
Teaching Garbage Collection without
Implementing Compilers or Interpreters

Gregory H. Cooper
Google, Inc.

ghc@google.com

Arjun Guha
Cornell University

arjun@cs.cornell.edu

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

Jay McCarthy
Brigham Young University

jay@cs.byu.edu

Robert Bruce Findler
Northwestern University

robby@northwestern.edu

ABSTRACT

Given the widespread use of memory-safe languages, stu-
dents must understand garbage collection well. Following
a constructivist philosophy, an effective approach would be
to have them implement garbage collectors. Unfortunately,
a full implementation depends on substantial knowledge of
compilers and runtime systems, which many courses do not
cover or cannot assume.
This paper presents an instructive approach to teaching

gc, where students implement it atop a simplified stack and
heap. Our approach eliminates enormous curricular depen-
dencies while preserving the essence of gc algorithms. We
take pains to enable testability, comprehensibility, and fa-
cilitates debugging. Our approach has been successfully
classroom-tested for several years at several institutions.

Categories and Subject Descriptors K.3.2 [Compu-

ters and Education]: Computer and Information Science Edu-

cation

General Terms Languages

Keywords Garbage collection

1. INTRODUCTION
Many students appear to have a poor grasp of garbage

collection (gc) [8], because it is an automated process that
runs without their control. This makes some students intim-
idated and untrusting of it (which can result in their using
unsafe programming languages), while others use it without
understanding its impact on performance.
Our antidote is to lay bare the underlying mechanisms by

having students implement them, in keeping with construc-
tivist educational principles. This approach is consistent
with what many programming languages courses already
do, following the venerable tradition of studying languages
through definitional interpreters [11]. A definitional inter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’13, March 6–9, 2012, Denver, Colorado, USA.
Copyright 2013 ACM 978-1-4503-1775-7/13/03 ...$15.00.

preter defines a language by a lightweight implementation,
in lieu of abstract mathematics. These interpreters allow
students to actually run programs in their languages and
explore the consequences of alternate definitions.

There are several programming language texts and courses
based on definitional interpreters [1, 6, 9], but most of them
do not cover gc within the implementation-oriented tradi-
tion. Implementing a gc is taxing because it requires a grasp
of low-level concepts such as walking the stack, pointer arith-
metic, manipulating raw memory, and so on, and most real-
world runtime systems—which focus on performance—are
not designed to enable easy modification. The alternative is
to provide students with a toy language’s implementation,
but such a language will necessarily be small and hence hard
to write interesting programs in, thereby discouraging test-
ing and experimentation.

Furthermore, even to work with a toy language, students
must first learn about interpreters or compilers, which is a
significant curricular prerequisite. In contrast, many other
university-level courses could and do teach gc, including
runtime systems, operating systems, and even middleware.
Thus, finding a way to implement gc without a heavy lan-
guage implementation prerequisite could have broad use.

In this paper, we present a framework for building, de-
bugging, and exploring garbage collectors. It meets several
important criteria:

• It minimizes curricular dependencies: we enable stu-
dents to learn and write garbage collection algorithms
in a full-fledged language with an IDE. Students do not
have to master other complex topics, such as compilers
and continuation-passing style, to implement their gc.
This makes the approach fit better as a module in a
variety of different courses that might want to teach
this material.

• It is flexible: students can investigate several strate-
gies, including copying collectors, generational collec-
tors, and conservative collectors. We design our frame-
work so that students can trivially change the type of
collector their program uses (Figure 1).

• It encourages exploration: our framework lets student-
written collectors manage memory for a regular pro-
gramming language. Thus, they are not limited to the
(much smaller) set of examples and tests they could
write in a toy language. This is especially valuable

Stop & Copy

Collector

Mark and Sweep

Collector

Racket's Native

Collector

Mutator

Mutator

Mutator

Students write mutators

in basic Racket.

Students write collectors in a

restricted language.

Generational

Collector

We provide the infrastructure to

couple these components.

Figure 1: High-Level Assignment Architecture

when students believe they have a working collector
and now want to stress-test it on non-trivial inputs.

• It facilitates testing and debugging : our framework can
use a native garbage collector instead of a student-
written collector. This allows the student to validate
behavior and to isolate errors. In addition, students
have powerful debugging tools as their disposal. We
include a heap visualizer, and engineer our system so
that the IDE’s debugger allows students to single-step

between collector and program.

