
Deadlock
• A computer system can be abstractly represented by a

pair of sets (Σ, Π), where
– Σ = {All possible allocation states of all system

resources}
– Π

= {Threads}

• Threads behave like functions, mapping one system
state to another as they execute

• We say that a thread is blocked if it is in a system state
from which it cannot run

• We say that a thread is deadlocked if a thread is
blocked in the current system state, and in all future
states the system can ever reach

Deadlock
• There are 4 necessary conditions for a

deadlock to occur
– The existence of mutually exclusive resources

in a system (the mutex condition)
• Such resources are broadly characterized as either

serially reusable, or consumable

– A hold-and-wait condition in the system
– A no-preemption condition in the system
– A circular wait condition in the system

Deadlock

• There are 4 areas of deadlock study that
have been researched extensively:
– Deadlock prevention
– Deadlock avoidance
– Deadlock detection

• Deadlock recovery as an extension of detection

Deadlock
• Prevention involves denying a necessary condition

and is always “expensive”
• Avoidance employs policy decisions which may

hold-back resources to maintain “safe states”
• Detection is generally achieved by the

construction and reduction of Resource Allocation
Graphs (RAGs … bipartite graphs with thread and
resource nodes)

• Recovery generally involves thread termination
and is often based on ad-hoc policies at a given
site

T-1 T-2

R-1

R-2

A Resource Allocation Graph

Deadlock

• Prevention may be achieved by denying any
one of the necessary conditions:
– Exclusively accessed resources

• since things as basic as a memory location can fall
in this category, we have to live with this condition

– Hold and wait condition
• a-priori resource allocation (the policy employed

can lead to its own deadlock)
• resource under-utilization (RU)

Deadlock
• Prevention (continued)

– No preemption
• lost work
• indefinite postponement (IP)

– Circular wait
• appropriate resource ordering
• RU
• changes may go all the way back to application

sources

Deadlock
• Avoidance

– Safe and unsafe states
• no single resource allocation can lead directly to

deadlock from a safe state
• consider the following system of 3 threads and 10

tape drives:
THREAD CURRENT MAX BALANCE

A 2 4 2
B 3 6 3
C 3 8 5

If A asks for 1 drive should the request be granted ?
If B asks for 1 drive should the request be granted ?

Deadlock
• Detection

– RAG reduction … bipartite, M res, N threads
– Cycle is necessary condition for deadlock in all

cases, but is sufficient in AND model reusable
only systems

R4

T3

T1

T2

T4

T5

R1

R3

R2

T3

T1

T2

T4

T5

R1

R3

R2

T3

T1

T2

T4

T5

R1

R3

R2

5

4

3
2

1

6

R4

R4

T3

T1

T2

T4

T5

R1

R3

R2

T3

T1

T2

T4

T5

R1

R3

R2

∞

1

2
7

5 4

3

10

8

9

6

R4

R4

T1

T3

T5
T7

T2

T6

T4

R1

R6

R5
R3

R4

R2

∞

T1

T3

T5
T7

T2

T6

T4

R1

R6

R5
R3

R4

R2

T4 and T5 in
DL

Deadlock

• Complexity of reduction:
– For GENERAL graphs:

• O(MN!)

– For REUSABLE ONLY graphs:
• O(MN)

	Deadlock
	Deadlock
	Deadlock
	Deadlock
	Slide Number 5
	Deadlock
	Deadlock
	Deadlock
	Deadlock
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Deadlock

