
Trusted Multiplexing of Cryptographic Protocols

Jay McCarthy1 and Shriram Krishnamurthi2

1 Brigham Young University
2 Brown University

Abstract. We present an analysis that determines when it is possible tomulti-
plex a pair of cryptographic protocols. We present a transformation that improves
the coverage of this analysis on common protocol formulations. We discuss the
gap between the merely possible and the pragmatic through anoptimization that
informs a multiplexer. We also address the security ramifications of trusting ex-
ternal parties for this task and evaluate our work on a large repository of cryp-
tographic protocols. We have formally verified this work using the Coq proof
assistant.

1 Problem and Motivation

A fundamental aspect of a cryptographic protocol is the set of messages that it may
accept. Protocol specifications contain patterns that specify the shape of the messages
they accept. These patterns describe an infinite set of messages, because the variables
that appear in them may be bound to innumerable values. We call this set a protocol’s
message space.

There is a history of attacks on protocols based on the use of (parts of) messages of
one protocol as (parts of) messages of another protocol [2, 11, 14]. These attacks, called
type-flaw (or type-confusion) attacks, depend fundamentally on the protocol relation of
message space overlap. If the message spaces of two protocols overlap, then there is
at least one session of each protocol where at least one message could be accepted by
both protocols. This property, however, is more general than a “presence of type-flaw
attack” property, because not all overlaps are indicationsof successful attacks. (In fact,
it is common for new versions of a protocol to contain many similar messages.)

The message space overlap property not only gives us insightinto the protocol and
its relation to other protocols it also provides a test for a fundamental deployment prop-
erty: dispatchability. We definedispatchabilityas the ability for a multiplexer to un-
ambiguously deliver incoming protocol messages to the proper protocol session. (We
can compare a protocol session’s message space with anothersession’s message space
to determine if it is possible to dispatch to the correct session. This basic property is
necessary for servers to provide concurrency and support for many protocol clients.)

Servers typically rely onTCP for this property. They assign a differentTCP port for
each protocol and trust the operating system’sTCP implementation to do the dispatch-
ing. However, when cryptographic protocols are embedded inother contexts, such as
existing Web service protocols (e.g.,SOAP), more explicit methods of distinguishing
protocol messages must be used. Furthermore, by leaving this essential step implicit, it
is not included in the formally verified portion of the protocol specification. This means

that the protocol that is actually used isnot the one that is verified. Finally, the dele-
gated notion of a session (e.g.,TCP’s or SSL’s) may not match the protocol’s notion.
This is particularly problematic in protocols with more than two participants that are
not simply compositions of two-party protocols.

Notice that message space overlap implies that dispatchability is not achievable.
If there is a messageM that could be accepted by sessionp and sessionq of some
protocols, then what would a dispatcher do when deliveredM? A faulty identification
might cause the actual (though unintended) recipient to go into an inconsistent state
or even leak information while the intended recipient starves. It cannot unambiguously
deliver the message and therefore is not a correct dispatcher. We present a dispatching
algorithm that correctly delivers messages if there is no message space overlap. This
algorithm provides proof that the lack of message space overlap implies dispatchability.

We present an analysis that determines whether the message spaces of two protocols
(sessions of a protocol) overlap. We also present an analysis, phrased as an optimized
dispatcher, that determineswhy there is no overlap between two spaces by finding the
largest abstractions of two protocols for which there is no overlap. We present our anal-
ysis of protocols from theSPOREprotocol repository [15] and show how studying them
provides insights to improve our analyses.

We present our work in the context of an adaptation ofCPPL, the Cryptographic
Protocol Programming Language [8]. We have built an actual tool and applied it to con-
crete representations of protocols. All of our work is formalized using the Coq proof
assistant [18], and we make our formalization freely available.3 Coq provides numer-
ous advantages over paper-and-pencil formalizations. First, we use Coq to mechanically
check our proofs, thereby bestowing much greater confidenceon our formalization and
on the correctness of our theorems. Second, because all proofs in Coq are constructive,
our tool is actually a certified implementation that is extracted automatically in a stan-
dard way from our formalization, thereby giving us confidence in the tool also. Finally,
being a mechanized representation means others can much more easily adapt this work
to related projects and obtain high confidence in the results.

Outline. In Section 2, we explain the technical background of our theory. Next, in
Section 3, we develop the decision procedure for message space overlap. In Section 4,
we show how message space overlap provides a sufficient foundation for a dispatching
algorithm. This algorithm is inefficient, so we present an analysis in Section 5 that
optimizes it. Finally, we discuss related work and our conclusions.

2 Introduction to CPPL

CPPL [8] is a domain-specific language for expressing cryptographic protocols with
trust annotations.CPPLallows the programmer to control protocol actions by using trust
constraints so that an action such as transmitting a messagewill occur only when the
indicated trust constraint is satisfied. TheCPPLsemantics identifies a set ofstrands[17],
annotated with trust formulas and the values assumed to be unique, as the meaning of a
role in a protocol.

