music obeying certain basic princi-
ples of melody and rhythm, which we truncate to only include short
songs. Bithoven’s arranger is another enumeration of different sets
of instruments and ways of playing music that interprets Bithoven’s
compositions into SRPNT music.

The paper’s structure reflects a bottom-up perspective on the
system. Section 2 reviews hardware audio synthesis and the RP2A03

in particular. Section 3 relates the details of the synthesis engine.
Section 4 describes a DSL for programming digital instruments.
Section 5 reviews some essential of music theory. Section 6 de-
scribes a DSL for music tracking. Section 7 reviews the theory of
Gödel encoding. Section 8 describes our datatype for arrangements.
Section 9 finalizes the presentation with our datatype for composi-
tions. In section 10, we discuss some usage pragmatics. Section 11
summarizes some related work and we conclude in section 12.

The Racket source code for the system is available online at
https://github.com/jeapostrophe/srpnt. Further-
more, the repository contains audio samples, sheet music, and other
supplemental materials. We recommend listening to a few samples
before reading to get an idea of what Bithoven produces.

2. Hardware Synthesis and the Ricoh RP2A03
Hardware audio synthesis is based on the understanding of sound
as a mechanical wave of pressure and early synthesizers could only
generate particular primitive waveforms from a set of templates.
The Ricoh RP2A03 is typical in this way. It can generate five
discrete audio waveforms: two pulse waves, one triangle wave, one
noise channel, and one sample channel (Taylor 2004). Each channel
was independently converted into an analog signal and combined
in a non-linear way into a single monaural channel. We discuss the
abstract operation of each channel in order of simplicity.1

The sample channel, called the DMC, outputs a 7-bit audio
signal that is controlled via delta pulse-code modulation. The signal
is initialized to a program controlled value after which it is adjusted
by a stream of 1-bit delta values loaded from program memory. A
high bit increments the value and a low bit decrements the value.
The signal is clamped, rather than overflowing. Due to its inability
to vary more than a single value each audio frame, arbitrary sounds
cannot be encoded as samples, in addition fidelity is lost due to
the 7-bit clamp. Nevertheless, the sample channel is useful for
including otherwise hard to synthesize sounds, like voice samples
and realistic drums.

The noise channel outputs a 4-bit audio signal that is controlled
via a 1-bit pseudo-random number generator (PRNG). If the PRNG
produces a high bit, then the 4-bit volume is produced, otherwise
a zero signal is generated. The PRNG is implemented as a 15-bit
linear feedback shift register. The program can influence the chan-
nel in three ways: first, it can control the volume produced; second,
it can change the frequency at which the PRNG is stepped to one
of sixteen different options; finally, it can change the feedback bit
between bits 6 and 1, which produces a shorter period that tends
to produce a "metallic" sound. The noise channel normally sounds

1 We recommend listening to the following examples before and af-
ter reading this section: https://www.youtube.com/watch?v=
la3coK5pq5w.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FARM’16, September 24, 2016, Nara, Japan
c© 2016 ACM. 978-1-4503-4432-6/16/09...$15.00

http://dx.doi.org/10.1145/2975980.2975981

1

https://www.youtube.com/watch?v=iP6XpLQM2Cs
https://github.com/jeapostrophe/srpnt
https://www.youtube.com/watch?v=la3coK5pq5w
https://www.youtube.com/watch?v=la3coK5pq5w

(define DUTY (vector 0.125 0.25 0.5 0.75))
(define (pulse-wave n period volume %)

(define freq
(pulse-period->freq period))

(define duty-cycle
(vector-ref DUTY n))

(define next-% (cycle%-step % freq))
(define out

(if (< next-% duty-cycle)
volume
0))

(values out next-%))

(define CPU-FREQ-MHz 1.789773)
(define CPU-FREQ-Hz

(* CPU-FREQ-MHz 1000.0 1000.0))
(define (pulse-period->freq period)

(/ CPU-FREQ-Hz (* 16.0 (+ 1.0 period))))

(define (cycle%-step % freq)
(define %step (/ freq 44100.0))
(define next% (+ % %step))
(- next% (floor next%)))

Figure 1: Pulse Wave Generator (from srpnt/apu)

like television static, but by quickly turning it on and off rhythmi-
cally, it can be used for percussion.

The triangle channel outputs a 4-bit audio signal with a defined
pattern at a program-controlled 11-bit frequency. The signal has
a 32-step inverted triangle pattern that starts high, goes low, then
returns to high. Thus, the triangle has no volume control: it is
either on or off. The interpretation of the frequency is between
55.9kHz (higher than the highest key on a standard 88-key piano)
and 27.3Hz (slightly lower than the lowest A). The frequency of the
triangle is versatile, but the lack of volume control and the pulse
channel’s inability to play low notes relegates it to the bass line in
most compositions.

