91.304 Foundations of
(Theoretical) Computer Science

Chapter 3 Lecture Notes (Section 3.2: Variants of Turing Machines)

David Martin
dm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.

‘ @ \ To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,

California 94305, USA.

Variants of Turing Machines

Robustness: Invariance under certain
changes

What kinds of changes?
B Stay put!

B Multiple tapes

B Nondeterminism

B Enumerators
[0 (Abbreviate Turing Machine by TM.)

Stay Put!

Transition function of the form:

5:0xT = QxT'x{L,R,S}

Does this really provide additional
computational power?

No! Can convert TM with “stay put”
feature to one without it. How?

Theme: Show 2 models are equivalent by
showing they can simulate each other.

Multi-Tape Turing Machines

[l Ordinary TM with several tapes.
B Each tape has its own head for reading and writing.
[Initially the input is on tape 1, with the other tapes

blank.
OO0 Transition function of the form: | EOEhEET.-
5:Qka—)Qkax{L,R,S}k M T
O (k = number of tapes) BELL-

6(9,a,...,8,)=(q;,b,....0,LLR,...L)

[0 When TM is in state g, and heads 1 through k are
reading symbols a, through a,, TM goes to state g,
writes symbols b, through b,, and moves associated
tape heads L, R, or S.

Note: k tapes (each with own alphabet) but only 1 common set of states! 4
Source: Sipser textbook

Multi-Tape Turing Machines

Multi-tape Turing machines are of equal
computational power with ordinary Turing
machines!

B Corollary 3.15: A language is Turing-

recognizable if and only if some multi-tape
Turing machine recognizes it.

[1 One direction is easy (how?)

[0 The other direction takes more thought...

B Theorem 3.13: Every multi-tape Turing machine
has an equivalent single-tape Turing machine.

B Proof idea: see next slide...

5
Source: Sipser textbook

Theorem 3.13: Simulating Multi-Tape
Turing Machine with Single Tape

[0 Proof ldeas:

B Simulate k-tape TM M’s operation using single-tape
TM S.

B Create “virtual” tapes and heads.

1 # is a delimiter separating contents of one tape from
another tape’s contents.

[“Dotted” symbols represent head positions
B add to tape alphabets.

HJ oTTeTloll. - __
| k =3 tapes

Sf (== il

i;|o|I|o]1|0]#|a\a|é|#|15|a|#|u|...

6
Source: Sipser textbook

FIGURE 3.14
Representing three tapes with one

Theorem 3.13: Simulating Multi-Tape
Turing Machine with Single Tape (cont)

[0 Processing input: W=W, - W
B Format S’s tape (different blank symbol v for presentation purposes):

HVLW, - W A

B Simulate single move:
[0 Scan rightwards to find symbols under virtual heads.
[0 Update tapes according to M’s transition function.

B Caveat: hitting right end (#) of a virtual tape:
0 rightward shift of S’s tape by 1 unit and insert blank, then continue simulation

Why?
- | eEe e e] e
=y
¥
[b[afu]
S P . T
[#]o[1]o]1of#]ala]a]#][B]a]#]u]...
.
FIGURE 3.14

Representing three tapes with one Source: Si pser textbook

Nondeterministic Turing Machines

O Transition function: 0 :QxI" > 2(QxI'x{L,R})

[0 Computation is a tree whose branches correspond to
different possibilities. Example: board work

B |If some branch leads to an accept state, machine accepts.
[0 Nondeterminism does not affect power of Turing machine!

[0 Theorem 3.16:Every nondeterministic Turing machine (N)
has an equivalent deterministic Turing machine (D).

B Proof Idea: Simulate, simulate!

.. inpurtape «— never changed

|x[x[#[o]1[x[L]... simulatontwpe «— COPY Of N’s tape on some branch of

nondeterministic computation

ll|2|3|3J2|3)1]2|1\1|3[UJ_ - addresstape «— keeps track of D’s location in N’s

nondeterministic computation tree

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM '

8
Source: Sipser textbook

Theorem 3.16 Proof ont)

[0 Proof Idea (continued)
B View N’s computation on input as a tree.
[O Each node is a configuration.
[0 Search for an accepting configuration.

[0 Important caveat: searching order matters
B DFS vs. BFS (which is better and why?)

