
In class we examined the need for concurrent execution paths like a 
consumer and a producer to synchronize their access to a shared ring buffer.    
 
Below are a set of global objects which are accessible to a single producer 
thread and a single consumer thread.   
 
You must write a solution using semaphores with the semaphore declaration 
format shown. This format requires you to fill in the initial semaphore values in 
your declarations. You must declare and initialize however many semaphores 
you need to solve this problem efficiently.  The shared ring buffer is an array of 
10 integer locations.   
 
The producer must execute a forever loop using a random number function  ( 
like random() ) to create an integer and then place the integer into an 
appropriate slot in the shared ring buffer when it’s safe to do so.   
 
The consumer must execute a forever loop taking numbers out of the shared 
ring buffer and printing them to standard out ( with a printf() type function ) when 
it’s safe to do so.   Using C code style, write the producer function and the 
consumer function as described above, given the simple semaphore 
functions  p() and v() whose prototype headers are declared below the global 
data.  Busy-waiting is not allowed anywhere in your solution. 



                     GLOBALS TO PRODUCER AND CONSUMER THREADS: 
         semaphore_type sem_name = sem_initial_value;   format 
                                        DECALRE YOUR SEMAPHORE(S)  HERE 
 
 
 
 
 
 
                 int ring_buffer[10], in = 0, out = 0; 
                 void p ( semaphore_type * ); 
                 void v ( semaphore_type * ); 

                   WRITE PRODUCER FUNCTION HERE           WRITE CONSUMER FUNCTION HERE  



                     GLOBAL TO PRODUCER AND CONSUMER THREADS: 
sem_t  prod = 10;  // semaphore initialized  to 10 spaces 
sem_t  cons = 0;    // semaphore initialized  to 0 objects 
 
int buf[10], in=0, out=0;  // 10 element ring buffer and pointers 
void p ( sem_t  * );          // available p() and v() functions  
void v ( sem_t  * ); 
 
PRODUCER FUNCTION                   CONSUMER FUNCTION 

void producer(){ 
while(1){ 
  p(&prod); 
  buf[in] = random(); 
  in = (in + 1) % 10; 
  v(&cons);  
} 

void consumer(){ 
int val; 
while(1){ 
  p(&cons); 
  val = buf[out]; 
  // print val somewhere 
  out = (out + 1) % 10; 
  v(&prod); 
} 

A single producer, single consumer ring buffer, synchronized  
with counting semaphores 



Contemporary operating systems like Windows and Linux/UNIX may 
provide several scheduling policies to meet various thread 
scheduling needs, but often the default scheduling policy for non-
privileged threads is a time-sharing (TS) policy known as  HPF/RR. 

 
A.   What does HPF/RR stand for ? 
Highest Priority First / Round Robin 
B. Threads that are scheduled with real-time policies like the POSIX 

FIFO policy are generally treated differently than time-sharing (TS) 
threads in two ways.  First, their priorities are generally always 
higher than any TS thread (they start off at a higher number than the 
highest possible TS thread).  What is the second major difference 
in the way the system treats such threads ? 

The Operating System does NOT do Dynamic  
Priority Adjustment (Aging) 



In class we discussed a synchronization example called the observer -  reporter 
problem.  An observer process can see something as it passes by a sensor and 
wants to increment a shared global counter for each passing object.  A reporter 
process spends most of its time sleeping, but every so often it awakens, sends  the 
current object count found in the shared counter to a printer, and then resets the 
shared counter to 0.  While either the reporter or the observer is using the counter 
the other process must be kept away to avoid corrupting the counter.  
     - You must code this problem in 'C' style for both the observer and reporter as 
        void functions called observer and reporter as shown: 
   void  observer ( void ); 
   void  reporter ( void ); 
        using the fewest number (if any) of eventcounters and sequencers  possible, 
        but using no busy-waiting.  The reporter should use the standard ‘C' library  
        routine    int  sleep ( int seconds );   to delay his reporting for 15 minutes 
        between reports.  The following types and operations are available: 
 
ec_t    event_counter;              // declare EC, value defined 0 
seq_t  sequencer;         // declare SEQ, value defined 0 
void    await   ( ec_t * , int  );    // await event 
void    advance (ec_t * );          // advance EC 
int       ticket  (seq_t *);            // get a SEQ ticket  



Show the declaration of the event counter(s) and sequencer(s) (if any) you need 
and any global variables that will be shared by both the observer and the reporter 
as global declarations (with initialization where needed),  and then code each of 
the observer and reporter functions. 

               GLOBALS TO OBSERVER AND REPORTER: 
 
 
 
 
 

 
WRITE OBSERVER FUNCTION HERE           WRITE REPORTER FUNCTION HERE 
 



 
   GLOBALS TO OBSERVER AND REPORTER: 
 

ec_t    my_ec; 
seq_t           my_seq; 
int               obj_counter = 0; 
 

   WRITE OBSERVER FUNCTION HERE        WRITE REPORTER FUNCTION HERE 
  
   void observer (void){       void reported (void){ 
     while (1){          while (1){ 
         // when object passes           sleep (900); 
         await (&my_ec, tcket (&my_seq));          await (&my_ec, tcket (&my_seq)); 
         obj_counter ++;             // Print obj_counter somewhere 
         advance (&my_ec);            obj_counter = 0; 
      }   // while             advance (&my_ec); 
   }      // observer         }   // while 
        }     // reporter 



Be prepared to detect some change to Peterson’s Algorithm 
and how such a change would affect its behavior 

…. DO CRITICAL SECTION HERE …. 



The following complete program shows a parent process creating a single 
pipe and child.   
 