3 Sources are available at:http://tinyurl.com/jaymcc-dispatch09.

a knows a:name b:name kab:symkey
learns kabn:symkey

b knows a:name b:name kab:symkey
learns kabn:symkey

1 a -> b : a, {|na:nonce|} kab
2 b -> a : {|na, nb:nonce|} kab
3 a -> b : {|nb|} kab]
4 b -> a : {|kabn:symkey, nbn:nonce|} kab

Fig. 1. Andrew Secure RPC Protocol

1 proc b (a:name b:name kab:symkey) _
2 let chana = accept in
3 recv chana (a, {| na:nonce |} kab) -> _ then
4 let nb = new nonce in
5 send _ -> chana {| na, nb |} kab then
6 recv chana {| nb |} kab -> _ then
7 let nbn = new nonce in
8 let kabn = new symkey in
9 send _ -> chana {| kabn, nbn |} kab then
10 return _ (kabn)

Fig. 2. Andrew Secure RPC RoleB in CPPL

We will explain the relevant aspects ofCPPL by using the Andrew Secure RPC
protocol (Figure 1) and the encoding of itsB role in CPPL (Figure 2) as our example.

Message Syntax.The various kinds of messages that may be sent and received are
paramount to our investigation. We give their syntax in Figure 3. Messages (m) may
be constructed by concatenation (,), hashing (hash(m)), variable binding and pattern
matching (< v = m>), asymmetric signing ([m]v), symmetric signing ([|m|]v), asym-
metric encryption ({m}v), and symmetric encryption ({|m|}v). In these last four cases,
v is said to be in thekey-position. For example, in the Andrew rolekab is in key-position
on line 3. Concatenation is right associative. Parenthesesare control precedence.

Well-formedness.As a CPPL program executes, it builds a runtime environment
of locally known values associated with identifiers. This environment is consulted to
determine the values of pattern identifiers in message syntax and is extended during
matching when those identifiers are free. Not all syntactically valid messages are well-
formed in aCPPL program, because they may refer to free identifiers in positions that
cannot be free. We say that such patterns are notwell-formed.

Surprisingly, the well-formedness condition is differentfor message patterns used
for sending rather than receiving, due to cryptographic primitives.

Intuitively, to send a message we must be able to construct it, and to construct it,
everyidentifier must be bound. Therefore, a patternm is well-formed for sending in an
environmentσ (written σ ⊢s m herein) if all identifiers that appear in it are bound. For
example, the message on line 5 of the Andrew role is well-formed, but if we removed
line 4, it would not be becausenb would not be bound.

m := nil | v | k
| (m,m′) | hash(m) | < v = m>
| [m]v | [|m|]v | {m}v | {|m|}v

v := x : t
t := text | msg | nonce
| name | symkey | pubkey | channel

Fig. 3. CPPLMessage Syntax

A similar intuition holds for using a message pattern to receive messages. To check
whether a message matches a pattern, the identifiers that confirm its shape—namely,
those that are used as keys or under a hash—must be known to theprincipal. Thus,
a patternm is well-formed for receiving in an environmentσ (written σ ⊢r m) if all
identifiers that appear in key-positions or hashes are bound. For example, the message
pattern on line 3 of the Andrew role is well-formed becausekab is bound, but if it were
not, then the pattern would not be well-formed.

A CPPLprogram (p) is well-formed (⊢ p), when each message is well-formed in the
appropriate context and runtime environment.

Semantics and Adversary.The semantics of aCPPL program is given by a set of
strandswhere each strand describes one possible local run. A strand, s, is simply a list
of messages that are sent (+m) or received (−m):

s := . | +m→ s | −m→ s

The adversary in the strand semantics is essentially the Dolev-Yao adversary [5].
Since a strand merely specifies what messages are sent and received rather than how
they are constructed, where they are sent, or from whence they come, the adversary has
maximal power to manipulate the protocol by modifying, redirecting, and generating
messagesex nihilo. This ensures that proofs built on the semantics are secure in the
face of a powerful adversary.

The basic abilities of adversary behavior that make up the Dolev-Yao model include:
transmitting a known value such as a name, a key, or whole message; transmitting an
encrypted message after learning its plain text and key; andtransmitting a plain text
after learning a ciphertext and its decryption key. The adversary can also manipulate the
plain-text structure of messages: concatenating and separating message components,
adding and removing constants, etc. Since an adversary thatencrypts or decrypts must
learn the key from the network, any key used by the adversary—compromised keys—
have always been transmitted by some participant.

A useful concept when discussing the adversary is auniquely originating value.
This is a value that enters the network at a unique location. Locally produced nonces4

are uniquely originating values. By definition, the adversary cannot know these values
until they have been sent in an unprotected context.

4 Numbers usedonce

3 Analysis

In this section we present our analysis that determines whenthere is a message that
could be accepted by two sessions of two protocols. This analysis can then be applied
to the case of two sessions of one protocol by comparing a protocol with itself.

