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“Manners are not
taught in lessons,”
said Alice. “Lessons
teach you to do
sums, and things of
that sort.”

“And you do
Addition?” the White
Queen asked.
“What's one and one
and one and one and
one and one and one
and one and one and
one?”

“l don't know,” said
Alice. “I lost count.”

“She can't do
Addition,” the Red
Queen interrupted.

Excerpt: Through the Looking Glass, Lewis Carroll
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Turing machine syntax

[0 Definition A Turing Machine is an automaton
M=(Q,Z,I",8,00:0acc:Arej) Where

1. Q is a finite set of states
2. X is an input alphabet that does not include " ", the

special blank character
3. T is a tape alphabet satisfying

1. Uerl
2. xc I
4. 30:QxI'—» QxI'x{L,R} is the transition function
1. “staying put” is not an option, except at left end of tape

5. (g Is the initial state
6. Q.. IS the single accepting state
7. 0y Is the single rejecting state

Alan Turing proposed the Turing Machine in 1936!



Differences from Finite Automata

Turing machine

B Can both read from and write onto tape.
[ No LIFO access restriction as in PDA’s stack

B Read/write head (control) can move both
left and right.

B Tape is infinite.

B Special states for rejecting and accepting
take effect immediately.

B In some cases machine can fail to halt...
tape alblalblalblujulujujujuful]--

1 4

control



Differences Iin input mechanism

[0 A TM has a "tape head" that points to exactly one cell
on its tape, which extends infinitely to the right

B At each transition, the TM looks at the current state
and the current cell, and decides what new state to
move to, what to write on the current cell, and
whether to move one cell to the left or one cell to the
right (or stay put at left end of tape)

B Hence the transition function 6:QxI'=» QxI'x{L,R}

1 Each tape cell initially contains the blank character U

[J Our previous automata (DFAs, NFAs, PDAs) all had a
separate read-only input stream

But in a TM, the input is given all at once and just

written onto the left end of the tape — overwriting the
blanks there

alblalblalblujujulujujujul--
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in state g,



Turing machine computation

[0 We define a set of instantaneous descriptions (IDs or
configurations) and then show what memory-state
snapshots may follow each other, according to the
program M.

[0 First, the snapshots: ina TM, ID(M) =T QI

B Each element of this set represents the entire tape
contents, the current state, and the location of the
tape head

B In example below, the ID is ab g-a bablLiL---

B So the character to the right of the state name is the
"current” character

B The tape always has infinitely many blanks on the
right; we can write them or omit them as we please

alblalblalblujujujujujujul--

I

in state g,



Turing machine computation

[0 Two IDs are related to each other (by I) if one can

lead to the other (via 1 transition) according to the o
function

[0 So we look at all of the things that 6 can say, starting
with right moves:
B Suppose é(g,b) = (1,c,R) where
O g€ Q- {dacr Urejy @and b € ' (states in green)
O teQandcerl

[0 R means "right move* (after reading/writing)
B Then ugbv F uctv

where u,vel’™ are undisturbed, the state has changed

from g to t, the tape cell has changed from b to c,
and the head has moved one character to the right
(over the now-changed character)




Turing machine computation

Left moves
B Suppose 6(g,b) = (1,c,L) where
0 g € Q- {dae: Arejt @and b € T (states in green)
L teQandcerl
B Then uagbv F utacv
where u,vel™ and ael’ are undisturbed, the state

has changed from g to t, the tape cell has
changed from b to ¢, and the head has moved
one character to the left

B This says that one ID can lead to another ID

when 6 says to move left and there is a .
character ael to the left. What if there i1s no

such character?




Turing machine computation

[0 Left moves at left edge of tape

B Suppose 6(g,b) = (t,c,L) where
0 g€ Q - {dac drej @and b € I" (states in green)

O teQandcerl
B Then gbv F tcv
where veI'™ is undisturbed, the state has changed
from g to t, the tape cell has changed from b to c
B Where does this put the tape head in this case?
[0 Note we have not explicitly covered the case where
6(9,b) = (L,c,L) and q€{dacc:Urejt
B Or when we move R instead of L

B Conclusion: well, if the currentIDis u gb v
and gqe{d,...drej}, then no "next ID" is possible. We

say that the TM halts




Some Ways to Describe Turing
Machine Computation

1.
2.

il

Implementation-level description (high-level)

Instantaneous descriptions (IDs or configurations)
specifying snapshots of tape and read-write head position

as computation progresses.

Formal description (7-tuple)

Detailed state diagram.

We'll discuss all 4 ways using Turing machine M, In

textbook (p. 138, 139, 145) for language:
B={w#w|we{01}*}

We'll also discuss Turing machine M, Iin textbook (p. 143,

144) for language: A:{Ozn In>0}
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Implementation-Level Description
B={w#w|we{01}*}

M; = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contan
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

Small Examples:

- Accepting input: 101#1010L---
- Rejecting input: 0101#1000LL---

11



Instantaneous Descriptions
(Snapshots) B ={w#w|we{01}*}

Sample Input: 011000#011000

G ELI000# 0110000, .