As you can see, the child is programmed to run a    grep “123”    command 
after redirecting its standard input to come from the pipe.  The parent will 
enter a loop and create 200 random integers, convert each integer into a 
string with a newline at the end of each number, and write them down 
the pipe, one line at a time.  The child grep will read its standard input one 
line at a time, looking for any lines that have the characters “123”  in them, 
and print such a line to its standard output.  (Assume all necessary include 
files are available; line numbers are for your reference)  

In the following example, even though there are NO 
programming errors and NO system call errors,  the parent  
process never completes.  Explain why the parent never  
finishes, and show where (using line numbers) and what 
code is necessary for the parent to complete.  



1.  int main(void){  
2.   int pchan[2], pid, rval, cvar;  
3.   char buf[20]; 
4.   if(pipe(pchan) == -1){ 
5.       perror("pipe"); 
6.       exit(1); 
7.   } 
8.   switch( pid = fork() ){ 
9.   case -1: perror("fork"); 
10.               exit(2); 
11.   case  0: close(0); 
12.            if( dup(pchan[0] ) != 0 ){ 
13.     perror("dup"); 
14.   exit(3); 
15.            } 
16.       execlp( "grep", “grep”, "123", NULL ); 
17.       perror("exec"); 
18.       exit(4); 
19.   default: for(cvar = 0; cvar < 200; cvar++){ 
20.           rval = rand();                     // get random int 
21.   sprintf(buf, “%d\n”, rval);        // make string 
22.   write(pchan[1], buf, strlen(buf)); // write pipe 
23.       } 
24.       if(close(pchan[1])== -1 || close(pchan[0])== -1){ 
25.     perror("close"); 
26.        exit(4); 
27.       } 
28.       wait(NULL); 
29.       return(0); 
30. }  // switch 
31.  } 

Child does not close pchan[1] 
before execlp, thus grep will 
wait forever for EOF 



The command  crypt  can be used on many UNIX systems to convert clear text into 
encrypted text and to convert encrypted text back into clear text using a common 
key.  The beginning of the crypt man page is given below: 
 
crypt(1) 
NAME 
  crypt - encode/decode 
SYNOPSIS 
  crypt key < input.File > output.File 
DESCRIPTION 
The crypt command reads from the standard input and writes on the standard output.  
You must supply a key which selects a particular transformation. The crypt command 
encrypts and decrypts with the same key. 
 
If we assume that the parent process in the last slide now wants the child to use the 
crypt command to decrypt an encrypted file called    /tmp/mycypher  using the key   
keystring256   and send the clear text up the pipe (in the last slide the parent wrote 
the pipe for grep to read, but here we want the child to write the pipe so the parent can 
read), then show the necessary child code to do this (i.e. provide the code we 
would need beginning at line 11 from the last slide).  Show only the code you would 
need in this switch statement for case 0:  (the child’s code). 
 



11.   case  0: close(1); 
12.      if( dup(pchan[1] ) != 1 ){ 
13.   perror("dup"); 
14.   exit(3); 
15.    } 
16.    if(close(pchan[0])==-1 || close(pchan[1])==-1){ 
17.   perror(“close”); 
18.   exit(4); 
19.    } 
20.    close(0);   
21.    if(open(“/tmp/mycypher”, O_RDONLY, 0) != 0){ 
22.   perror(“open”); 
23.   exit(5); 
24.    } 
25.    execlp( “crypt”, “crypt”, “keystring256”, NULL ); 
26.      perror("exec"); 
27.        exit(4); 
 



The diagram below depicts a process virtual address space of  N  locations, 
with 3 memory objects included within the address space.   If the process was a 
part of the WindowsXP or UNIX operating system environments, these three 
objects would comprise a minimum requirement for an address space.   
 

A. Label and briefly describe each of these required memory objects. 

 

Addr 0 

Addr  N - 1 

Addr  y 

Addr  x 

TEXT 

DATA 

STACK 



A. If the above address space represents a UNIX process, describe how 
a memory reference ( such as a load instruction ) to the address 
labeled  Addr x  would differ in behavior from a reference to  Addr y   

 
 
 
 
 
 

B. If the above address space represents a UNIX process, how will this 
address space change if the process adds 2 more threads  ?? 

x is a valid location, so reference succeeds 
y is an invalid location, so reference causes a 

segmentation fault 

2 new stacks would be mapped into  
the address space 



Consider the following resource-allocation policy for a fixed inventory of serially 
reusable resources of three different types (such as tape drives, printers, 
shared memory, etc.): 

 
• Requests and releases of resources are allowed at any time.  

 
• If a request for a resource is made by a process which is already holding 

other resources, the request may be denied based on a system imposed 
ordering required for allocations.  For example, in a system imposed 
ordering it may be required that any process that must hold a tape drive 
and a printer at the same time must ask for and obtain the tape drive(s) 
before asking for the print device(s). 

 
 
• Resources which are currently in use by other processes will cause a 

requesting process to block waiting for their availability in FIFO order. 
 
• Whenever a resource is freed, some blocked process needing such 

resource may secure the resource and move to the ready state. 



A.  List the 4 necessary conditions for a deadlock to occur in a computing system. 
 
 
 
 
 
 
 

B.  Can deadlock occur in the system described above ?    If so, give an example. If 
not, which necessary condition cannot occur that would be required for a 
deadlock  ? 

 
 
 
 
 

C.  Can indefinite postponement  occur ? Explain. 

Mutex Resources 
Hold and Wait 
No Pre-emption 
Circular Wait 

NO DL, the Circular Wait Condition is Denied  
by imposing strict allocation ordering 

NO IP … IP is a problem when denying No Pre-emption 
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