The strand space model of protocols is aptly suited for this problem. From the
strand, we can read off each message pattern the protocol accepts. For example, the
strand+m1 →−m2 →−m3 → . accepts messages with patternsm2 andm3. We denote
this set of message patterns asM (s) for strands.

Each message patternm describes an infinite set of messages (one for each instan-
tiation of the variables inm) that would be accepted at that point of the protocol. If we
could compare the sets of two patterns, then we could easily lift this analysis to two
protocolssands′ by checking each pattern inM (s) against each pattern inM (s′). The
essence of our problem is therefore determining when a message patternm “overlaps”
with another message patternm′, i.e., when there is an actual messageM that could be
matched by bothm andm′. We call this analysismatch.

3.1 Definingmatch

We have multiple options when definingmatch. We could assume that thestructureof
message patterns are potentially ambiguous. That is, we could assume that(m1,m2)
could possibly overlap withhash(m3) or {m4}k. We will not do this. We assume that
messages are encoded unambiguously. Concrete protocol implementations that do not
conform to this assumption may have type-flaw attacks [2, 11,14].

This initial consideration shrinks the design space ofmatch: message patterns must
have identical structure for them to possibly overlap. There are two important caveats:
variables with typemsgand bind patterns (< v = m>). In the first, we treat such vari-
ables as “wildcards” because they will accept any message when used in a pattern. In
the second, we ignore the variable binding and use the sub-patternm in the comparison.

With this structural means of determining when two message patterns potentially
overlap, all that remains is to specify when to consider two variables as potentially
overlapping. The simplest strategy is to assume that if the types of two variables are the
same, then it is possible that each could refer to the same value. We call this strategy
type-based and write itmatchτ.

Correctness.matchτ is correct if it soundly approximates message space overlap,
i.e., if ¬ matchτ m m′ then there is no overlap between the possible messages accepted
by patternmand patternm′. This implies thatmatchτ m m′ should not be read as “every
message accepted bym is accepted bym′” (or vice versa), because there are some
environments (and therefore protocol sessions) where there can be no overlap between
messages. For example, the patternx does not overlap withy if x is bound to 2 andy is
bound to 3. But there is at least one environment pair that contains at least one message
that is accepted by both: whenx andy are bound to 2 and the message is 2.

Evaluation. The theorem prover can tell us ifmatchτ is correct, but it cannot tell us
if the analysis is useful. We address the utility of the analysis by running it on a large
number of protocol role pairs.

We have encoded 121 protocol roles from 43 protocol definitions found in the Se-
curity Protocols Open Repository (SPORE) [15] in CPPL. For each role, our analysis
generates every possible strand interpretation of the role, then compares each message
pattern with those of another role. We find that when usingmatchτ, 15.7% of protocol
role pairs are non-overlapping (i.e., for 84.3% of the pairs there is a message that is
accepted by both roles in a run.) This is an extravagantly high number.

If we actually look at the source of many protocols inCPPL, we learn why there are
such poor results withmatchτ. It turns out that many protocols have the following form:

1 recv chan (m_1, m:msg) -> _ then
...

n match m m_2 then

wherem1 andm2 are particular patterns, such as(price, p) or {m1}k.
Consider howmatchτ would compare this message with another: Because it con-

tains a wildcard message (with typemsg), it is possible foranymessage to be accepted.
This tells us that the specificity of the protocol role deeplyimpacts the efficacy of our
analysis. In the next section, we develop a transformation on protocol roles that in-
creases their specificity. This greatly improves the performance ofmatchτ.

3.2 Message Specificity

Suppose we have a protocol with the following protocol role:

1 recv ch (m1, a) -> _
2 then let nc = new nonce in
3 match m1 {|b, k’|} k -> _

If this role were slightly different, then we could execute it with more partners:

1’ recv ch (<m1={|b, k’|} k>, a) -> _
2 then let nc = new nonce in
3 match m1 {|b, k’|} k -> _

In this modified protocol, the wildcard messagem1 on line 1 is replaced by amore
specificpattern on line 1′. We say that message patternm1 is more specific than message
patternm2 if for all messagesm, matchτ m1 m impliesmatchτ m2 m (i.e., every message
that is accepted bym1 is accepted bym2.)

Our transformation, calledfoldm, increases the specificity of message patterns. It
works as follows: for each message reception point where messagem is received,foldm
records the environment before reception asσm, inspects the rest of the role for pattern
points where identifieri is compared with patternp such thatσm⊢r p, and replaces each
occurrence ofi in m with < i = p >, thereby increasing the specificity ofm.

We prove the following theorems about this transformation:

Theorem 1 If ⊢ p then⊢ foldm p.

Theorem 2 Every pattern in p has a corresponding more specific pattern in foldm p.