The two pulse channels behave identically. They output a 4-bit
audio signal at a program-controlled 11-bit frequency. The signal
value is set by the program, but the pattern is defined by the circuit.
However, the program may select one of four patterns, called a duty
cycle. Each pattern is eight frames long. The first has a single on
bit, the second has two, the third has four, and the fourth is second
inverted (thus, it sounds the same as the second.) The interpretation
of the frequency is between 111.8kHz and 54.6Hz, so it cannot play
the lowest octave on a standard piano. These tend to be used for the
melody in most compositions.

Nearly all of the most popular NES music uses only the pro-
grammable waveforms and ignore the sample channel. The key to
using these effectively is to quickly vary the programmable param-
eters to simulate different instruments, as we discuss in section 4.2

3. Functional Audio Synthesis
Our synthesizer is modeled after the Ricoh RP2A03, but is not a
perfectly accurate simulation of it. We divide it into components:
authentic waveform generators and an inauthentic mixer. The gen-
erators are called in a loop to produce individual channel samples

2 We recommend listening to a sampler of tracks, such as: https://www.
youtube.com/watch?v=UNA3Laa3-_Q.

and then combined by the mixer to produce a single sample. We
generate 44,100 samples per second.

Each waveform generator G is represented via a function of type
(-> Parameters State (values Signal State))
where Parameters is a structure holding the varying parame-
ters, State holds the internal state of the generator, and Signal
is the output signal value. This model is essentially the compiled
form of a functionally reactive program (Elliott and Hudak 1997).

Figure 1 shows the pulse wave generator, pulse-wave. There
are three Parameters: the duty cycle identifier, the period, and
the volume. A period is used rather than a frequency, because the
RP2A03 actually uses a ticking counter running at its own fre-
quency, which creates a strange discretization of the available fre-
quencies. However, we internally convert the period into the appro-
priate frequency with pulse-period->freq, which divides
the clock rate of the CPU by the appropriate amount. The State is
simply an inexact value representing the percentage the generator
is through a single cycle, which is adjusted by incrementing it by
a fraction of the frequency (based on the sample rate). Finally, the
output Signal is either 0 or the volume parameter.

The other generators work similarly, with appropriate differ-
ences for the particular waveform: the triangle’s state is also a per-
centage, the noise’s state is the register value and a percentage,
while the sample channel is simplified into a vector of 7-bit sam-
ples and an offset to start at.

We cannot use our generators, however, unless we can control
their parameters over time and combine the results into an audio
buffer delivered to the underlying consumer, whether it be the op-
erating system’s audio interface or a recording. We fix a particular
rate of audio generation at 60 audio frames per second. Since there
are 44,100 samples per second, this means there are 735 samples
per frame. This fixes the smallest quantum of musical change at
about 16.6 milliseconds.

We define a structure for each kind of wave form to hold its
parameters over the course of a single 735 sample audio frame:

(struct wave:pulse (duty period volume))
(struct wave:triangle (on? period))
(struct wave:noise (short? period volume))
(struct wave:dmc (bs offset))

Relating this model back to the RP2A03, it would take a synth
frame consisting of two wave:pulse values and one each of the
other values, then call the waveform generators in a loop 735 times,
threading the state through each time and recording the output
signals, mixing them, and then delivering the combined signal to
the consumer. A sketch of this, specialized to just the single pulse
wave, is as follows:

(struct synth-frame (p1))
(define (synth sf)

(match-define (synth-frame p1) sf)
(match-define (wave:pulse d p v) p1)
(define sample-count 735)
(define samples (make-bytes sample-count))
(for/fold ([p1-% 0.0])

([i (in-range sample-count)])
(define-values (p1 new-p1-%)

(pulse-wave d p v p1-%))
(bytes-set! samples i p1-d)
new-p1-%)

samples)

Our synthesizer is similar, but expands the capabilities of the
RP2A03 slightly with a wider synth frame. We allow two each
of the pulse and triangle, so that we can have four voices (as we
discuss in section 9, our composer produces choral quartets) with

2

https://www.youtube.com/watch?v=UNA3Laa3-_Q
https://www.youtube.com/watch?v=UNA3Laa3-_Q

two high and two low. Next, we provide three noise channels to
simulate a traditional three piece drum kit. Finally, we provide two
sample channels where one is for the left audio and the other is for
the right audio, so that users of the synthesizer can produce stereo
effects, such as approaching gunfire for gaming applications.

Due to these extensions, we cannot simulate an authentic
RP2A03 mixer. Instead, we simply add the seven 4-bit values to
produce a 7-bit quantity, then linearly mix it with the left or right
sample channel to render a combined 7-bit sample. In summary,
we generate 735 such samples and then return the state of each
waveform generator for the next synth frame.

