Memory Management with Bitmaps

1 AI % 11 IB 11 1 (;-; | V]/ | - ID L1 IEI % :j:j

11111000 Plof[s]| 4—|H|[5]|3] d—|P|[8|6| [P |14] 4] o
11111111)

11001111 C
H|18| 2| —4—>| P |20l 6| ——|P |26 3| | H |29 3 | X

11111000 / f \ ‘f
i T Hole Starts Length Process
at 18 2

(b) ()

Figure 3-6. (a) A part of memory with five processes and three
holes. The tick marks show the memory allocation units. The
shaded regions (0 in the bitmap) are free. (b) The
corresponding bitmap. (c) The same information as a list.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Management with Linked Lists

(@)

(b)

Before X terminates

A | x %

© V7

(d)

X

B

[

X

7

becomes

becomes

becomes

becomes

After X terminates

A

7 B

A

%

I

(72277

Figure 3-7. Four neighbor combinations

for the terminating process, X.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Virtual Memory — Paging (1)

The CPU sends virtual

CPU addresses to the MMU
package /
CPU 1>
/ Memory \ Disk
ot management emory controller
unit
'\ l l Bus

X

The MMU sends physical
addresses to the memory

Figure 3-8. The position and function of the MMU — shown as
being a part of the CPU chip (it commonly is nowadays).
Logically it could be a separate chip, was in years gone by.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Paging (2)

Virtual
address
space
60K—64K X
56K—-60K X } Virtual page
52K-56K X
48K-52K X
44K—-48K 7
40K—44K X .
36K—40K | 5 mﬁfgf
32K-36K X address
28K-32K X 28K-32K
24K-28K X 24K-28K
20K-24K 3 20K-24K
16K—20K 4 - 16K—20K
12K-16K 0 \ 12K-16K
8K-12K 6 8K-12K
4K-8K 1 - 4K-8K
0K-4K 2 / \ 0K-4K
Page frame

Figure 3-9. Relation between virtual addresses and
physical memory addresses given by page table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Paging (3)

A

[To[o[olo[o[o[olo[o o[To[o]
v/\ " J

k - A

15| 000 0

14| 000 | O

13| 000 | O

12| 000 0

11] 111 1

10| 000 0

j ! 12-bit offset

-bit offse
Ft:ge el e 19 copied directly
© 71000 |0 from input

6| 000 0 to output

5|1 011 1

4| 100 1

3| 000 1

2[110 [1] 110 |

1| 001 1 B "

resen

Q) 9o L fabsem bit

Virtual page = 2 is used

as an index into the

page table

LoJo]t]ofofofofofofofofofo[1]o]fo]
A

Qutgoing
physical
address
(24580)

Incoming
virtual
address
(8196)

Figure 3-10. The internal operation of the MMU with

16 4-KB pages.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Structure of Page Table Entry

Caching
disabled Modified Present/absent

[/ /

% | | | Page frame number

N\

Referenced Protection

Figure 3-11. A typical page table entry.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

31

Page-Directory Entry (4-KByte Page Table)

12 11 987654321
PIP|U|R
Fage-Table Base Address fwvail |c|Plolalclw] |
S o|T|s|w
Available for system programmer's use J ‘
Global page (lgnored)
Page size (0 indicates 4 KBytes)
Reserved (sat to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/\Write
Present
Page-Table Entry (4-KByte Page)
3 12 11 G g76558543210
P PIF|U]IR
Fage Base Address Avail |s|A(D|a|Clw f
T DI|T W

Available for system programmer’s use J ‘
Global Page

Page Table Attribute Index
Dirty
Accessed
Cache Disabled

Write-Through
User/Supervisor

Read/\Write

Fresent

PTE Control Bits
Present flag

— If it is set, the referred-to page (or Page Table) is contained in main
memory.

Accessed flag

— Set each time the paging unit addresses the corresponding page frame.
Dirty flag

— Applies only to the Page Table entries.
Read/Write flag

— Contains the access right (Read/Write or Read) of the page or of the
Page Table

User/Supervisor flag
— Contains the privilege level required to access the page or Page Table
PCD and PWT flags

— Co?]trols the way the page or Page Table is handled by the hardware
cache

Page Size flag

— Applies only to Page Directory entries.
Global flag

— Applies only to Page Table entries.

Speeding Up Paging

Paging implementation issues:

« The mapping from virtual address to physical
address must be fast.