Preservation.We must also ensure that this transformation preserves the semantics
of the protocol meaningfully. However, since we are clearlychanging the set of mes-
sages accepted by the protocol (requiring them to be more specific), the transformed
protocol does not have the same meaning.

The fundamental issue is how is the protocol meaning different? Recall that the
meaning of a protocol is a set of strands that represent potential runs. This is smaller
after the transformation. However, if we consider only the runs that end in success—
those runs in which a message matching patternp is provided when expected—then
there is no difference in protocol behavior.

Why? Consider the example from above. Suppose that a messageM matching the
pattern(m1, a) is provided at step 1 in the original protocol and that the rest of protocol
executes successfully. Thenm1 mustmatch the pattern{|b, k’|} k, and, the message
M must match the pattern(<m1={|b, k’|} k>, a). Therefore, if the same message
was sent to the transformed protocol, the protocol would execute successfully. This
holds in every case because the transformationalwaysresults in more specific patterns
that have exactly this property.

What happens to runs that fail in the original protocol? Theycontinue to fail in the
transformed protocol, but may faildifferently. Suppose that a messageM is delivered to
the example protocol at step 1 and the protocol fails. It either fails at step 1 or step 3. If it
fails at step 1, then it does not match the pattern(m1,a) or the pattern(<m1={|b, k’|}
k>, a). Therefore it fails at step 1 in the transformed protocol as well. If it fails at step
3, then the left component of the messageM does not match the pattern{|b,k’|} k,
and, the transformed protocol will fail at step 1 for the verysame reason.

In general, the transformed protocol’s behavior is identical, modulo failure. If the
same sequence of external messages is delivered to a transformed role, then it will either
(a) succeed like the untransformed counterpart or (b) fail earlier because some failing
pattern matching was moved earlier in the protocol. Semantically, this means that the
set of strand bundles that a protocol can be a part of is smaller.

It is crucial to actually execute the transformed protocol.If the unmodified protocol
is used, it is certainly possible for the wrong recipient to receive a message and then fail
when the more specific pattern matching is attempted.

Adversary. This transformation either decreases the amount of harm theadver-
sary can do or does not change it. Since the only difference inbehavior is that faulty
messages are noticed sooner, whatever action the principalwould have taken before
performing the lifted pattern matching is not done. Therefore, the principal doesless
before failing, and therefore the “hooks” for the adversaryaredecreased. Of course, for
any particular protocol, these hooks may or may not be useful, but in general there are
fewer hooks.

Evaluation. When we applyfoldm to our test suite of 121 protocol roles and then run
thematchτ analysis, we find that the percentage of non-overlapping role pairs increases
from 15.7% to 61%. This means that for 61% of protocol role pairs from our repository,
it is always possible to unambiguously deliver a message to asingle protocol handler.
However, when we look just at the special case of comparing a role with itself (i.e.,
determining if it is possible to dispatch to sessions correctly) we find that none of the
roles have this property according tomatchτ.

This is an unsurprising result. Every message patternp is exactly the same as itself.
Therefore,matchτ will resolve thatp has the same shape asp and could potentially
accept the same messages. The problem is thatmatchτ looks only at the two patterns.
It does not consider the context in which they appear: a cryptographic protocol that
may make special assumptions about the values bound to certain variables. In partic-
ular, some values are assumed to be unique. For example, in many protocols, nonces
are generated randomly and used to prevent replay attacks and conduct authentication
tests [7]. In the next section, we incorporate assumptions about uniqueness into our
analysis.

3.3 Relying on Uniqueness

In the Andrew Secure RPC role (Fig. 2), the message received on line 6 must match the
pattern{|nb|}kab, wherenb is a nonce that was freshly generated on line 4. This means
thatno two sessionsof this role could accept the same message at line 6, because each
is waiting for adifferentvalue fornb.

We call the version of our analysis that incorporates information about uniqueness
matchδ. Whenever the analysis compares a variableu from protocolα and a variable
v from protocolβ, if u is in the set of unique values generated byα or v is in the set
of unique values generated byβ, then the two are assumed not to match, regardless of
anything else about the variables. In all other cases, two variables are assumed to be
potentially overlapping. In particular, the types are ignored, unlikematchτ.

Evaluation. When we applymatchδ to our test suite, we find that the percentage
of non-overlapping sessions is 0.8%. After applying thefoldm transformation, this in-
creases to 14.8%.

If we look at the other 85.2% of the protocols, is there anything more that can
be incorporated into the analysis? There is. The first actionof many protocol roles is to
receive a particular initiation message. Since this is thefirst thing the role does, it cannot
possibly contain a unique value generated by the role. Therefore, thematchδ analysis
will not be able to find a unique value that distinguishes the session that the message is
meant for. In the next section, we will discuss how to get around this difficulty.

3.4 Handling Initial Messages

The first thing the Andrew Secure RPC role (Fig. 2) does (shownon line 3) is receive a
certain message:(a,{|na|}kab). Since this message does not contain any value uniquely
generated for the active session role, it seems that the initial messages of two sessions
can be confused. However, a little reflection reveals that initial messagescreateses-
sions, so by definition they may not be confused across sessions.

