
Events which cause process creation: 
 
• System initialization. 
• Execution of a process creation system call by a 

running process. 
•  In Linux/UNIX: fork()  
•  In Windows CreateProcess() 

• A user request to create a new process. 
• Initiation of a batch job. 

Process Creation 
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Events which cause process termination: 
 
• Normal exit (voluntary). 

•  Using C call  exit(0); 
• Error exit (voluntary).  

•  Using C call exit(N); where 0 < N < 256 in Linux 
• Fatal error (involuntary). 

•  Process receives a signal in Linux/UNIX 
• Killed by another process (involuntary). 

•  Process receives a signal in Linux/UNIX 

Process Termination 
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Major Components of a Linux/UNIX Process 
• PID 
• PPID 
• UID RUID and EUID 
• GID RGID and EGID 
• Address Space (Minimum: TEXT, GLOBAL DATA, STACK) 
• Executable Program 
• One or more Threads 
• Default (Initial Thread) Scheduling Policy and Priority 
• Current Working Directory 
• Open Channel Table 
• Signal Table 

Process Components 
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Address Space Model 

Addr 0 
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Addr N - 1 

N Byte Address Space 



Figure 2-4. Some of the fields of a typical process table entry. 

Implementation of Processes  
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Figure 2-5. Skeleton of what the lowest level of the operating 
system does when an interrupt occurs. 

Interrupts on a Process Thread  

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Thread States 
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Figure 2-7. A word processor with three threads. 

Thread Usage (1) 
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Figure 2-11. (a) Three processes each with one thread. (b) One 
process with three threads. 

The Classical Thread Model (1) 
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Figure 2-12. The first column lists some items shared by all 
threads in a process. The second one lists some items private 

to each thread. 

The Classical Thread Model (2) 
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Figure 2-13. Each thread has its own stack. 

The Classical Thread Model (3) 
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Conditions required to avoid race condition: 
 
• No two threads may be simultaneously inside their 

critical regions. (Mutex Requirement) 
• No assumptions may be made about speeds or the 

number of CPUs. 
• No thread running outside its critical region may 

block other thread. (Progress Requirement) 
• No thread should have to wait forever to enter its 

critical region. (Bounded Waiting Requirement) 

Critical Regions (1) 
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Figure 2-22. Mutual exclusion using critical regions. 

Critical Regions (2) 
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Proposals for achieving mutual exclusion: 
 
• Disabling interrupts 
• Lock variables 
• Strict alternation 
• Peterson's solution 
• The TSL instruction 

Mutual Exclusion with Busy Waiting 
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Figure 2-23. A proposed solution to the critical region problem.  
(a) Process 0. (b) Process 1. In both cases, be sure to note 

the semicolons terminating the while statements. 

Strict Alternation 
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Figure 2-24. Peterson’s solution for achieving mutual exclusion. 

Peterson's Solution 
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Figure 2-26. Entering and leaving a critical region  
using the x-86 XCHG instruction. 

The TSL Instruction (2) 
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Semaphores 
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• Basically an unsigned counter and a queue 
• Two basic operations defined: 

• wait(sem_object);  also down(), p() 
• signal(sem_object);  also up(), v() 

• A wait call is a conditional decrement  
• If sem counter is +, decrement  and return 
• If sem counter is 0, block caller 

• A signal call is a conditional increment 
• If no waiters, increment counter 
• If waiters, move one waiter to ready Q 



GLOBAL TO PRODUCER AND CONSUMER THREADS: 
sem_t  prod = 10;         sem_t  cons = 0; 
 sem_t  iptr = 1;            sem_t  optr = 1; 
 
int buf[10], in=0, out=0; 
void p ( sem_t  * ); 
void v ( sem_t  * ); 
       PRODUCER FUNCTION                                         CONSUMER FUNCTION 

void producer(){ 
while(1){ 
  p(&prod); 
  p(&iptr); 
  buf[in] = random(); 
  in = (in + 1) % 10; 
  v(&iptr); 
  v(&cons);  
} 

void consumer(){ 
int val; 
while(1){ 
  p(&cons); 
  p(&optr); 
  val = buf[out]; 
  // print val somewhere 
  out = (out + 1) % 10; 
  v(&optr); 
  v(&prod); 
} 

MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE 



Event Counters and Sequencers 
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• Semaphores may provide more functionality than needed 
to resolve certain kinds of synchronization requirements 

• Total order problems like the multiple producer / 
multiple consumer problem need the power of 
semaphores 

• Partial order problems like the single producer / 
single consumer problem do not need all of the 
functionality of a semaphore 

• Event Counters can solve partial order problems more 
efficiently than semaphores 

• Event Counters in conjunction with Sequencers can solve 
total order problems as efficiently as semaphores, and 
can provide additional functionality 
 
 



Event Counters 
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• Basically an unsigned counter and a queue 
• Two basic operations defined: 

• await(EventCounter, value); 
• advance (EventCounter); 

• An await call is a test between EC and value 
• If value is =< EC return to caller 
• If value is > EC block caller 

• An advance call is an unconditional EC increment 
• If any waiter has value =< EC after increment, 

then move such waiter(s) to ready Q 



 GLOBAL TO PRODUCER AND CONSUMER THREADS: 
ec_t pEC, cEC; 
int ring_buf[10];  
unsigned  in=0, out=0; 
void await    (ec_t * , int); 
void advance  (ec_t *); 
   
PRODUCER FUNCTION                                                   CONSUMER FUNCTION           
 
 void producer(){ 

while(1){ 
  await(&pEC, in – 10 + 1); 
  ring_buf[in % 10] = random(); 
  in = (in + 1); 
  advance(&cEC) 
} 

void consumer(){ 
int val; 
while(1){ 
  await(&cEC, out + 1); 
  val = ring_buf[out % 10]; 
  // print val somewhere 
  out = (out + 1); 
  advance(&pEC); 
} 

ONE PRODUCER, ONE CONSUMER RING BUFFER EXAMPLE 



Sequencers 
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• Basically an unsigned atomic counter 
• One operation defined: 

• ticket(Sequencer);  
• A ticket call atomically returns the next Sequencer 

value, and this value is generally used in an 
await(EC, ticket(Seq)) form of call 

• Sequencers, in conjunction with Event Counters 
provide all of the synchronization capabilities of 
semaphores 



 GLOBAL TO PRODUCER AND CONSUMER THREADS: 
ec_t  pEC, cEC; 
seq_t ps,  cs; 
int ring_buf[10];  
unsigned  in=0, out=0; 
void await   (ec_t * , int); 
void advance (ec_t *); 
int  ticket  (seq_t *); 
   
PRODUCER FUNCTION                                                   CONSUMER FUNCTION           
 
 void producer(){ 

int t;  // local to each pro 
while(1){ 
  t = ticket(&ps); 
  await(&cEC, t); 
  await(&pEC, t – 10 + 1); 
  ring_buf[t % 10] = random(); 
  advance(&cEC) 
} 

void consumer(){ 
int u, val; // local to each con 
while(1){ 
  u = ticket(&cs); 
  await(&pEC, u); 
  await(&cEC, u + 1); 
  val = ring_buf[u % 10]; 
  // print val somewhere 
  advance(&pEC); 
} 

MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE 



Figure 2-33. A monitor. 

Monitors (1) 
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Figure 2-34. An outline of the producer-consumer problem with 
monitors.  

Monitors (2) 
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MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE 
USING A MONITOR IN THE LANGUAGE CSP/k 



MULTIPLE PRODUCER, MULTIPLE CONSUMER RING BUFFER EXAMPLE 
USING A MONITOR IN THE LANGUAGE CSP/k  (cont’d) 



Figure 2-29. Implementation of mutex lock and mutex unlock. 

Mutexes 
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Figure 2-30. Some of the Pthreads calls relating to mutexes. 

Mutexes in Pthreads (1) 
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Figure 2-31. Some of the Pthreads calls relating  
to condition variables. 

Mutexes in Pthreads (2) 
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Figure 2-32. Using threads to solve  
the producer-consumer problem. 

Mutexes in Pthreads (3) 
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. . . 



Figure 2-38. Bursts of CPU usage alternate with periods of waiting 
for I/O. (a) A CPU-bound process. (b) An I/O-bound process. 