In end-of-semester surveys, students indicate that whereas
they had been apprehensive before, they are now much more
likely to trust and rely on garbage collection as a result of
their implementation experience. Beyond the pure peda-
gogic value, this could have a salutary impact on the soft-
ware students write in their careers.
The solution described in this paper has already been im-

plemented in actual courses at several institutions. Before
adopting this solution, some of them used a more conven-
tional approach that depended on compiling to continuation-
passing style. Since switching to the new framework, all have
noticed a marked improvement in the quality of students’
solutions and the extent of their testing and exploration.

Background and Terminology.
We use standard terminology from the garbage collec-

tion literature. A language runtime’s memory subsystem,
or collector, has two principal duties. (1) It allocates and
de-allocates values on the heap on behalf of programs, or
mutators. (2) It provides facilities for reading and writing
values and inspecting their types at runtime.
When allocating a new value, the collector first searches

for a free slot of appropriate size on the heap. If found, it
stores the value along with metadata, e.g., a type-tag for
runtime type-inspection. Garbage collection usually starts
if there are no free slots. gc de-allocates values that are
not reachable by following references from local variables on
the stack and in registers; these variables are called the root

set. To follow references through arbitrary values, the gc

inspects their type-tags. Accessing and mutating values is

straightforward provided type-tags are respected; languages
use a combination of static and runtime checks to do so.

The outline above encompasses several kinds of collectors,
including mark-and-sweep, stop-and-copy, and generational
collectors. Advanced techniques such as concurrent collec-
tors are beyond the scope of our gc assignment.

Linguistic Dependence.
The work in this paper is done for Racket [3], a descen-

dant of Scheme. We use Racket for two reasons. Histori-
cally, Scheme and Racket are widely used in definitional in-
terpreter courses (thanks to several influential textbooks [1,
6, 9]). Much more importantly, Racket (but not Scheme)
provides us with the linguistic mechanisms needed to im-
plement this solution seamlessly from the student’s perspec-
tive, through its cutting-edge ability to treat languages as
libraries [5, 13]; other languages lack the module systems
needed to enable such a solution. Readers who would prefer
our solution in a different linguistic context can regard this
paper as a technical challenge for the module mechanisms
of their preferred language.

2. PROBLEM CONTEXT
Our garbage collection assignment, along with classroom

discussions contrasting garbage collection with the cost of
manual memory management and the impact of garbage col-
lection on programming style, constitutes about one fifth of
a roughly 13-week programming languages course for upper-
level undergraduates and beginning graduate (master’s and
PhD) students. We ask students to implement memory allo-
cation and garbage collection algorithms for a small number
of Racket primitives. We assign multiple algorithms to avoid
the risk of presenting too narrow a perspective: tradition-
ally, mark-and-sweep (which later also provides a starting
point for discussing conservative collection) and semispace

swapping (because it confronts the challenge of moving ob-
jects in memory). Students are given about two weeks to
complete these implementations.

We often grade the assignment by code inspection, in which
students present their collectors to the course staff and an-
swer questions about their design decisions. We discuss code
inspection for gc in more detail in Section 6.

3. WRITING COLLECTORS
We provide a general framework that allows students to

implement several kinds of collectors. The framework ex-
poses essential concepts such as memory layout and roots
on the stack. However, we hide lower-level machine details,
including registers and the binary representation of data.

A student-written collector is a module that implements
the interface in Figure 2a. These functions allocate val-
ues, query type-tags, and read values. The depicted func-
tions only manipulate lists and flat values (i.e., numbers
and booleans), though it is trivial to add support for other
datatypes. For example, we also require students to allocate
closures for higher-order functions.

These student-written functions determine the location,
layout, and size of values on the heap. Therefore, students
can experiment with collectors that add metadata (e.g., life-
times for generational collectors) or don’t (e.g., conservative
collectors). Students can also explore simple optimizations,
such as reusing allocated constants.

addr ∈ 0 ≤ n < (heap-size)
flat ≡ num | bool | empty

gc:cons :: addr× addr → addr

gc:cons? :: addr → bool

gc:first :: addr → addr

gc:rest :: addr → addr

gc:set-first! :: addr× addr → void

gc:set-rest! :: addr× addr → void

gc:flat :: flat → addr

gc:flat? :: addr → bool

gc:deref :: addr → flat

(a) Garbage Collector Interface (student-implemented)

heap-size :: → int

heap-set! :: addr× flat → void

heap-ref :: addr → flat

(b) Heap manipulation (provided)

get-root-set :: → listof root

read-root :: root → addr

set-root! :: root× addr → void

(c) Root manipulation (provided)