Finally, the audio system is provided as function that accepts of
list of synth frames and delivers the corresponding set of samples
to a recipient, which either immediately plays them or saves them.

4. Instruments
It is difficult to use the synthesizer by constructing lists of synth
frames directly. First, it is painful to relate tones (the pitches we
hear) to periods. Second, it is difficult to relate notes (the duration
of tones) to numbers of frames. Finally, producing particular tim-
bres (the texture of one instrument versus another) by hand is labo-
rious and complex. We leave the second problem to future sections,
but address tones and timbre in this section.

In Western music, tones are given names based on their pitch,
i.e. their position in the scale (C through B), as well as their octave
(a number). For example, the right-most key on a standard piano
is C8, while the left-most key is A0. These tones are mapped to
frequencies by tuning conventions. Although it was not always
this way, at present we define A4 as 440Hz. This definition gives
the frequency of the nth key as (* (expt 2 (/ (- n 49)
12)) 440)Hz. From this, we can map the frequency to a period
on either the pulse wave or the triangle wave by inverting the period
to frequency function:

(define (pulse-freq->period freq)
(define pre (/ CPU-FREQ-Hz (* 16.0 freq)))
(round (- pre 1.0)))

We encapsulate this composition as a function, pulse-tone-
>period, and henceforth assume that we deliver tone names to
waveform generators. We do the same for the triangle, but not for
the noise, because its period is unrelated to its tone, but just controls
the PRNG feedback.

Timbre refers to the qualities that make two signals of the same
pitch and volume sound differently. For example, human voice, vi-
olin, and piano can all produce a C4, but may all sound differently
when they do. A simplistic way to understand timbre is variation
across the length of a note in pitch and volume. For example, a
plucked string’s volume tends to decay rapidly compared to draw-
ing a bow across it, which produces a stable volume. Other ex-
amples include vocal vibrato, where the pitch is modulated across
the note (notably exaggerated in our stereotypes about opera), and
tremolo, which is a modulation of volume.

We deal with timbre in the context of our system in two steps.
First, we define the type Instrument as a function of type (-
> Tone Nat (listof Synth-Frames)), i.e. it accepts a
tone to play, a number of frames to play it for, and it produces synth
frames. This representation allows higher levels of abstraction to
simply "play an A4 on a piano-like pulse for 33ms" by calling the
appropriate function with the arguments 'A4 and 2. Second, we
define a DSL in the style of functional reactive programming (FRP)
for writing instruments (Elliott and Hudak 1997).

Figure 2 shows the constructor for pulse wave instruments.
The FRP-like values are called "specs" (for specifications) and are
essentially signals defined over time. The constructor i:pulse
receives one spec for each of the parameters of the pulse wave:

(define (i:pulse #:duty ds
#:period ps
#:volume vs)

(λ (frames tone)
(define d* (stage-spec ds frames))
(define p* (stage-spec ps frames))
(define v* (stage-spec vs frames))
(define base-per

(pulse-tone->period tone))
(for/list ([f (in-range frames)])

(define duty (eval-spec d* f))
(define per

(fx+ base-per (eval-spec p* f)))
(define volume (eval-spec v* f))
(wave:pulse duty per volume))))

Figure 2: Pulse Instrument (from
srpnt/nestration/instrument)

the duty cycle, the period, and the volume. The duty cycle and
volume specs are expected to evaluate to the actual value, while
the period spec is interpreted as a delta from the period of the tone
that is played. The body of the loop in the constructor does the
obvious thing: it evaluates the spec for each frame and constructs
the corresponding synth frame. The outside of the loop, however,
must first "stage" the specification by informing it what the total
number of frames will be. We elaborate on this below.

We proceed by providing examples of instruments and spec
constructors. First, consider a trivial pulse with constant values for
each parameter: a given duty, a constant period, and a fixed volume.

(define (i:pulse:basic duty)
(i:pulse

#:duty (spec:constant duty)
#:period (spec:constant 0)
#:volume (spec:constant 7)))

This uses the constant specification, spec:constant, which
returns the same value for every frame.

We can implement a pulse with tremolo, which is a modulation
of volume. We accept a parameter freq for the frequency of the
modulation and replace the #:volume argument with (spec:%
(spec:modulate freq 7 4)). When evaluated, spec:%
divides the frame by the total number of frames (provided during
staging) to produce the percentage through the note. It then delivers
this value to the spec given by its argument. For example, if note
will be played for 10 frames, then spec:modulate will be called
with 0.1, 0.2, and so on until 1.0. spec:modulate receives
three arguments: the modulation frequency, the base value, and
the width of the modulation. Essentially it views the percentage
argument as a radian and evaluates sine at the given frequency and
position to produce a value between -1.0 and 1.0, which we
multiply with the width and then add to the base. Thus, the volume
oscillates between 3 and 11, according to the frequency.