Therefore, we can safely ignore the first message of a protocol role, if it is not
preceded by any other action, for the purposes of determining the dispatchability of a
protocol role’s sessions. We must, of course, compare the initial message with allother
messages to ensure that the initial message cannot be confused with, for example, the
third message, but we do not need to compare the initial message with itself. When we
use this insight with thematchδ analysis, we write it asmatchι(δ).

matchτ matchδ matchτ+δ
initial 15.7% 10.0% 15.8%
foldm 61.0% 55.2% 62.1%

matchτ matchδ matchτ+δ
initial 0.0% 00.8% 00.8%
foldm 0.0% 14.8% 14.8%

ι + foldm 31.4% 62.8% 62.8%

(a) Non-overlapping Protocol Role Pairs (b) Non-overlapping Protocol Role Sessions

Table 1.Analysis Results

Evaluation. Table 1a presents the results when analyzing each pair of protocol
roles. Interestingly, unique values arenot very useful when comparing roles, although
they do increase the coverage slightly. We have inspected the protocols not handled by
matchτ+δ to determine why the protocol pairs may potentially accept the same message.

1. Protocols with similar goals and similar techniques for achieving those goals typ-
ically have the same initial message. Examples include the Neumann Stubblebine,
Kao Chow, and Yahalom protocol families.

2. Different versions of the same protocol will often have very similar messages, typ-
ically in the initial message, though not always. Often these protocols are modified
by making tiny changes so that the other messages remain identical. A good exam-
ple is the Yahalom family of protocols.

3. Some protocols have messages that cannot be refined byfoldm because the key
necessary to decrypt certain message components must be received from another
message or from a trust management database query. This leaves a message com-
ponent that will match any other message, so such protocols cannot be paired with
a large number of other protocols. One example is theS role of some Yahalom
variants.

4. For many protocols, there is dependence among the pattern-matching in the con-
tinuation of message reception. (One example is theP role of the Woo Lam Mutual
protocol.) As a result, only the independent pattern is substituted into the original
message reception pattern. This leaves a variable in the pattern that matches all mes-
sages. We could remove this problem with an unsound version of the protocol re-
finement transformation,foldm, which used some related notion of well-formedness
that allowed multiple passes over the input pattern in pattern-matching. However,
we believe soundness is an important property and that our current transformation
is good enough.

Table 1b presents the results when analyzing the sessions ofeach protocol role. It
may seem odd that thematchι(τ) analysis is able to verify any sessions, given our argu-
ment againstmatchτ. Why should removing the initial message make any difference?
In 31.4% of the protocols, the protocol receivesonlya single, initial message. We have
also inspected the protocols that the most permissive session-based analysis rules out.

1. Some messages simply do not contain a unique value. A prominent example is the
A role of many variants of the Andrew Secure RPC protocol.

2. Some roles have the same problems listed above as (3) and (4), except that in these
instances the lack of further refinement hides a unique value. One example is theC
role of the Splice/AS protocol.

4 Dispatching

Our analysis determines when there is no message that could be confused during any
run of two protocols. We can use this property to build a dispatching algorithm. The
algorithm is very simple: forward every incoming message toevery protocol handler.
(For sessions, we must recognize the initial message and create a new session; other-
wise, forward the message to each session.)

This algorithm is correct because every message that is accepted bysomeprotocol
(session) is only accepted byoneprotocol (session), according to the overlap property.
This (absurd) algorithm makes no attempt to determine whichprotocol an incoming
message is actually intended for. This is clearly inefficient. Yet, it shows that distinct
message spaces are sufficient for dispatching.

In a network load-balancing setting, where “forwarding a message” actually corre-
sponds to using network bandwidth, this algorithm betrays the intent of load-balancing.
On a single machine, where “forwarding a message” corresponds to invoking a han-
dling routine, there are two major costs: (1) a linear searchthrough the various proto-
col/session handlers; and, (2) theCPU cost associated with each of these handlers. In
some scenarios, cost 2 is negligible because most network servers are notCPU-bound.
However, since we are dealing withcryptographicprotocols, the cost of performing
decryption only to find an incorrect nonce, etc., is likely tobe prohibitive.

A better algorithm would keep a mapping from input message patterns to underly-
ing sessions and efficiently compare new messages with patterns in the mapping prior
to delivery. The main problem with this mapping algorithm isthat it requirestrust in the
dispatcher: the dispatcher must look inside encrypted components of messages to de-
termine which protocol (session) they belong to. In the nextsection we discuss how to
(a) minimize and (b) characterize the amount of trust that must be given to a dispatcher
of this sort to perform correct dispatching.