Figure 2: Generic Allocator Interface

Our framework provides functions to manipulate the heap
as an array of cells (Figure 2b). The collector can store
(heap-set!) and retrieve (heap-ref) flat values in heap cells—
storing structured-data in a single cell would violate the in-
tent of the assignment. The heap-size function returns the
size of the heap, which is set by each mutator (Section 4).
Our framework provides functions to manipulate the roots

on the stack (Figure 2c). A root is an updatable reference to
the heap: updates are needed by moving collectors, such as
stop-and-copy or compacting mark-and-sweep. We do not
require students to walk the mutator’s stack to find roots
themselves; the get-root-set function provides this func-
tionality. The next section explains why having students
implement root-finding is neither essential nor desirable.

4. TESTING AND CALCULATING ROOTS
To truly exercise a collector we must use it to allocate

memory for a program. In traditional courses, students
test collectors by writing mutators in small, toy, classroom-
only languages. It is difficult to write substantial tests in
these toy languages. However, in our framework students

write mutators in Racket itself. This enables students to
write much more rigorous tests: student submissions have
included non-trivial programs such as entire interpreters for
other languages, and complex graph algorithms. In addi-
tion, by automating stack-walking, our approach eliminates

a curricular dependency on program transformations.

The Traditional Approach.
In a traditional setting, such as a compilers course, writ-

ing a collector requires mastery of semantics-preserving pro-
gram transformations. We sketch these transformations for

(de#ne (incr-list lst)

 (if (empty? lst)

 empty

 (cons (+ 1 (/rst lst)) (incr-list (rest lst)))))

(de#ne (incr-list lst)

 (if (and (gc:2at? lst) (empty? (gc:deref lst)))

 (gc:2at empty)

 (gc:cons (gc:alloc-2at (+ (gc:deref (gc:2at 1))

 (gc:deref (gc:/rst lst))))

 (incr-list (gc:rest lst)))))

(de#ne (incr-list lst)

 (if (and (gc:2at? lst) (empty? (gc:deref lst)))

 (gc:2at empty)

 (let* ([t0 (gc:2at 1)]

 [t1 (gc:/rst lst)]

 [t2 (gc:2at (+ (gc:deref t0) (gc:deref t1)))])

 [t3 (incr-list (gc:rest lst))])

 (gc:cons t2 t3))))

Use students' GC primitives

Name intermediate results

(A-normal form)

Figure 3: Sketch of Program Transformations

a simple mutator that increments the numbers in a list (top
of Figure 3).

Given a mutator, such as incr-list, students have to first
instrument it to call their collector at memory-manipulation
points. Although this first transformation is conceptually
simple, it is orthogonal to gc algorithms and quickly be-
comes complex for non-toy languages. In addition, the col-
lector must save the state of the mutator, collect garbage if
necessary, perform the memory operation, and then restore
the state of the mutator. Implementing these steps in a low-
level language requires considerable effort and knowledge.

Students must then transform the mutator to an inter-
mediate form that names all sub-expressions. Such repre-
sentations (e.g., continuation-passing style, static single as-
signment, or A-normal form) are advanced topics, tricky to
implement, and tedious for even modestly-sized languages.

As a result, a traditional approach incurs several curric-
ular dependencies and is only realistic for a toy, classroom-
only mutator language.

Our Approach.
Our framework automates the transformations in Figure 3

for a large subset of the Racket language, eliminating the
curricular dependencies described above, and allowing stu-
dents to test and explore their collectors by writing mutators
in ordinary Racket. Our students are familiar with Racket,
since it is the language they use to write the collector itself!
Mutators do have one non-standard line, which specifies the
collector to use and the size of the heap:

(collector-setup 〈collector-filename〉 〈heap-size〉)

By varying the gc algorithm and heap size, students can
test for more corner-case behaviors.
Finally, our framework allows students to easily run se-

quences of collector functions on hand-crafted heaps. This
allows them to unit-test with complex heaps without craft-
ing complex mutators. To help students further, we provide
a program that generates mutators that allocate and tra-
verse random graphs.