We can implement a basic decaying (or strengthening) signal
with a linear interpolation using spec:%. For example, #:volume
(spec:% (spec:linear 7 0)) smoothly interpolates from
volume 7 to silence over the whole note. spec:linear simply
multiplies the initial value by the remainder of the percentage and
adds it to the multiplication of the final value and the percentage.

Finally, we can implement a traditional ADSR specification (Pinch
and Trocco 2004). ADSR (Attack-Decay-Sustain-Release) is an
early theory of instrument synthesis going back to the Novachord
and Moog synthesizers. It divides the synthesis of a particular note

3

into four stages: the Attack, where it linearly increases; the Decay,
where it linearly decreases; the Sustain where it is constant; and
the Release, where it linearly decreases again. This notion can, of
course, be generalized to arbitrary many stages and arbitrary spec-
ifications on each stage. For instance, the Casio CZ has 8-stages
with three Delay slopes and two additional Attacks, one before the
Sustain and one in the middle of the Release. The entire configura-
tion is referred to as the Envelope in the synthesis literature.

We define a spec:adsr combinator that accepts one sub-spec
argument for each stage, as well as four other arguments that define
how long each stage is, and a final argument that specifies which
argument receives any left over frames. For example, the following
volume specification, which we refer to as "plucky" (because it
sounds like a plucked string), gives four frames to each stage,
makes the Attack a constant 14, the Decay goes from 14 to 7,
the Sustain holds at 7, and the Release decreases from 7 to 0, for
a total of 16 frames. If fewer than 16 frames are given, then the
frame counts are used as percentages. For instance, if 8 frames were
available, then each would be given 2 frames. On the other hand, if
more than 16 frames were given, then any extra frames would be
allocated to the Release stage. This makes it so that as the length of
the note increases, it will be trailed by more silence.

(spec:adsr
'release
4 (spec:constant 14)
4 (spec:linear 14 7)
4 (spec:constant 7)
4 (spec:linear 7 0))

In most cases, we use this specification language for controlling
the volume of a note, which changes the overall shape of the
waveform, but leaves the tone perfect.

The same specification language is also used for components
of the drum kit. For example, through intense experimentation, we
have found configurations that resemble a hihat, bass, and snare
(shown in figure 3).

In summary, we define a simple embedded DSL for describ-
ing instruments as particular configurations of the primitive wave-
forms over time. We define a repertoire of these instruments which
will be used in section 8 for determining how to play Bithoven’s
compositions.

5. Essentials of Music Theory
In our discussion so far, we have gone from sound to notes and now
we come to music. There are five main concepts that we employ in
the rest of our development: notes, tempo, time signatures, scales,
and chords. Below, we define each of this. Of course, these defini-
tions are not ours and not universally agreed upon, as the concepts
of music theory are ancient and have considerably variability over
time (Hewitt 2008). Leaving that aside, we provide our technical
definitions and explanations as to how they will be used later.

Note. A note is a relative measure of time and therefore length
of a tone. We define notes as non-positive powers of two. For
example, a half-note is twice as long as a quarter-note and half as
long as whole note. Traditional music admits other notes, but we do
not consider them. A note is a relative measure and not an absolute
measure, because it depends on a tempo to concretize it.

Tempo. A tempo, or metronome, is a pair of a note, called
the beat unit, and the number of beats per minute. For example,
(cons 1/4 76) is a tempo called andante. The key thing that a
tempo gives us is the ability to convert notes into frames by simply
multiplying out the quantities while tracking units. For example, at
(cons 1/4 60), a quarter note lasts 60 frames. The following
function does this:

(define (frames-in-note me note)
(match-define

(cons beat-unit beats-per-minute)
me)

(define beats-per-second
(/ beats-per-minute 60.0))

(define beats-per-frame
(/ beats-per-second 60.0))

(define frames-per-beat
(/ 1.0 beats-per-frame))

(define beats-in-note
(/ note beat-unit))

(define frames-in-note
(* beats-in-note frames-per-beat))

frames-in-note)

We use this function inside of the tracker (section 6) to determine
the argument to the instruments function.

Time Signature. A time signature is a pair of a natural number,
the beats per bar, and a note, the beat unit. (The beat unit in a time
signature does not need to match the beat unit in the tempo, but it
often will.) A common time signature is (cons 4 1/4), which
is referred to as 4:4. All the music Bithoven produces is in 4:4
and it allows produces complete bars, as discussed in section 9.

Scale. Scales are used to define sets of tones that "sound good"
together and produce harmony. Music of the Western "common
practice period"3 typically only used tones from a single scale. We
only consider scales with seven tones.

