91.304 Foundations of
(Theoretical) Computer Science

Chapter 4 Lecture Notes (Section 4.1: Decidable Languages)

David Martin
dm@cs.uml.edu

With modifications by Prof. Karen Daniels, Fall2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.

‘ @ \ To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,

California 94305, USA.

Back to X,

The fact that Z, Is not closed under
complement means that there exists
some language L that Is not
recognizable by any TM.

By Church-Turing thesis this means
that no imaginable finite computer,
even with infinite memory, could
recognize this language L!

Le ALL - =,

A non-X, language /

s ALL

Each point is
a language in
this Venn
diagram

Strategy

Goal: Explore limits of algorithmic
solvability.

We’'ll show (later in Section 4.2) that there
are more (a lot more) languages in ALL
than there are in £,

B Namely, that £, is countable but ALL isn’t
countable

B Which implies that X; = ALL

B Which implies that there exists some L that is
not in X,

Overview of Section 4.1

Decidable Languages (in >;): to foster
later appreciation of undecidable
languages
B Regular Languages
Ll Apea: Acceptance problem for DFAs
0 Ayea: Acceptance problem for NFAs
L Agex: Acceptance problem for Regular Expressions
L Epea: Emptiness testing for DFAS
L EQpea: 2 DFAs recognizing the same language

B Context-Free Languages (see next slide)...

Overview of Section 4.1 (cont.)

Decidable Languages (in ~;): to foster
later appreciation of undecidable
languages

B Context-Free Languages

L Aqrs: Does a given CFG generate a given
string?

L E.eg: Is the language of a given CFG empty?
] Every CFL is decidable by a Turing machine.

Overview of Section 4.1

Decidable Languages (in ~;): to foster
later appreciation of undecidable
languages
B Regular Languages
L Apeas Acceptance problem for DFAs
[l Acceptance problem for NFAs
[J Acceptance problem for Regular Expressions
[Emptiness testing for DFAs
[J 2 DFAs recognizing the same language

Decidable Problems for Regular
Languages: DFASs

[l Acceptance problem for DFAs

A, ={< B,w>| B isa DFA that accepts a given string w}
B L|Language includes encodings of all DFAs and strings
they accept.

B Showing language is decidable is same as showing the
computational problem is decidable.

[0 Theorem 4.1: Ay, IS a decidable language.
B Proof Idea: Specify a TM M that decides Agg,.

O M= “On input <B,w>, where B is a DFA and w is a
string (implicit legal encoding check too):
1. Simulate B on input w.

2. If simulation ends in accept state, accept. If it ends in
nonaccepting state, reject.”

Implementation details?? 8

Overview of Section 4.1

Decidable Languages (in ~;): to foster
later appreciation of undecidable
languages
B Regular Languages
[J Acceptance problem for DFAs
O Ayea: Acceptance problem for NFAs
[0 Acceptance problem for Regular Expressions
[Emptiness testing for DFAs
[J 2 DFAs recognizing the same language

Decidable Problems for Regular
Languages: NFAS

Acceptance problem for NFAs

A ea ={< B,w>| B isan NFA that accepts a given string w}

Theorem 4.2: Ayg, IS a decidable language.

B Proof ldea: Specify a TM N that decides Ayga-

LI N = “On input <B,w>, where B is an NFA and w is
a string:
1. Convert NFA B to equivalent DFA C using Theorem
1.39.

2. Run TM M from Theorem 4.1 on input <C,w>.
3. If M accepts, accept. Otherwise, reject.”

N uses M as a “subroutine.”

10
Alternatively, could we have modified proof of Theorem 4.1 to accommodate NFAs?

Overview of Section 4.1

Decidable Languages (in >;): to foster
later appreciation of undecidable
languages
B Regular Languages

[l Acceptance problem for DFAs

[1 Acceptance problem for NFAs

[l Agc: Acceptance problem for Regular
Expressions

[l Emptiness testing for DFAsS
[J 2 DFAs recognizing the same language

11

Decidable Problems for Regular
Languages: Regular Expressions

Acceptance problem for Regular
Expressions

A, ={< R,w>| R Isaregular expression that generates string w}

Theorem 4.3: Az IS a decidable language.

B Proof ldea: Specify a TM P that decides Aq.

L P = “On input <R,w>, where R Is a regular
expression and w is a string:

1. Convert regular expression R to equivalent NFA A using
Theorem 1.54.

2. Run TM N from Theorem 4.2 on input <A,w>.
3. If N accepts, accept. If N rejects, reject.”

12

Overview of Section 4.1

Decidable Languages (in ~;): to foster
later appreciation of undecidable
languages
B Regular Languages

[J Acceptance problem for DFAs

[l Acceptance problem for NFAs

[J Acceptance problem for Regular Expressions

O Eppa: Emptiness testing for DFAS
[J 2 DFAs recognizing the same language

13

Decidable Problems for Regular
Languages: DFASs

Emptiness problem for DFAs

Eoen ={< A>| AisaDFAand L(A) =0}

Theorem 4.4: E_, Is a decidable language.

