
In class we examined the need for concurrent execution paths like a
consumer and a producer to synchronize their access to a shared ring buffer.

Below are a set of global objects which are accessible to a single producer
thread and a single consumer thread.

You must write a solution using semaphores with the semaphore declaration
format shown. This format requires you to fill in the initial semaphore values in
your declarations. You must declare and initialize however many semaphores
you need to solve this problem efficiently. The shared ring buffer is an array of
10 integer locations.

The producer must execute a forever loop using a random number function (
like random()) to create an integer and then place the integer into an
appropriate slot in the shared ring buffer when it’s safe to do so.

The consumer must execute a forever loop taking numbers out of the shared
ring buffer and printing them to standard out (with a printf() type function) when
it’s safe to do so. Using C code style, write the producer function and the
consumer function as described above, given the simple semaphore
functions p() and v() whose prototype headers are declared below the global
data. Busy-waiting is not allowed anywhere in your solution.

 GLOBALS TO PRODUCER AND CONSUMER THREADS:
 semaphore_type sem_name = sem_initial_value;  format
 DECALRE YOUR SEMAPHORE(S) HERE

 int ring_buffer[10], in = 0, out = 0;
 void p (semaphore_type *);
 void v (semaphore_type *);

 WRITE PRODUCER FUNCTION HERE WRITE CONSUMER FUNCTION HERE

 GLOBAL TO PRODUCER AND CONSUMER THREADS:
sem_t prod = 10; // semaphore initialized to 10 spaces
sem_t cons = 0; // semaphore initialized to 0 objects

int buf[10], in=0, out=0; // 10 element ring buffer and pointers
void p (sem_t *); // available p() and v() functions
void v (sem_t *);

PRODUCER FUNCTION CONSUMER FUNCTION

void producer(){
while(1){
 p(&prod);
 buf[in] = random();
 in = (in + 1) % 10;
 v(&cons);
}

void consumer(){
int val;
while(1){
 p(&cons);
 val = buf[out];
 // print val somewhere
 out = (out + 1) % 10;
 v(&prod);
}

A single producer, single consumer ring buffer, synchronized
with counting semaphores

Contemporary operating systems like Windows and Linux/UNIX may
provide several scheduling policies to meet various thread
scheduling needs, but often the default scheduling policy for non-
privileged threads is a time-sharing (TS) policy known as HPF/RR.

A. What does HPF/RR stand for ?
Highest Priority First / Round Robin
B. Threads that are scheduled with real-time policies like the POSIX

FIFO policy are generally treated differently than time-sharing (TS)
threads in two ways. First, their priorities are generally always
higher than any TS thread (they start off at a higher number than the
highest possible TS thread). What is the second major difference
in the way the system treats such threads ?

The Operating System does NOT do Dynamic
Priority Adjustment (Aging)

In class we discussed a synchronization example called the observer - reporter
problem. An observer process can see something as it passes by a sensor and
wants to increment a shared global counter for each passing object. A reporter
process spends most of its time sleeping, but every so often it awakens, sends the
current object count found in the shared counter to a printer, and then resets the
shared counter to 0. While either the reporter or the observer is using the counter
the other process must be kept away to avoid corrupting the counter.
 - You must code this problem in 'C' style for both the observer and reporter as
 void functions called observer and reporter as shown:
 void observer (void);
 void reporter (void);
 using the fewest number (if any) of eventcounters and sequencers possible,
 but using no busy-waiting. The reporter should use the standard ‘C' library
 routine int sleep (int seconds); to delay his reporting for 15 minutes
 between reports. The following types and operations are available:

ec_t event_counter; // declare EC, value defined 0
seq_t sequencer; // declare SEQ, value defined 0
void await (ec_t * , int); // await event
void advance (ec_t *); // advance EC
int ticket (seq_t *); // get a SEQ ticket

Show the declaration of the event counter(s) and sequencer(s) (if any) you need
and any global variables that will be shared by both the observer and the reporter
as global declarations (with initialization where needed), and then code each of
the observer and reporter functions.

 GLOBALS TO OBSERVER AND REPORTER:

WRITE OBSERVER FUNCTION HERE WRITE REPORTER FUNCTION HERE

 GLOBALS TO OBSERVER AND REPORTER:

ec_t my_ec;
seq_t my_seq;
int obj_counter = 0;

 WRITE OBSERVER FUNCTION HERE WRITE REPORTER FUNCTION HERE

 void observer (void){ void reported (void){
 while (1){ while (1){
 // when object passes sleep (900);
 await (&my_ec, tcket (&my_seq)); await (&my_ec, tcket (&my_seq));
 obj_counter ++; // Print obj_counter somewhere
 advance (&my_ec); obj_counter = 0;
 } // while advance (&my_ec);
 } // observer } // while
 } // reporter

Be prepared to detect some change to Peterson’s Algorithm
and how such a change would affect its behavior

…. DO CRITICAL SECTION HERE ….

The following complete program shows a parent process creating a single
pipe and child.