A detached scale is a sequence of pairs of a pitches and an
octave offsets. For example, the diatonic C major scale is C,0, D,0,
E,0, F,0, G,0, A,0, and B,0; while the diatonic D major scale is
E,0, F#,0, G#,0, A,0, B,0, C#,1, and D#,1 (notice that the last two
elements have a positive octave offset so they are higher than the
D# adjacent to the first E).

A fixed scale is a sequence of tones. A detached scale can be
transformed into a fixed scale by providing an initial octave and
applying each octave offset.

An abstract scale is a function from a pitch, called the key, to a
detached scale. Abstract scales are typically defined as a sequence
of intervals that are added to the key to produce the detached scale.
For example, the diatonic major scale is defined by the intervals (2
2 1 2 2 2 1). There are a variety of common abstract scales.
Most people tend to find the diatonic major to be "happy", while
the harmonic minor is "sad".

An abstract tone is an integer that is interpreted relative to a
detached scale. When it is between 0 and 6, it is an index into the
scale. If it is outside of this range, than it refers to the entry modulo
seven, but with the octave offset added to the quotient of the tone
by seven. For example, -1 in the diatonic C major detached scale
is B,-1 and 7 is C,1.

The tracker (section 6) accepts detached tones and fixes them
differently for each of the four voices, so that, for example, the
bass plays lower than the soprano. Meanwhile, the arranger (sec-
tion 8) selects an abstract scale, a key, and applies it to the abstract
tones produced by Bithoven (section 9), which allows Bithoven’s
compositions to be transposed into any scale or key.

Chord. A chord is a set of elements of a scale that "sound good"
when played simultaneously. For example, in diatonic C major
scale, C, E, and G are a chord. A chord kind is a function from a
scale and an offset to a chord. For example, the triad is a chord kind
that when given n, selects the nth, n+3nd, and n+5th elements of
a scale; the previous example chord is a triad where n is 0.

Bithoven (section 9) selects tones from chords of scale of ab-
stract tones.

3 What a lay person might call "classical music".

4

(define i:drum:hihat
(i:noise

#:mode
(spec:constant #f)
#:period
(spec:constant 12)
#:volume
(spec:adsr

'release
1 (spec:constant 4)
2 (spec:constant 3)
4 (spec:constant 2)
4 (spec:constant 0))))

(define i:drum:bass
(i:noise

#:mode
(spec:constant #f)
#:period
(spec:constant 9)
#:volume
(spec:adsr

'release
1 (spec:constant 10)
2 (spec:constant 7)
4 (spec:linear 4 2)
4 (spec:constant 0))))

(define i:drum:snare
(i:noise

#:mode
(spec:constant #f)
#:period
(spec:constant 7)
#:volume
(spec:adsr

'release
1 (spec:constant 11)
4 (spec:linear 11 6)
8 (spec:linear 6 2)
4 (spec:constant 0))))

Figure 3: Drum Instruments (from srpnt/nestration/instruments)

6. Music Tracker
The music tracker compiles a sheet-music-like DSL into a se-
quence of synth frames that can be played by the synthesizer.

It provides a function called song->commands that returns a
(listof synth-frame?), which (recall) is the input type of
the simulator. It has a number of arguments:

• #:me — a tempo that is used to convert note lengths into frame
counts when instruments are rendered.

• #:instruments — A vector of four instruments, two of
which are pulses and two of which are triangles. Each instru-
ment is also paired with its initial octave. This is added to
octave-deltas that are part of the abstract tones produced by
Bithoven. Typically, the first two are the pulses.

• #:drum — Similar to #:instruments, this keyword pro-
vides a vector of three noise instruments, which are used when
synthesizing the drum track. Typically, the first is a hihat, the
second is a bass, and the third is a snare.

• #:drum-measure — A list of measures of drum notes,
which are patterns of drum beats to synthesize with the drums.
They will be the backing beat to each corresponding measure
of tones. A drum measure is three lists of notes where the first
list uses the first drum in #:drum, and so on. An example is
shown in figure 5.

• #:measures — The normal list of measures of a song. Each
measure is a list of simultaneous tones. Each such simultaneous
group has a single note length and then one detached tone for
each of the four instruments. In place of a tone, #f is allowed
for that instrument resting. An example is shown in figure 4.

The behavior of this function is relatively straight-forward: it
loops over the #:measures and #:drum-measures lists to
construct a list of synth frames after attaching each tone to the
octave given in #:instruments, and uses the #:drums and
#:instruments values to compute the synth frames for one
note, as determined by #:me.

This function imposes some heavy constraints on the music: for
example, there are no instrument changes mid-song and there are
no tempo changes. It would be easy to change all of these things,
but this DSL is primarily designed for Bithoven to target and it is
difficult to change Bithoven to produce such things.

In addition to producing the synth frames, the track can also pro-
duce sheet music using Lilypond (Nienhuys and Nieuwenhuizen
2003).