Scheduling – Thread Behavior 
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• Batch 
• Interactive 
• Real time 

Categories of Scheduling Algorithms 
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Figure 2-39. Some goals of the scheduling algorithm under 
different circumstances. 

Scheduling Algorithm Goals 
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Scheduling Parameters 
• When a thread is created it is allocated a set of scheduling parameters 

• A scheduling policy 
• Batch, timeshare, real-time 

• A priority within that policy 
• Batch priorities are low, timeshare intermediate, real-time high 

• A possible time-slice (quantum) 
• Timeshare and real-time round robin use timeouts 

• Possible processor (core) affinity 
• A thread can be connected to one or a set of cores 

• Possible memory affinity 
• In NUMA systems, a thread can be connected to one or a  
    set of cores that are closer to some specific part of RAM 

• Possible IO (bridge) affiinity 
• In NUMA systems, a thread can be connected to one or a  
    set of cores that are closer to some specific IO bridge 

 



Buses 

The bus structure of a pre-Nehalem Pentium 4 







 sched_setscheduler() sets both the scheduling policy and the 
       associated parameters for the thread whose ID is specified in arg tid. 
       If tid equals zero, the scheduling policy and parameters of the 
       calling thread will be set.  The interpretation of the argument param 
       depends on the selected policy.  Currently, Linux supports the 
       following "normal" (i.e., non-real-time) scheduling policies: 
 
       SCHED_OTHER   the standard round-robin time-sharing policy; 
 
       SCHED_BATCH   for "batch" style execution of processes; and 
 
       SCHED_IDLE    for running very low priority background jobs. 
 
       The following "real-time" policies are also supported, for special 
       time-critical applications that need precise control over the way in 
       which runnable threads are selected for execution: 
 
       SCHED_FIFO    a first-in, first-out policy; and 
 
       SCHED_RR      a round-robin policy. 

POSIX Scheduling Policies as Used in Linux/UNIX Systems 

http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html  

http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html


• Round-robin scheduling 
• Priority scheduling 
• Multiple queues 
• Shortest process next 
• Guaranteed scheduling 
• Lottery scheduling 
• Fair-share scheduling 

Scheduling in Interactive Systems 
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Figure 2-41. Round-robin scheduling.  
(a) The list of runnable processes. (b) The list of runnable 

processes after B uses up its quantum. 

Round-Robin Scheduling 
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Figure 2-42. A scheduling algorithm with four priority classes. 

Priority Scheduling 
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Figure 2-43. (a) Possible scheduling of user-level threads with a 
50-msec process quantum and threads that run 5 msec per 

CPU burst.  

Thread Scheduling (1) 
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Figure 2-43. (b) Possible scheduling of kernel-level threads with 
the same characteristics as (a). 

Thread Scheduling (2) 
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• Real Time Issues 
• FIFO RT 
• RR RT 
• Deadline Scheduling 

Scheduling in Real Time Systems 
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Scheduling in Real Time Systems (2) 

• Real Time Issues 
• Deterministic latency 

• Policies that can guarantee 
a minimum time bound from 
ready state to run state 

• Priority range 
• Generally higher than non 

RT policies 
• Dynamic priority adjustment 

• Hands-off for all but deadline 



FIFO Real Time Policy 
• Highest Priority First (no RR) 
• Once an HPF thread reaches the 

run state it cannot be preempted 
by another thread of the same 
highest priority 

• Run state is left only by EXIT, 
BLOCK operation or Priority 
Preemption (no RR) 

• Another thread of the same 
priority can only run when the 
first FIFO thread leaves the run 
state 



Round Robin Real Time Policy 
• Highest Priority First with RR 
• Once an HPF thread reaches the 

run state it can be preempted by 
another thread of the same highest 
priority when its quantum expires 

• Run state is left by EXIT, 
BLOCK operation, Quantum 
Expiration or Priority 
Preemption 

• Another thread of the same 
priority can run if first RR 
thread completes its time slice 



Deadline Real Time Policy 
• A thread’s priority is dynamically 

adjusted as the thread approaches 
a predetermined deadline 

• The intent is to make sure that the 
deadline scheduled thread will 
reach the run state by the deadline 

• The given thread’s priority will 
have been dynmically 
increased so much by the 
deadline that it will have 
become the highest priority 
thread in the system 
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