If the virtual address space is large, the page table
will be large.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Translation Lookaside Buffers

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

Figure 3-12. A TLB to speed up paging.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multilevel Page Tables

SeCuna-evel
page tables

ZEEERR

Top-level
page table

1023 U
- #'_‘______.’

Bits 10 10 12
[Pt] Pr2] ofiset

(@

EEEER R

O=MNWEOD o
3T

1023

o
pages

EEEER R

Figure 3-13. (a) A 32-bit address with two page table fields.
(b) Two-level page tables.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Page Replacement Algorithms

Optimal page replacement algorithm
Not recently used page replacement
First-In, First-Out page replacement
Second chance page replacement
Clock page replacement

Least recently used page replacement
Working set page replacement
WSClock page replacement

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Second Chance Algorithm

Page loaded first

\

Most recently
T loaded page

A is treated like a

0 8 12 14 15 18
A D E F G H
3 12 14 15 18 20
B E F G H A

P newly loaded page

Figure 3-15. Operation of second chance.

(a) Pages sorted in FIFO order.

(b) Page list if a page fault occurs at time 20 and A has its R
bit set. The numbers above the pages are their load times.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Clock Page Replacement
Algorithm

B =]:C|eS\ B IUqg IgASUCE PIuUq
E = 0: ENCE jue bgds

U 6 Y PI:

M6 gcfiou jgKeu gebsuge

D
] boiupuad o 12 12becisq
M6 bgds jue pIuq 12
MWMeU g bgds jgn|f occnie’

Figure 3-16. The clock page replacement algorithm.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

LRU Page Replacement Algorithm

Page Page Page Page Page
o 1 2 3 O 1 2 3 1 2 3 1 2 3 1 2 3
ofoj1|1]1 ojfoj|1|1 OJO0|O|1 0]l]0]|0 0olo|o0|oO
1101000 110111 110|101 110]10]|0 1101010
2l0j0|0]O0 Ojojo|o 11101 111]10]0 11101
3lojo|oj]o ojojof|o 01]0]0|O 1111110 1{1]10]0

(a) (b) () (d) (e)
0O(o0Jo0O0|O o1 |11 o110 of1]0]0 ol1]01]0
110111 ojoj|1|1 010]11|0O 0O(0]0]|0O 0ojojo0|oO
110|101 ojoj|o|1 0l0]|]O0O|O 11101 1{1]10]0
1]1]0|10]0 oOjojof|o 1{1]11]0 111]10]0 111110

(f) (9) (h) (i) (1)

Figure 3-17. LRU using a matrix when pages are referenced in the
order0,1,2,3,2,1,0, 3, 2, 3.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Page

Figure 3-18. The aging algorithm simulates LRU in software.
Shown are six pages for five clock ticks. The five clock ticks
are represented by (a) to (e).

Simulating LRU In Software

R bits for R bits for R bits for R bits for R bits for
pages 0-5, pages 0-5, pages 0-5, pages 0-5, pages 0-5,
clock tick O clock tick 1 clock tick 2 clock tick 3 clock tick 4
Oo|1(0]1 110|101 1]10|11|0 0|0]|0]1 111]0]|0

I		
I		
I	I	
I : I I

10000000 i 11000000 i 11100000 i 11110000 i 01111000
| | | |
| | | |

00000000 i 10000000 i 11000000 i 01100000 i 10110000
| | | |
| | | |

10000000 i 01000000 i 00100000 i 00100000 i 10010000
| | | |
| | | |

00000000 i 00000000 i 10000000 i 01000000 i 00100000
| | | |
| | | |

10000000 | 11000000 : 01100000 ! 10110000 : 01011000

10000000 ! 01000000 | 10100000 ! 01010000 ! 00101000
| I | I

(a) (b) (c) (d) (e)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Working Set Page Replacement (1)

wi(k.t)

1

Figure 3-19. The working set is the set of pages used by the k
most recent memory references. The function w(k, t) is the
size of the working set at time t.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Working Set Page Replacement (2)

| 2204 | Current virtual time
Information about { / R (Referenced) bit
one page 2084 |1
2003 | 1
A
Time of last use ———>-1980 | 1 Scan all pages examining R bit:
| if(R==1)
Page referenced 1213 _0 set time of last use to current virtual time
during this tick .
2014 11 if (R == 0 and age > 1)
2020 |1 remove this page
2032 | 1 if (R == 0 and age < 1)
2’399 nﬁ_:‘_ re;fleiienced =y remember the smallest time
uring this tic 7620 10
Page table

Figure 3-20. The working set algorithm.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The WSClock Page Replacement Algorithm (1)

When the hand comes all the way around to its
starting point there are two cases to consider:

° At least one write has been scheduled.
o No writes have been scheduled.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The WSClock Page Replacement Algorithm (2)

££U4 | Lurrent virwai um

1620]0 1620]0

iz (K A TZ73l0]
I
Time of
last use
(a) (b)
1620]0 1620]0
2032|1] 2084][1 | 2032[1
[T NI LI
2003[1] 2020]1] 2003[1] / 2020]1]
NN JAnimmimm]
1980 [1] 2014]0 1980 [1] 2014]0
1213]0 2204[1 |