(((1/4 ((C 0) (C 0) (C 0) (C 0)))
(1/4 ((D 0) (D 0) (D 0) (D 0)))
(1/4 ((E 0) (E 0) (E 0) (E 0)))
(1/4 ((F 0) (F 0) (F 0) (F 0))))

((1/4 ((G 0) (G 0) (G 0) (G 0)))
(1/4 ((A 0) (A 0) (A 0) (A 0)))
(1/4 ((B 0) (B 0) (B 0) (B 0)))
(1/4 ((C 1) (C 1) (C 1) (C 1))))

((1/4 ((B 0) (B 0) (B 0) (B 0)))
(1/4 ((A 0) (A 0) (A 0) (A 0)))
(1/4 ((G 0) (G 0) (G 0) (G 0)))
(1/4 ((F 0) (F 0) (F 0) (F 0))))

((1/4 ((E 0) (E 0) (E 0) (E 0)))
(1/4 ((D 0) (D 0) (D 0) (D 0)))
(1/4 ((C 0) (C 0) (C 0) (C 0)))
(1/4 ((D 0) (D 0) (D 0) (D 0)))))

Figure 4: An example track playing the diatonic C major scale

(define beat:straight-rock
'((1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8)

(1/4 1/4 1/4 1/4)
(1/4 1/4 1/4 1/4)))

Figure 5: An example drum measure for the straight rock beat
(from srpnt/nestration/instruments)

7. Gödel Encoding
We are now on the cusp of describing how Bithoven actually pro-
duces music. In the section, we describe some of the key principles.
First, Bithoven is not a random process. Second, it does not use any
sort of learning process to determine what "good" music might be.
Instead, we inductively define a set, along with a bijection between
that set and a prefix of the natural numbers.

We use Racket’s data/enumerate module for this (New
et al. 2016). It provides combinators (suffixed with /e) that
construct bijections. For example, string/e is a bijection be-
tween the naturals and strings. It forms a to-nat function
which projects a string into a natural. For example, (to-nat
string/e "Bithoven") is 29446701124374494676409535373198388243249180. It

5

provides a from-nat function as well which projects a natu-
ral into a string. For example, (from-nat string/e 42) is
"Q". from-nat is particularly convenient, because we can select
a number at random and call from-nat on it to generate a random
element of the set. These functions are defined such that they run
in time approximately linear to the number of bits; in other words,
they are very efficient.

Using this library, we could simply construct the bijection for
valid input to the tracker and have an infinite set of songs. However,
most of the elements of this set are uninteresting swill with no
discernible melody or harmonies.

Instead, we construct a very particularly defined set where most
elements sound pleasing, or at least typical of electronic music from
the era of the Nintendo Entertainment System.

8. Arrangements
In order to warm up, we first define the set of arrangements of
Bithoven composition. We call these arrangements "NEStrations",
as they represent a particular strategy of putting the composition
to life on our pseudo-NES audio synthesizer. These are necessary,
because Bithoven only produces four sequences of abstract tones.
These must be made concrete, attached to instruments, given a
tempo, and so on.

The arrangement is a vector of many components:

• The key, drawn from the set of pitches, used to root a scale.
• The abstract scale, drawn from a small of common scales, used

to produce a detached scale given the key.
• A tempo, drawn from the range of traditional tempos (about 60

to 200), used to quantize the notes.
• The instruments, drawn from the set of defined pulse, triangle,

and drum instruments, used to generate the synth frames by the
tracker.

• An assignment of each of the instruments to a particular voice,
drawn from permutations of length four, to determine which
instrument will play, e.g. the melody.

• An octave for the harmony to be attached to, drawn from near
the middle of the piano.

• Octave offsets of the other three parts which are interpreted so
that the melody is higher, tenor lower, and bass even lower.
These are drawn from small numbers.

• A drum measure for each measure of the song drawn from the
available hand-written drum measures.

Given the available options and the components, in our current
implementation there are approximately 4.22234 ˆ 1041 members
of this set.

However, we actually define a family of such sets where the
set each parameter is drawn from comes from is a parameter.
This allows us to define well-known subsets based on an aesthetic
criteria, which we call styles. For example, compositions that are
played around 200bpm in a diatonic major scale tend to sound very
exciting, so we name that set as style:happy, but if we switch
to a lower tempo (around 120bpm) and only use minor scales, then
it sounds very depressed and sad, so we name it style:sad.

In principle, we could make the set of arrangements arbitrarily
sized by removing the bounds on octaves, not hand-designing in-
struments, and so on. Many such arrangements would be absurd,
however, because they may be outside of the range of human hear-
ing, for example. In contrast, the very large set we have chosen
tends to be made up of reasonable music.