5 Optimization

Our task in this section is to determine how much trust, in theform of secret data (e.g.,
keys), must be given to a dispatcher to inspect incoming messages to the point that they
can be distinguished. First, we will formalize how deep a dispatcher can inspect any
particular message with a certain amount of information. Second, we will describe the
process that determines the optimal trust for any pair of protocols. Finally, we formalize
the security repercussions of this trust. The end result of this section is a metric of how
efficient dispatching can be for a protocol; all protocols should aspire to require no trust
in the dispatcher.

Message Redaction.Suppose that a message is described by the pattern(a,{|b|}k).
If the inspector of this message does not know keyk, then in general5 this message is
not distinguishable from(a,∗). We call this theredactionof pattern(a,{|b|}k) under an
environment that does not containk. We writem↓σ to denote the redaction of message
m underσ. This is defined in Figure 4.

5 There are kinds of encryption that allow parties without knowledge of a key to know that some
message is encrypted bythat key but still not know the contents of the message.

NIL

nil ↓σ= nil
VAR

v ↓σ= v
CONST

k ↓σ= k
JOIN

(m,m′) ↓σ= (m↓σ,m′ ↓σ)

HASH
σ ⊢s hash(m)

hash(m) ↓σ= hash(m)

HASH (WILD)
σ 0s hash(m)

hash(m) ↓σ= ∗

SYM ENC
k∈ σ

{|m|}k ↓
σ= {|m↓σ |}k

SYM ENC (WILD)
k /∈ σ

{|m|}k ↓
σ= ∗

. . .
BIND

< v = m>↓σ=< v = m↓σ>

Fig. 4. Message Redaction

Theorem 3 A receiver in environmentσ can interpret m↓σ: for all σ and m,σ ⊢r m↓σ.

Theorem 4 Every message that is matched by m is matched by m↓σ. (Sec. 3.2)

Theorem 5 σ ⊢r m implies m↓σ= m.

These theorems establish thatm↓σ captures the view that a dispatcher, that is trusted
with σ only, has of a messagem. The next task is to minimizeσ while ensuring that
match can rule out potential message confusion.

Minimizing σ. Suppose we comparem= ({|b|}k,{|c|} j) with m′ = ({|b′|}k′ ,{|c
′|} j ′),

whereb and b′ are unique values of their respective protocols, withmatchτ+δ. Be-
causeb and b′ are unique, the analysis, and therefore the dispatcher, needs to look
at b andb′ only to ensure that these message patterns cannot describe the same mes-
sages. This means that even though the patterns mention the keysk and j (k′ and j ′),
only k (k′) is necessary to distinguish the messages. Another way of putting this is that
m↓{k}= ({|b|}k,∗) does not overlap withm′ ↓{k′}= ({|b′|}k′ ,∗), according tomatchτ+δ.

We prove that ifm andm′ cannot be confused according tomatch, then there is a
computable smallest setσ, such thatm↓σ also cannot be confused withm′ ↓σ according
to match. We prove this by first showing that for allm, there is a setVm, such that for
all σ, m↓Vm∪σ= m↓Vm. In other words, there is a “strongest” set for↓ that cannot be
improved. This set is the setσ such thatσ ⊢r m. Our brute-force search construction
algorithm then considers each subset ofVm (Vm′) and selects the smallest subset such
that the two messages are still distinct after↓.

We have run this optimization on our test-suite of 121 protocol roles. Figure 5a
breaks down protocol pairs according to the percentage of their keys required to es-
tablish trust. This graph shows that 43% of protocol pairs donot requireany trust to
properly dispatch. The other end of the graph shows that only18% of all protocol pairs
require complete trust in the dispatcher. Figure 5b shows the same statistics for proto-
col sessions. In this situation, 54% of the protocol roles donot require any trust for the
dispatcher to distinguish sessions, while 37% require complete trust. These results were
calculated in 7.6 minutes and 1.6 seconds respectively.

0% 25% 50% 75% 100%

Percentage of Total Trust Necessary

0%

10%

20%

30%

40%

50%

60%

P
e
rc
e
n
ta
g
e
 o
f
P
ro
to
c
o
l
R
o
le
 P
a
ir
s

0% 25% 50% 75% 100%

Percentage of Total Trust Necessary

0%

10%

20%

30%

40%

50%

60%

P
e
rc
e
n
ta
g
e
 o
f
P
ro
to
c
o
l
R
o
le
s

(a) (b)Fig. 5. Trust Optimization Graphs

These experiments indicate that it is very fruitful to pursue optimizing the amount
of trust given to a dispatcher. However, we have not yet characterized the security con-
siderations of this trust. We do so in the next section.

Managing Trust. In previous sections, we have discussed how much trust to give
to a load-balancer so it can dispatch messages correctly. Inthis section, we provide a
mechanism for determining the security impact of that trust.