New page

Figure 3-21. Operation of the WSClock algorithm. (a) and (b) give
an example of what happens when R = 1.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The WSClock Page Replacement Algorithm (3)

Lecus |

|1520i0| |1 520i0|
Z084[t a

N l ==
213

2084
[] | [] []
2003 2020]1| 2020]1 |

|1930i1| 201411 |1930i1| |2014i0|
] L

R bit
Time of
last use

(@ (b)

|1520i0| |1 520i0|
(zomari] =zl

]

=

n
[2:]
=

s
g
|

|] |
20201} / 2020]1]
|1980 |1| |2014i0| |1930 |1| |2014i0|
HEY |
New page

Figure 3-21. Operation of the WSClock algorithm.
(c) and (d) give an example of R = 0.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Summary of Page Replacement Algorithms

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude approximation of LRU
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used) | Excellent, but difficult to implement exactly
NFU (Not Frequently Used) | Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

Figure 3-22. Page replacement algorithms discussed in the text.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Local versus Global Allocation Policies (1)

Age
AQ 10 A0 AO
A1 Z A1 A1
A2 5 A2 A2
A3 4 A3 A3
A4 6 A4 A4
A5 3 CAB> A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3 A
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
C1 3 C1 C1
C2 5 C2 C2
C3 6 C3 C3

(@) (b) ()

(é) Original configuration.'(b) Lo_calvpagé replacement.
(c) Global page replacement.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

|_oad Control

e Despite good designs, system may still thrash

e \When PFF algorithm indicates
— some processes need more memory
— but no processes need less

e Solution:

— swap one or more to disk, divide up pages they held
— reconsider degree of multiprogramming

Page Size (1)

Small page size

o Advantages
— less internal fragmentation
— Dbetter fit for various data structures, code sections
— less unused program in memory
e Disadvantages
— programs need many pages, larger page tables

Local versus Global Allocation Policies (2)

Page faults/sec

Number of page frames assigned

Figure 3-24. Page fault rate as a function
of the number of page frames assigned.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Separate Instruction and Data Spaces

D32

Data <

Program <

Single address

space

Figure 3-25. (a) One address space.

032

Program {
0

| space

D space

(b) Separate | and D spaces.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

} Unused page

> Data

Shared Pages

[111}

\
Process
table
Program Data 1 Data 2
L J
Y
Page tables

Figure 3-26. Two processes sharing the same program
sharing its page table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Shared Libraries

36K

12K

Process 1 RAM Process 2

Figure 3-27. A shared library being used by two processes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Page Fault Handling (1)

The hardware traps to the kernel, saving the
program counter on the stack.

An assembly code routine is started to save the
general registers and other volatile information.

The operating system discovers that a page
fault has occurred, and tries to discover which
virtual page Is needed.

Once the virtual address that caused the fault is
known, the system checks to see if this address
IS valid and the protection consistent with the
access

Page Fault Handling (2)

If the page frame selected is dirty, the page is
scheduled for transfer to the disk, and a context

switch takes place.
When page frame is clean, operating system

looks up the disk address where the needed
page Is, schedules a disk operation to bring it in.

When disk interrupt indicates page has arrived,
page tables updated to reflect position, frame
marked as being in normal state.

Page Fault Handling (3)

Faulting instruction backed up to state it had
when it began and program counter reset to
point to that instruction.

Faulting process scheduled, operating system
returns to the (assembly language) routine that
called It.

This routine reloads registers and other state
Information and returns to user space to
continue execution, as if no fault had occurred.

1000
1002

1004

Instruction Backup

MOVE.L #6(A1), 2(A0)

H—1 6 Bits ——

MOVE
6

2

} Opcode
} First operand
!

Second operand

Figure 3-28. An instruction causing a page fault.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Main memory

Pages

a)

Backing Store (1)

Disk

Swap area
7

5

2
7

Main memory

Disk

Pages
0 3
4 6
Page
table
51
Disk

O

Swap area

N

2N

Figure 3-29. (a) Paging to a static swap area.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Backing Store (2)

Main memory Disk
AN
Pages S
0 3 Swap area
4 6
n
Page 2
table / 1

[5] .

" Disk /
4 -
3 “map

(b)

Figure 3-29. (b) Backing up pages dynamically.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Separation of Policy and Mechanism (1)

Memory management system is divided into
three parts:

 Alow-level MMU handler.
A page fault handler that is part of the kernel.
 An external pager running in user space.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Separation of Policy and Mechanism (2)

3. Request page

/\ Disk

Main memory

User USEI’
External
2. Needed

4.Page

S—

page
1. Page 5. Here
fault Y l e
Kernel Fault
space) 6. Map
page in

Figure 3-30. Page fault handling with an external pager.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