As you can see, the child is programmed to run a grep “123” command
after redirecting its standard input to come from the pipe. The parent will
enter a loop and create 200 random integers, convert each integer into a
string with a newline at the end of each number, and write them down
the pipe, one line at a time. The child grep will read its standard input one
line at a time, looking for any lines that have the characters “123” in them,
and print such a line to its standard output. (Assume all necessary include
files are available; line numbers are for your reference)

In the following example, even though there are NO
programming errors and NO system call errors, the parent
process never completes. Explain why the parent never
finishes, and show where (using line numbers) and what
code is necessary for the parent to complete.

1. int main(void){
2. int pchan[2], pid, rval, cvar;
3. char buf[20];
4. if(pipe(pchan) == -1){
5. perror("pipe");
6. exit(1);
7. }
8. switch(pid = fork()){
9. case -1: perror("fork");
10. exit(2);
11. case 0: close(0);
12. if(dup(pchan[0]) != 0){
13. perror("dup");
14. exit(3);
15. }
16. execlp("grep", “grep”, "123", NULL);
17. perror("exec");
18. exit(4);
19. default: for(cvar = 0; cvar < 200; cvar++){
20. rval = rand(); // get random int
21. sprintf(buf, “%d\n”, rval); // make string
22. write(pchan[1], buf, strlen(buf)); // write pipe
23. }
24. if(close(pchan[1])== -1 || close(pchan[0])== -1){
25. perror("close");
26. exit(4);
27. }
28. wait(NULL);
29. return(0);
30. } // switch
31. }

Child does not close pchan[1]
before execlp, thus grep will
wait forever for EOF

The command crypt can be used on many UNIX systems to convert clear text into
encrypted text and to convert encrypted text back into clear text using a common
key. The beginning of the crypt man page is given below:

crypt(1)
NAME
 crypt - encode/decode
SYNOPSIS
 crypt key < input.File > output.File
DESCRIPTION
The crypt command reads from the standard input and writes on the standard output.
You must supply a key which selects a particular transformation. The crypt command
encrypts and decrypts with the same key.

If we assume that the parent process in the last slide now wants the child to use the
crypt command to decrypt an encrypted file called /tmp/mycypher using the key
keystring256 and send the clear text up the pipe (in the last slide the parent wrote
the pipe for grep to read, but here we want the child to write the pipe so the parent can
read), then show the necessary child code to do this (i.e. provide the code we
would need beginning at line 11 from the last slide). Show only the code you would
need in this switch statement for case 0: (the child’s code).

11. case 0: close(1);
12. if(dup(pchan[1]) != 1){
13. perror("dup");
14. exit(3);
15. }
16. if(close(pchan[0])==-1 || close(pchan[1])==-1){
17. perror(“close”);
18. exit(4);
19. }
20. close(0);
21. if(open(“/tmp/mycypher”, O_RDONLY, 0) != 0){
22. perror(“open”);
23. exit(5);
24. }
25. execlp(“crypt”, “crypt”, “keystring256”, NULL);
26. perror("exec");
27. exit(4);

The diagram below depicts a process virtual address space of N locations,
with 3 memory objects included within the address space. If the process was a
part of the WindowsXP or UNIX operating system environments, these three
objects would comprise a minimum requirement for an address space.

A. Label and briefly describe each of these required memory objects.

Addr 0

Addr N - 1

Addr y

Addr x

TEXT

DATA

STACK

A. If the above address space represents a UNIX process, describe how
a memory reference (such as a load instruction) to the address
labeled Addr x would differ in behavior from a reference to Addr y

B. If the above address space represents a UNIX process, how will this
address space change if the process adds 2 more threads ??

x is a valid location, so reference succeeds
y is an invalid location, so reference causes a

segmentation fault

2 new stacks would be mapped into
the address space

Consider the following resource-allocation policy for a fixed inventory of serially
reusable resources of three different types (such as tape drives, printers,
shared memory, etc.):

• Requests and releases of resources are allowed at any time.

• If a request for a resource is made by a process which is already holding

other resources, the request may be denied based on a system imposed
ordering required for allocations. For example, in a system imposed
ordering it may be required that any process that must hold a tape drive
and a printer at the same time must ask for and obtain the tape drive(s)
before asking for the print device(s).

• Resources which are currently in use by other processes will cause a

requesting process to block waiting for their availability in FIFO order.

• Whenever a resource is freed, some blocked process needing such

resource may secure the resource and move to the ready state.

A. List the 4 necessary conditions for a deadlock to occur in a computing system.

B. Can deadlock occur in the system described above ? If so, give an example. If
not, which necessary condition cannot occur that would be required for a
deadlock ?

C. Can indefinite postponement occur ? Explain.

Mutex Resources
Hold and Wait
No Pre-emption
Circular Wait

NO DL, the Circular Wait Condition is Denied
by imposing strict allocation ordering

NO IP … IP is a problem when denying No Pre-emption

	Slide Number 1
	Slide Number 2
	 GLOBAL TO PRODUCER AND CONSUMER THREADS:�sem_t prod = 10; // semaphore initialized to 10 spaces�sem_t cons = 0; // semaphore initialized to 0 objects��int buf[10], in=0, out=0; // 10 element ring buffer and pointers�void p (sem_t *); // available p() and v() functions �void v (sem_t *);��PRODUCER FUNCTION 			 CONSUMER FUNCTION
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