[0 Encoding location on address tape:

B Assume fan-out is at most b (what does this correspond to?)
B Each node has address that is a string over alphabet: ¥, = {1... b}

... inputtape «— never changed

h |

[x[x[#]0o]1[x[c]... simulationtape «— cOpPY Of N’s tape on some branch of

nondeterministic computation

ll|2|3|3l2|3jl|2|1|1|3[uf‘-- addresstape 4 keeps track of D’s location in N’s

FIGURE 3.17
Deterministic TM D simulating nondeterministic TM

nondeterministic computation tree

Source: Sipser textbook

Theorem 3.16 Proof ont)

[0 Operation of deterministic TM D:
1. Putinput w onto tape 1. Tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2.
3. Use tape 2 to simulate N with input w on one branch.
1. Before each step of N, consult tape 3 (why?)

4. Replace string on tape 3 with lexicographically next string.
Simulate next branch of N’s computation by going back to

step 2.

. .. inputtape «— Never changed
D

x[x[#[0o]1]x]c]... simulation tape «— COpYy of N’s tape on some branch of

nondeterministic computation

A
[1 |2|3|3J2|3J1]2|1\1|3[UL_. address upe «— keeps track of D’s location in N’s
nondeterministic computation tree

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N - 10

Source: Sipser textbook

Conseguences of Theorem 3.16

Corollary 3.18:

B A language is Turing-recognizable if and only if

some nondeterministic Turing machine
recognizes it.

[0 Proof ldea:

B One direction is easy (how?)
B Other direction comes from Theorem 3.16.

Corollary 3.19:

B A language is decidable if and only if some
nondeterministic Turing machine decides it.
[1 Proof ldea:

B Modify proof of Theorem 3.16 (how?)

11

Kigipht s

control printer

Another model BB ke

FIGURE 3.20
Schematic of an enumerator

[0 Definition An enumerator E is a 2-tape TM with a special
state named qp ("print") (2nd tape is for printing)
B The Ian%uage enerated by E is (tape 1) (tape 2)

L(E) =

O

xeX" | (goU, goU) F" (u g, Vv, Xq,2)
forsome u, v,zeI™ }

Here the instantaneous description is split into two parts
(tapel, tape2)

So this says that "x appears to the left of the tape 2 head
when E enters the g, state"

Note that E always starts with a blank tape and potentially
runs forever

Basically, E generates the language consisting of all the strings
it decides to print

And it doesn't matter what's on tape 1 when E prints

12
Source: Sipser textbook

Theorem 3.21

L € 2, & L=L(E) for some enumerator E (in

other words, enumerators are equivalent to
TMS) (Recall Z; is set of Turing-recognizable languages.)

Proof First we show that L=L(E) = LeX,. So

assume that L=L(E); we need to produce a TM
M such that L=L(M). We define M as a 3-tape
TM that works like this:

1. input w (on tape #1)
2. run E on M's tapes #2 and #3

3. whenever E prints out a string X, compare x to w;
If they are equal, then accept

else goto 2 and continue running E
So, M accepts input strings (via input w) that appear on E’s list.

13

Theorem 3.21 continued

Now we show that LeX;, = L=L(E) for some

enumerator E. So assume that L=L(M) for
some TM M; we need to produce an
enumerator E such that L=L(E). First let s,,

s,, --- be the lexicographical enumeration of ¥~

(strings over M’s alphabet). E behaves as follows:

1. fori:=1 to

2. run M on input s;

3. if M accepts S then print string s;
(else continue with next i)

DOES NOT WORKI!

WHY?7?

14

Theorem 3.21 continued

Now we show that LeX, = L=L(E) for some enumerator

E. So assume that L=L(M) for some TM M; we need to
produce an enumerator E such that L=L(E). First let
S{, S,, -+ be the lexicographical enumeration of £*. E
behaves as follows:

1. fort:=1to oo /*t=time to allow */

2. forj:=1tot /* continue resumes here */
3. compute the instantaneous description uqv in M

such that g s; l—tkwf M halts before t

steps, then continue) exactly t steps of the I relation
4. If g = g, then print string s;

(else continue)

15

Theorem 3.21 continued

L First, E never prints out a string s; that is not
accepted by M

Suppose that q, sz 27 u g, V (in other

words, M accepts s; after exactly 27 steps)
B Then E prints out sg in iteration t=27, J=5

[l Since every string s; that is accepted by M is
accepted in some number of steps t;, E will
print out s; In iteration t=t; and in no other
iteration
B This is a slightly different construction than the

textbook, which prints out each accepted string s;
infinitely many times

16

Summary

Remarkably, the presented variants
of the Turing machine model are all
equivalent in power!
B Essential feature:

[J Unrestricted access to unlimited memory

1 More powerful than DFA, NFA, PDA...

[J Caveat: satisfy “reasonable requirements”
B e.g. perform only finite work in a single step.

17