B Proof ldea: Specify a TM T that decides Eg,.
L T = “On input <A>, where A is a DFA:

1.
2.
3.

4.

Mark start state of A.
Repeat until no new states are marked:

Mark any state that has a transition coming into
it from any state that is already marked.

If no accept state is marked, accept; otherwise,
reject.”

Example (board work) 14

Overview of Section 4.1

Decidable Languages (in ~,): to foster later
appreciation of undecidable languages

B Regular Languages
[1 Acceptance problem for DFAs
[1 Acceptance problem for NFAs
[l Acceptance problem for Regular Expressions
[Emptiness testing for DFAs
L EQpea: 2 DFAS recognizing the same language

15

Decidable Problems for Regular
Languages: DFASs

2 DFAs recognizing the same language
EQy-, ={< A, B> Aand B are DFAsand L(A) = L(B)}

Theorem 4.5: EQyg, IS a decidable language.

ic diff B F = “On input (A, B), where A and B are DFAs:
sym metric difference: 1. Construct DFA €' as described.

2. Run TM T from Theorem 4.4 on input ().

L(C) = (L(A) M L(—B)) U (FA) (M) L(B)) 3. IfT accepts, accept. If T rejects, refect.”

Recall regular languages are closed

under complement, intersection, union. 0 gk o

emptiness:

L(C)=0 < L(A)=L(B)

FIGURE 4.6
_ The symmetric difference of L(A) and L(B)
Source: Sipser Textbook

Overview of Section 4.1

Decidable Languages (in ~;): to foster
later appreciation of undecidable
languages

B Context-Free Languages

O A-.s: Does a given CFG generate a given
string?

[Is the language of a given CFG empty?
] Every CFL is decidable by a Turing machine.

17

Decidable Problems for Context-
Free Languages: CFGS

[l Does a given CFG generate a given string?
A ={<G,w>|Gisa CFG that generates string w}

[1 Theorem 4.7: A.; IS a decidable language.

B Why is this unproductive: use G to go through all
derivations to determine if any yields w?

B Better ldea...Proof Idea: Specify a TM S that decides
Acre-
0 S = “On input <G,w>, where G is a CFG and w is a string:

1. Convert G to equivalent Chomsky normal form grammar.

2. List all derivations with 2n-1 steps (why?), where n = length of
w. (Except if n=0, only list derivations with 1 step.)

3. If any of these derivations yield w, accept; otherwise, reject.”

18

Overview of Section 4.1

Decidable Languages (in ~,): to foster later
appreciation of undecidable languages

B Context-Free Languages
[J Does a given CFG generate a given string?
0 E.s: Is the language of a given CFG empty?
1 Every CFL iIs decidable by a Turing machine.

19

Decidable Problems for Context-
Free Languages: CFGS

Is the language of a given CFG empty?
E.rc ={<G>|GisaCFGand L(G) =0}

Theorem 4.8: E- IS a decidable language.

B Proof ldea: Specify a TM R that decides E ;.

[0 R = "On input <G>, where G is a CFG:
1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:
3. Mark any variable A where G has rule A->U, U,, ... U,
and each symbol U; U, ... U, has already been marked.
1. If start variable is not marked, accept; otherwise, reject.”

20

Decidable (?) Problems for
Context-Free Languages: CFGsS

Check if 2 CFGs generate the same
language.

EQq: ={<G,H >Gand H are CFGsand L(G)=L(H)}

Not decidable! (see Chapter 5)

Why is this possible? Why is this problem
not in >, if CFL Is In 2,?

21

Recall: Closure properties of CFL

Reminder: closure properties can help us

measure whether a computation model is
reasonable or not

CFL is closed under

B Union, concatenation
1 Thus, exponentiation and *

CFL i1s not closed under

B Intersection
B Complement

Weak intersection:

If AecCFL and ReREG, then ANRe CFL

22

Overview of Section 4.1

Decidable Languages (in ~;): to foster
later appreciation of undecidable
languages
B Context-Free Languages

[J Does a given CFG generate a given string?

] Is the language of a given CFG empty?

[Every CFL iIs decidable by a Turing
machine.

23

Decidable Problems for Context-
Free Languages: CFLs

Every CFL Is decidable by a Turing

machine.

Bad ldea: Convert PDA for CFL into TM

[heorem 4.9: Every context-free

language Is decidable.
[l Let A be a CFL and G be a CFG for A. (Where does G

come from?)

[0 Design TM Mg that decides A.

L Mg = “On input w, where w Is a string:
1. Run TM S from Theorem 4.7 on input <G,w>.

2. If S accepts, accept. If S rejects, reject.” o4

Summary: Some problems (languages)
related to languages Iin >, have been shown

In this lecture to be In 2.

ALL

Each point is
a language in
this Venn
diagram

Remember that just because a language is in X; does not mean that =

every problem (language) related to members of its class is also in Z,!