9. Compositions
Each of the earlier pieces of the system build upon the last: the APU
produces waveforms, the instruments produce tones, the tracker
organizes notes, and the arranger makes concrete decisions about
how each of the other pieces will be used. The final piece is to
compose the music for the arranger. This entails producing musical
structure, harmony, and rhythm. Each of these imposes constraints
on the possible set of tones to create patterns that listeners can
identify and understand.

Like the arranger, Bithoven does not randomly choose these
three things, nor does it choose them based on learning from a
sample of quality music, instead we define a set of all possible
structures, harmonies, and rhythms. Nevertheless, it is useful to
think of Bithoven has making these choices randomly, because they
are dependent and it explains the flow of information well.

First, Bithoven selects one of many possible overall song struc-
tures. For example, it can choose to generate a symmetric rondo
with three parts, A, B, and C arranged as ABACABA; or, it could
generate a typical pop song with five parts arranged as ABCBCD-
CCE. The available song structures comes from a typical list. By
having repetition in the overall structure of the song, the music is
more palatable because the listener can predict what is going to
happen and sense the patterns. During testing of Bithoven, we al-
ways listen to a song multiple times to get a sense of whether the
repetition is working.

Next, Bithoven uses chords exclusively for harmony. It never
chooses tones that are not in a chord with one-another. Further-
more, its music contains harmonic rhythm through choosing a
chord progression for the entire song from a different database of
possible progressions. A chord progression is a sequence of offsets
to use with a chord kind. For example, the progression (0 3 0
4) means to use the first triad, the fourth triad, the first again, and
then the fifth. Many popular songs are primarily made up of a sin-
gle chord progression. For example, the progression (0 5 3 4)
underpins Blue Moon, Donna, and All I Want for Christmas Is You,
among many others.

Bithoven replicates this single chord progression in each part of
the song, but may use it differently in each one. This produces a
slightly repetition structure, where similar sounds appear through
the piece without being perfectly duplicated.

Bithoven determines the length (in measures) of each part by
the length of the chord progression. For example, if the chord
progression has four chords, then each part will have four measures.
Bithoven then enumerates every possible way of dividing up the
half-notes of the measures into each chord, such that each chord
gets at least one half-note. This also ensures that chord changes
only happen on half-notes, which creates a slight sense of accenting
in the music. This accenting is reinforced by the tracker which
increases the volume by one unit on all accented notes (a detailed
not mentioned above.)

Within the notes of a particular chord, it chooses a permutation
of half-notes and quarter-notes, such that half-notes never cross
a measure boundary. This is a complicated permutation to code,
because of the dependency in the details, but it is intuitive to define.

Finally, for each note, Bithoven chooses one of the available
permutations of notes of the chord for the four parts. For instance,
if the chord is (0 3 5), then it will first select one value to be
duplicated (to give four values), then choose a permutation of the
four values and assign the first to the harmony, the second to the
melody, the third to the tenor, and the last to the bass.

Each layer of the set construction adds an enormous range
of possibility which ultimately leads to our 1.079363 ˆ 10239

unique compositions. However, many of the compositions are very
bland. For example, there are many compositions where the exact
same notes of the chords are repeated through the entire song

6

without changes. Nevertheless, there are fewer of these than there
are compositions where there is variability, so if you randomly
choose a composition, you are unlikely to get such a bad one.

Like the arrangements, it would be possible to increase the
number of compositions arbitrarily. For example, we could simply
select a natural number for the length of a part, rather than having it
equal the number of chords in the progression. However, we believe
this would be detrimental to the aesthetic quality of Bithoven’s
compositions, because it is harder to detect enjoyable repetition as
the song gets longer. Similarly, we believe that the current length
hits a nice sweet spot because there are enough notes for a chord to
get multiple notes before there’s a chord change.

10. Pragmatics
This section covers a few miscellaneous pragmatic aspects of using
Bithoven.

Implementation Dependencies. This project is almost en-
tirely self-contained using only standard Racket libraries, ex-
cept for two exceptions. First, as mentioned earlier, we use the
data/enumerate library for building enumerating bijections.
We co-developed this library in part to build Bithoven, however.
Second, we use a portaudio FFI to emit raw 8-bit unsigned audio
streams. We use no other libraries for higher-level audio or music
concepts.

Bijections. As previously mentioned, both NEStrations and
Bithoven compositions are in bijection with a prefix of the natu-
ral numbers (i.e., an enumeration.) It is vital to clarify that we do
not have a bijection between either audio streams or tracker input
and a natural prefix. In the case of compositions, we are enumerat-
ing lists of parts, so it is possible for two compositions to sound the
same if the same notes are selected for each part. For instance, an
ABA composition can produce the same notes as an A composition
play three times, although the sheet music would indicate there are
two parts played in a certain sequence.