5. DEBUGGING
Despite the efforts described above, building a collector re-

mains subtle and error-prone. Bugs often corrupt the heap,
and heap corruption may only cause errors and incorrect an-
swers several steps later. Students thus need good debugging
support. Building a debugger in this context is a challenge,
because bugs manifest in the interaction between collectors
and mutators. We thus need to co-debug the mutator and

collector, set breakpoints in either piece, and single-step be-
tween them.

The Traditional Approach.
In a traditional setting, the mutator is first compiled to

a low-level, intermediate representation, and then coupled
with the collector, which is also written in a low-level lan-
guage, such as C. A debugger for this low-level language
(GDB) can debug both components. However, without ex-
tensive tooling, the debugger can only show the mutator’s
intermediate form, so students have to fully absorb the very
program transformations we were trying to hide.

Our Approach.
Figure 4 shows our framework co-debugging a mutator

and collector. The collector has a breakpoint at the start
of gc. We are paused a few steps beyond this breakpoint,
which we reached because the heap filled up after a few
recursive calls in the mutator. Note that the stack shows
both mutator and collector stack frames. Most significantly,
we can debug both in their original source language.
Our approach reuses Racket’s native debugger [10] by

carefully transforming the mutator using Racket’s macros.
The debugger works at the original source level, and does
not step into intermediate expressions introduced by macros.
This is possible because macros can attach original source
locations and variable names to generated code. Simple
macros can track names and locations automatically, but our
more complex, whole-program transformations require more
careful engineering. In particular, we are careful to leave the
shape of the control stack unmolested by our macros.

Heap Visualization.
Debugging is not enough. Not surprisingly, we noticed

that in practice, students have as much difficulty interpret-
ing their data as they do debugging the flow of control.
Specifically, we found that they repeatedly printed the entire
heap, often as frequently as before and after every allocation
(to answer questions like, What exactly is at location 14?).
They then had to pore over the output to reconstruct its
meaning as a heap of values.
While such activity builds character, it may not fit the

constraints of some teaching schedules. Fortunately, we can
provide a much better interface for this domain. Keeping
the heap data structure under the control of our code—a
decision made to guard the size of and kinds of values stored

in the heap—has a (perhaps unexpected) advantage: we can
find the heap without difficulty (whereas otherwise it would
be just another datum in the collector code) and employ the
student’s heap-inspection routines to display it.

Figure 5 shows the heap at the point shown in Figure 4.
From this, it is relatively easy to reconstruct what datum is
at location 27.

Naturally, the visualizer and debugger are especially use-
ful in conjunction. For instance, it is often convenient to
avoid stepping through code that sets up initial data struc-
tures in the mutator. The student can thus set a breakpoint
in the mutator past this stage. Upon control arriving there,
the student can then enable breakpoints in the collector,
or use single-stepping, to proceed methodically through the
program’s execution—using the visualizer to avoid having
to manually inspect the heap at each point along the way.

6. PEDAGOGY
Implementing collectors forces students to confront in-

tricacies of the problem that would be difficult to convey
through an abstract verbal treatment alone. To evaluate
student understanding we often augment the implementa-
tion assignment with a code inspection, in which students
explain their programs to the course staff, then answer ques-
tions about their design decisions and how they might handle
potential extensions. Our questions include:

basic concepts How did they represent data on the heap,
and why? Did they inline the free list in mark-and-sweep?
What are forwarding pointers in stop-and-copy, and what
purpose do they serve? Is their collector realistic, or have
they over-simplified the problem by exploiting high-level fea-
tures, or even cheated (e.g., ignoring the provided heap in-
terface and relying instead on Racket’s collector)?

representations What representations did they choose for
flat values? Did every mention of a flat value result in fresh
allocation? Did they reuse existing allocated values (and if
so, what are the time-space tradeoffs)? Did they pre-allocate
any values? Did they make intelligent use of addresses to
encode some values in the address itself and, if so, how did
this affect their ability to address all of the heap?

cycles How does the collector handle cyclic data? How does
it avoid getting stuck in an infinite loop if it traverses data
with cycles? Do we need to check for sharing even in pro-
grams that do not create cyclic data, and what impact does
this have on a copying collector?

subtleties What happens if the collector needs to run in
the middle of a recursive procedure? Could the collector
run out of memory in the middle of allocating an object? Is
the collector idempotent?