Recall that a protocol is specified as astrand: a list of messages to send and receive.
We have formalized “trust” as a set of keys (and other data) tobe shared with a load-
balancer. We define a strand transformation↑k that transforms a strands such that it
sharesk by sending a particular message containingk as soon as possible. (It is trivial
to lift ↑k to share multiple values.) We defines↑k as follows:

(sd→ s) ↑k = sd→ +(LB,v) → s if k∈ bound(sd)

(sd→ s) ↑k = sd→ (s↑k) if k /∈ bound(sd)

. ↑k = .

(This definition clearly preserves well-formedness and performs its task.) In this defini-
tion the tagLB indicates that this value is shared with the load-balancer by some means.
Depending on the constraints of the environment, this meanscan be assumed to be per-
fectly secure or have some specific implementation (e.g., byusing a long-term shared
key or public-key encryption.)

Sinces↑k is a strand, it can be analyzed using existing tools and techniques [4, 6,
10, 16] to determine the impact of an adversary load-balancer.

6 Insights

The development of the message space overlap analysis and the trust optimization give
us insight intowhyandhowcryptographic protocol message spaces do not overlap.

The effectiveness ofmatchτ for pairs of protocols demonstrates that it is primar-
ily shapethat prevents overlap between different protocols. This corresponds with our
intuitions, because protocols typically use dissimilar formats.

The disparity betweenmatchτ andmatchδ demonstrates that for pairs of protocol
sessions, it is uniquely originating values that prevent overlap. Again, this corresponds
with our intuitions, because nonces are consciously designed to prevent replay attacks
and ensure freshness, which corresponds to the goal of identifying sessions.

The statistical differences between these two analyses in different settings allow us
to make these conclusions in a coarse way. But the trust optimization process answers
the real question: “Why do two message spaces not overlap?”

When the trust optimization process redacts a message, it isremoving the parts of
the message that arenot useful for distinguishing that protocol (session). This means
that what remainsis useful, and therefore the fully redacted message isonly what is
necessary to ensure that there is no message space overlap. Thus, for any two protocols
(sessions), it is the trust optimization that explains why there is no overlap.

7 Related Work

Previous Work. In our past work [13], we specifically addressed the questionof when
a protocol role supports the use of multiple sessions, but our approach was significantly
different. First, in that study we presented a program transformation similar tofoldm;
however, we did not formalize the correctness of the transformation. Second, we used
only the naı̈ve dispatching algorithm and did not investigate a more useful algorithm.
Third, we did not consider pairs of protocols. Therefore, the current presentation is
much more rigorous, practical, and general.

Our previous problem statement was only to inspect protocolrole message patterns
for the presence of distinguishing (unique) values. This isclearly incorrect in the case
of protocol role pairs. Consider the roleA, which accepts the messageMa, then(Na,∗),
and roleB, which accepts the messageMb, then(∗,Nb), whereNx is a local nonce for
x. Each message pattern of each role contains a distinguishing value, so it passes the
analysis. But it is not deployable with the other protocol because it is not possible to
unambiguously deliver the message(Na,Nb) after the messagesMa andMb have been
delivered.

It is actually worse than this. We can encode these two protocols as one protocol:
accept eitherMa or Mb, then depending on the first message, accept(Na,∗) or (∗,Nb).
Our earlier analysis would ignore the initial messages (which is problematic in itself if
Ma andMb overlap), then check all the patterns in each branch, and report success. This
is clearly erroneous because it is possible to confuse anA session with aB session.

This work avoids these problems by directly phrasing the problem in terms of de-
ciding message overlap—the real property of interest rather than a proxy to it as distin-
guishing values were. It is useful to point out, however, that the earlier work was sound
for protocol roles that did not contain branching, which is an incredibly large segment
of our test suite. Our use of Coq ensures that our analysis is correct forall protocols.

Dispatching.The Guttman and Thayer [9] notion of protocol independence through
disjoint encryption and a related work by Cortier et al. [3] study the conditions under
which security properties of cryptographic protocols are preserved under composition
with one or more other protocols. This is an incredibly important problem, since it
ensures that it issafeto compose protocols. A fundamental result of the Guttman study

shows that different protocols must not encrypt similar patterns by the same keys—a
similar conclusion to some of our work. However, our work complements theirs by
studying whether it ispossibleto compose protocols and, in particular, how efficient
such a multiplexer can be. Ideally both of these problems must be addressed before
deployment.

Detecting type-flaw attacks [2, 11, 14] is a similar problem to ours. These attacks
are based on the inability of a protocol message receiver to unambiguously determine
the shape of a message. For example, a nonce may be sent where the receiver expects
a key, a composite message may be given in place of a key, etc. These attacks are of-
ten effective when they force a regular participant into using known values as if they
were keys. Detecting when a particular attack is a type-flaw attack, or when compo-
nents of a regular protocol execution may be used as such, is similar to our problem.
These analyses try to determine when sent message components can be confused with
what a regular participant expects. However, in these circumstances a peculiar notion of
message matching captures the ambiguity in bit patterns. Some analyses use size-based
matching where any message ofn-bits can be accepted by a pattern expectingn-bits;
for example, ann-bit nonce can be considered ann-bit key. Others assume that message
structure is discernible but the leaf-types are not, so a nonce paired with a nonce cannot
be interpreted as single nonce, but it may be interpreted as anonce paired with a key.
Our analysis is similar in spirit but differs in both the notion of message overlap and
the selection of sent and expected messages: we assume that message shapes can be
encoded reliably and all expected messages of one protocol with those of another.