Performance. The experience of using Bithoven is that it gener-
ates music instanteously on commodity hardware, while the audio
synthesis fills the audio buffer without glitching or gaps. For a more
quantitative evaluation, we constructed a simple benchmark and ran
it on a 2015 Macbook Pro with a 3.1GHz Interl Core i7 processor.
It takes approximately 37ms to load the library and 30ms to initial-
ize it. We generated 100 compositions and rendered their audio to
/dev/null, timing each step of the process. The average cost of
each stage is as follows: each composition takes about 8ms to de-
code from the enumeration and produce tracker input, NEStrations
are produced in about 3ms, and the instruments are evaluated and
synthesis frames produced in 40ms. Finally, the raw audio frames
are generated in 670ms, although in common use this does not hap-
pened batched, but incrementally as the song is played. In our main
usage scenario, retro-style video games running at 60 frames-per-
second, we can generate a new song every three frames, which is
exceedingly reasonable.

Randomness. Although we have stressed that Bithoven is not
random, of course it is most often that elements of the set are se-
lected randomly via composition of from-nat and random. As
a consequence, some compositions are extremely unlikely to be
found with Bithoven. For example, as the number of parts in a mu-
sical structure increases, the likelihood of selecting a composition
using that structure increases drastically: there are far more com-
positions with five-parts than with two-parts, holding the number
of chords fixed, so it is very unlikely to randomly choose one with
just two parts.

We had interesting experiences with non-random selection as
well. For example, we have produced a demo video game where
a single composition is chosen for a level, but its tempo and key
change over the course of the level based on the actions of the
player, and on the next level, we vary the index of the composition
randomly by about 10%, so we tend to select a song in the same
ball-park as the last level, creating a feel of cohesion across the
game.

11. Related Work
The field of audio synthesis and computer generated music is vast.
As well, here are many existing emulations of the Nintendo Enter-
tainment System with cycle-perfect recreation of the exact wave-
forms produced by the real Ricoh RP2A03. The closest work, al-
though it is far more involved and thorough, is Euterpea (Hudak et
al. 2016) and its supporting textbook, the Haskell School of Mu-
sic (Hudak 2015). While not aimed at recreation of any particular
synthesizer, this text and library provide an extensive spectrum of
computer music and audio synthesis tools from high-level music
composition to instrument design and sound synthesis.

12. Conclusion
We have produced a purely functional implementation of a full-
stack music synthesis system: we synthesize primitive waveforms,
assemble them from instruments defined in a DSL, combine them
through a tracking description language, arrange them through a
projection from a large space of possible arrangements, and com-
pose music through a rigorously defined combinatorial method. In
our experience, while the music Bithoven produces is unlikely to
win awards, it is plausible to most listeners as being hand-made in
the era of the RP2A03.

We believe that there is a lot more that could be done to improve
the quality of the set of Bithoven compositions. The most glaring
problem is its restriction to only use chords. We could, for example,
change it so that in each set of notes for a chord, it predominately
uses the chord but is allowed to use any tone from the scale. We
have yet to experiment with this or other modifications.

Acknowledgments
We are indebted to the NESdev community for their excellent doc-
umentation on the Ricoh RP2A03, which was essential to imple-
menting the synthesis engine. We are grateful for Max New and
Robby Findler’s excellent work on the data/enumerate Racket
module, which my project builds on.

References
Conal Elliott and Paul Hudak. Functional Reactive Animation. In Proc.

International Conference on Functional Programming, 1997.
Michael Hewitt. Music Theory for Computer Musicians. 2008.
Paul Hudak. The Haskell School of Music. (Version 2.6), 2015.
Paul Hudak, Eric Cheng, Hai (Paul) Liu, Donya Quick, and Dan Winograd-

Cort. Euterpea - A Haskell library for music creation. 2016.
Max New, Burke Fetscher, Jay McCarthy, and Robby Findler. Fair Enumer-

ation Combinators. Unpublished, 2016.
Han Wen Nienhuys and Jan Nieuwenhuizen. LilyPond, a system for auto-

mated music engraving. In Proc. Colloquium on Musical Informatics,
2003.

Trevor Pinch and Frank Trocco. Analog Days: The Invention and Impact of
the Moog Synthesizer. Harvard University Press, 2004.

Brad Taylor. 2A03 Technical Reference. 2004. http://nesdev.com/
2A03%20technical%20reference.txt

7

http://nesdev.com/2A03%20technical%20reference.txt
http://nesdev.com/2A03%20technical%20reference.txt

	1 Introduction
	2 Hardware Synthesis and the Ricoh RP2A03
	3 Functional Audio Synthesis
	4 Instruments
	5 Essentials of Music Theory
	6 Music Tracker
	7 Gödel Encoding
	8 Arrangements
	9 Compositions
	10 Pragmatics
	11 Related Work
	12 Conclusion
	Acknowledgments
	References