testing Did they have test cases to exercise salient features
of the language? Did they try nested data structures, such
as lists of lists? The assignment does not provide a canonical
mutator, so students are forced to exercise their imagination.

extensions What would it take to add support for coalesc-
ing adjacent free blocks in the mark-and-sweep collector?
How difficult would it be to support other kinds of objects?

invariants What invariants hold for the mark-and-sweep
collector? What about semispace swapping?

mutator stack frames

collector stack frames
breakpoint in

allocator

single-step

debugging

Figure 4: Co-debugging a collector and a mutator

Figure 5: Heap visualization: a filled semi-space

By having a concrete implementation in front of us (that
the student has hopefully thought long and hard about),
we can ask specific, detailed questions that would otherwise
be difficult to frame. Code inspection thus gives us a very
strong sense of the student’s understanding of the concepts.

Student Feedback.
Many faculty have reported success using this framework.

For example, one author, Jay McCarthy, surveyed 258 stu-
dents over 4 years. Before doing the assignment, 40 students
agreed with the statement, “Manual memory management
is usually preferable to gc,” but only 10 agreed after the as-
signment. Before the assignment, 80% believed that manual
memory management is always faster than gc, but only 40%
agree after; the others answer that gc is as fast or faster,
given enough memory. The students were also asked what
part of the class they learned from and enjoyed the most.
Of the 258, only 15 mentioned anything other than gc.

7. IMPLEMENTATION
Our gc framework could be built for any programming

language, but Racket provides a combination of several tech-
nologies that ease its implementation [13]. Whereas syntac-
tic extensions are part of the Scheme tradition, a Racket
language can have entirely different syntax and semantics.
Our gc framework is an extreme example of the latter: the
semantics of the mutator language changes as students fix
bugs in their collectors. The implementation is a separate
research contribution beyond the scope of this paper. But,
we note some key techniques below.

Collector The collector language provides a heap abstrac-
tion to students. The language itself ensures that students
do not store structured data directly on the heap using con-
tracts [4]. In addition, the collector language itself starts
the graphical heap visualizer.

Mutator The mutator language implements the transfor-
mations that students have to learn in traditional gc courses
(Section 4). Throughout these transformations, we ensure
that generated code is carefully tagged with the source-
location of original code. This ensures that runtime er-
rors have correct locations and that the transformations are
transparent to the debugger [10].

The mutator language uses students’ collectors instead
of Racket to manipulate memory (e.g., it rewrites cons to
gc:cons). If done naively, e.g., with macros, we would have
to instrument all syntactic forms (that we remember). In-
stead, we use Racket’s ability to precisely control macro ex-
pansion: we first transform mutators to primitive syntax
and then instrument code. This ensures that students can
write mutators with convenient syntax.

Mutators must expose their root set to collectors, which
we do with an internal roots variable at each program point.
To calculate roots, we first name all intermediate expressions
and then calculate free variables at each program point. By
doing so, as Figure 6 illustrates, the set of free variables and
the root set coincide for a single stack frame. We also aug-
ment all functions with an additional caller-roots parameter.
Thus at each point, the root set is the union of caller-roots
and the local roots.1

8. RELATED WORK
We surveyed faculty who teach implementation-based lan-

guages courses, as well as experts in the field of garbage
collection, and none of them appear to use an infrastruc-
ture similar to ours. The only assignments we found involv-
ing implementation of garbage collection were in courses on
compilers and run-time systems.

At the University of Victoria, Nigel Horspool’s course on
virtual machines treats gc in depth [7]. Students study the

1N.B., we use continuation marks to obviate parts of this
transformation and preserve tail-calls [2].

(let ([x (* (+ 2 3) 7)])

 x)

(let ([x (* (+ 2 3) 7)])

 x)

(let ([x (* (+ 2 3) 7)])

 x)

Heap 2 3 5 7 35

{t0, t1} {t2, t3}

Original

Source

(let ([t0 2] [t1 3])

 (let ([t2 (+ t0 t1)] [t3 7])

 (let ([x (* t2 t3)])

 x)))

(let ([t0 2] [t1 3])

 (let ([t2 (+ t0 t1)] [t3 7])

 (let ([x (* t2 t3)])

 x)))

(let ([t0 2] [t1 3])

 (let ([t2 (+ t0 t1)] [t3 7])

 (let ([x (* t2 t3)])

 x)))