Optimization. The problem of optimizing the amount of trust given to a dispatch is
very similar in spirit to ordering of pattern-matching clauses [12] and ordering rules in
a firewall or router [1], which are both similar to the decision tree reduction problem.
However, our domain is much simpler than the general domain of these problems and
the constants are much smaller (|Vm| is rarely greater than 3 for most protocols), so we
are not afflicted with many of the motivating concerns in those areas. Even so, these
problems really serve only as guidelines for the actual optimization process, not the
formulation of the solution (i.e.,↓σ).

8 Conclusion

We have presented an analysis (match) that determines if there is an overlap in the
message space of different protocols (or sessions of the same protocol.) We have shown
how it is important to look at real protocols in the development of this analysis (in our
case, theSPORErepository [15].) By looking at real protocols, we learned that it was
necessary to (1) refine protocol specifications (foldm), (2) incorporate cryptographic
assumptions about unique values (matchδ), and (3) take special consideration of the
initial messages of a protocol (matchι(δ)).

We have shown how this analysis and the message space overlapproperty can be
used to provide the correctness proof of a dispatching algorithm. We have discussed the
performance implications of this algorithm and pointed toward the essential features
of a better algorithm. We have developed a formalization (↓σ) of the “view” that a
partially trusted dispatcher has of messages. We have presented an optimization routine

that minimizes the amount of trust necessary formatch to succeed on a protocol pair.
We have presented the results of this analysis for theSPORErepository. We have also
formalized the modifications (↑k) that must be made to a protocol in order to enable
trust of a load-balancer. Lastly, we have discussed how thisoptimization characterizes
why there is no overlap between two message spaces.

Acknowledgments.This work is partially supported by the NSF (CCF-0447509,
CNS-0627310, and a Graduate Research Fellowship), Cisco, and Google. We are grate-
ful for the advice and encouragement of Joshua Guttman and John Ramsdell.

References

1. A. Begel, S. McCanne, and S. L. Graham. BPF+: exploiting global data-flow optimization
in a generalized packet filter architecture. InSymposium on Communications, Architectures
and Protocols, 1999.

2. C. Bodei, P. Degano, H. Gao, and L. Brodo. Detecting and preventing type flaws: a control
flow analysis with tags.Electronic Notes in Theoretical Computer Science, 194(1):3–22,
2007.

3. V. Cortier, J. Delaitre, and S. Delaune. Safely ComposingSecurity Protocols. InConference
on Foundations of Software Technology and Theoretical Computer Science, 2007.

4. S. F. Doghmi, J. D. Guttman, and F. J. Thayer. Skeletons, homomorphisms, and shapes: Char-
acterizing protocol executions.Electronic Notes in Theoretical Computer Science, 173:85–
102, 2007.

5. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on Infor-
mation Theory, 29:198–208, 1983.

6. F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security protocol
correct? InIEEE Symposium on Security and Privacy, 1998.

7. J. D. Guttman. Authentication tests and disjoint encryption: a design method for security
protocols.Journal of Computer Security, 12(3/4):409–433, 2004.

8. J. D. Guttman, J. C. Herzog, J. D. Ramsdell, and B. T. Sniffen. Programming cryptographic
protocols. InTrust in Global Computing, 2005.

9. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption. In
Computer Security Foundations Workshop, 2000.

10. J. D. Guttman and F. J. Thayer. Authentication tests and the structure of bundles.Theoretical
Computer Science, 283(2):333–380, June 2002.

11. J. Heather, G. Lowe, and S. Schneider. How to prevent typeflaw attacks on security proto-
cols. InComputer Security Foundations Workshop, 2000.

12. P. Lee and M. Leone. Optimizing ML with run-time code generation. In Programming
Language Design and Implementation, 1996.

13. J. McCarthy, J. D. Guttman, J. D. Ramsdell, and S. Krishnamurthi. Compiling cryptographic
protocols for deployment on the Web. InWorld Wide Web, pages 687–696, 2007.

14. C. Meadows. Identifying potential type confusion in authenticated messages. InComputer
Security Foundations Workshop, 2002.

15. Project EVA. Security protocols open repository. http://www.lsv.ens-cachan.fr/spore/, 2007.
16. D. X. Song. Athena: a new efficient automated checker for security protocol analysis. In

Computer Security Foundations Workshop, 1999.
17. F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security protocols

correct.Journal of Computer Security, 7(2/3):191–230, 1999.
18. The Coq development team.The Coq proof assistant reference manual, 8.1 edition, 2007.