A-normal

form

Roots

Free

Variables
{x}

execution

identical to roots in stack frame

Figure 6: Naming intermediate results allows us to track roots

implementation of a conservative mark-and-sweep collector
inside a JVM, then answer questions pertaining to design
decisions. Students do not implement collection algorithms,
but they instrument the collector to obtain statistics.
At Cornell, Greg Morrisett’s course on data structures and

functional programming [12] included an assignment to im-
plement parts of a compiler and runtime system for a subset
of ML, including generational gc. Programs are first com-
piled to lambda terms, which are evaluated by an abstract
machine. The course framework specifies the heap layout
and handles allocation; students only implement collection.
At Princeton, David Walker assigned a similar project that
had students write a semispace collector for a simple, func-
tional language interpreter [14]. All the interfaces between
the elements of the system (memory layout, stack, heap,
collector) are spelled out explicitly in the module system.
Abelson and Sussman detail the implementation of another
semispace collector for a register-based Scheme evaluator [1].
The main difference between all these assignments and

ours is their use of explicit compilers, interpreters, and ab-
stract machines, which expose a lower-level model of the
runtime system, encouraging a more systems-oriented view
of garbage collection. Our approach involves fewer curricular
dependencies and allows the students to focus on the collec-
tion algorithms. Our unobtrusive transformation strategy
allows students to write mutators in a full-fledged language
and exploit graphical debugging and testing features in the
DrRacket IDE. These variations reflect a difference in course
content and philosophy; our approach seems advantageous
for instructors interested in covering garbage collection with-
out assuming much low-level background or context.

Acknowledgments

We thank our students for enduring gc, Matthew Flatt for
making Racket awesome, and the NSF for partially support-
ing this work.

9. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press,
Cambridge, MA, 1985.

[2] J. Clements and M. Felleisen. A tail-recursive
semantics for stack inspection. In ESOP, 2003.

[3] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler, and M. Felleisen.
DrScheme: A programming environment for Scheme.
JFP, 12(2):159–182, 2002.

[4] R. B. Findler and M. Felleisen. Contracts for
higher-order functions. In ICFP, 2002.

[5] M. Flatt. Composable and compilable macros. In
ICFP, 2002.

[6] D. P. Friedman, M. Wand, and C. T. Haynes.
Essentials of Programming Languages. MIT Press,
second edition, 2001.

[7] N. Horspool. Topics in virtual machine
implementation. http://www.cs.uvic.ca/~nigelh/
Courses/csc586a-2008/.

[8] R. Jones and R. Lins. Garbage Collection: Algorithms

for Automatic Dynamic Memory Management. John
Wiley & Sons, 1996.

[9] S. Krishnamurthi. Programming Languages:

Application and Interpretation. 2006. http://www.cs.
brown.edu/~sk/Publications/Books/ProgLangs/.

[10] G. Marceau, G. H. Cooper, J. P. Spiro,
S. Krishnamurthi, and S. P. Reiss. The design and
implementation of a dataflow language for scriptable
debugging. ASE Journal, 14(1):59–86, 2007.

[11] J. McCarthy. Recursive functions of symbolic
expressions and their computation by machine.
CACM, 3(3):184–185, 1960.

[12] J. G. Morrisett. Mini-ML Compiler. http://www.cs.
cornell.edu/Courses/cs312/2002fa/hw/ps5/ps5.

html.

[13] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper,
M. Flatt, and M. Felleisen. Languages as libraries. In
PLDI, 2011.

[14] D. Walker. Garbage collection programming
assignment. http://www.cs.princeton.edu/courses/
archive/spr05/cos320.

http://www.cs.uvic.ca/~nigelh/Courses/csc586a-2008/
http://www.cs.uvic.ca/~nigelh/Courses/csc586a-2008/
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/
http://www.cs.cornell.edu/Courses/cs312/2002fa/hw/ps5/ps5.html
http://www.cs.cornell.edu/Courses/cs312/2002fa/hw/ps5/ps5.html
http://www.cs.cornell.edu/Courses/cs312/2002fa/hw/ps5/ps5.html
http://www.cs.princeton.edu/courses/archive/spr05/cos320
http://www.cs.princeton.edu/courses/archive/spr05/cos320

	Introduction
	Problem Context
	Writing Collectors
	Testing and Calculating Roots
	Debugging
	Pedagogy
	Implementation
	Related Work
	References