=
o I o R T Wi T 0 e (e L e 1 B S R

]

c11000#x11000u ...

e e e T 00 0y

O ol o s Fa iR iy e
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o T Al S e A S ol U ey o R G UL L

ﬂr:c{-:pt
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Formal Description and Detalled
State Diagram B ={w#w|w {0,1}*}

......

EXAMPLE 3.9

The following is a formal description of M; = (Q,%,T, 8, q1, Gaccept, reject), the
Turing machine that we informally described (page 139) for deciding the lan-

guage B = {wi#w|w € {0,1}*}.
¢ Q={q,... ,qﬁ,gqaccepz,qmjm},
* & ={0,1,#},and T = {0,1,#x,u}.
* We describe & with a state diagram (see the following figure).

* The start, accept, and reject states are g1, Gaccept; aNd Greject-

N

13

FIGURE 3.10
State diagram for Turing machine M,
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Detailed State Diagram

B ={w#w|we{01}*}

FIGURE 3.10
State diagram for Turing machine M,

Small Examples:

- Accepting input: 101#101LIL---

- Rejecting input: 0101#10000ULJ---
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Implementation-Level Description
A={0%* |n>0}

EXAMPLE 3.? ..............................................................................................................................

Here we describe a Turing machine (TM) Ms that decides 4 = {Ogn |n > 0}, the

‘anguage consisting of all strings of 0Os whose length is a power of 2.

25 = “On input string w:
1. Sweep left to right across the tape, crossing off every other 0.
2. Ifin stage 1 the tape contained a single 0, accepl.
3. If in stage 1 the tape contained more than a single 0 and the
number of 0s was odd, reject.
4. Return the head to the left-hand end of the tape.
5. Go tostage 1.”

Each iteration of stage 1 cuts the number of 0s in half. As the machine sweeps
scross the tape in stage 1, it keeps track of whether the number of 0s seen is even
or odd. If that number is odd and greater than 1, the original number of 0s in
e input could not have been a power of 2. Therefore the machine rejects in
this instance. However, if the number of 0s seen is 1, the original number must

=y

2ave been a power of 2. So in this case the machine accepts.

15



Formal Description (7-tuple)

A={0> |n>0}

Now we give the formal description of My = (Q.X.T', 4. ¢1. Gaccepes Greject):

* Q = {q1. 2, 3, G4, G5 Gaceept: Treject }»

* ¥ = {0}, and

s [' = {0,x,u}.

* We describe § with a state diagram (see Figure 3.8).

* The start. accept. and reject states are ¢1. Gareenr. ANA Groines.

16



Detailed State Diagram
A={0° |n>0}

@
0—u R

u—R Note different way of
*r—R marking left end. g 0—=x.R

-
L
e

FIGURE 3.8
State diagram for Turing machine M5
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Instantaneous Descriptions
(IDs or configurations) A={0? |n>0}

Sample Input: 0000

Next we give a sample run of this machine on input 0000. The starting con-
figuration is ¢; 0000. The sequence of configurations the machine enters appears
as follows; read down the columns and left to right.

10000 Ligs x0x0 LIX (g5 XX
Lg2 000 gsLx0xu LI XX XL
uxg3z00 Ligo x0xu 5LUX XKL
ux0g40 Lxgo0xu Lo XX XU
ux0xqggu LIXX (XL LIX (o XXU
Lx0gsxu LIXX XG5 LXX(oXLI
Lz 0xu LIXX (5 XL LIXXX (oLt

UXXXUGaccept

18



Detailed State Diagram -
A={0* |n>0}

I_IXOX{}'EI._I =
Lx0gsxu

Lxgs0zu

Ly x0xu
g5Lx 0=
ugex0xu
Lx g2 0xu
LIz XL
LEXE G
LEX s XL

u—R LIXg5XxXL

x—R L5 XXX

(J5UXXXL

@ : Lo XX XL
. LR oXEL

UEEJaEL

L EX (2L

UXX XU accept

FIGURE 3.8 19
State diagram for Turing machine M5



More Examples...

See Textbook Examples:

B Example 3.11
C={a'blc“|ixj=k and i, jk>1}
[J Subtlety on detecting left end of tape.
B Example 3.12 (element distinctness)
E={#x#x,#--#Xx | each x; e{0,1}*and X = x; foreach I = J}

20



Language recognized by TM

Finally, we let -~ be the transitive, reflexive
closure of . So If a and 3 are IDs, the
statement o k" means "the TM can go

from o to B in O or more steps"”

The language recognized by M iIs
L(M) = { xex™ | qo xF u g,V for

some u ,VEF* } (strings that are accepted by M)

Translation?
Note x €X7, not I

21



TM language classes

Definition A language L is Turing-

recognizable if there exists a TM M such

that L = L(M).

B Synonym: L is recursively enumerable,
abbreviated "r.e.” (see Section 3.2)

Definition The class of all Turing-

recognizable languages is

¥, ={LCZX | Lis Turing-recognizable }

B The textbook does not assign a name like this; it
just says "class of TM-recognizable langs™

B Beware: The class ¥, is not an alphabet like X~

B The naming is unfortunate but better than some
of the alternatives



Turing-Recognizable Languages

Turing

Recognizable |

Each point is
a language in
this Venn
diagram

ALL
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Deciders

We've seen that when you start a TM with
an input x, it can do three distinct things:
B Accept x

B Reject X

B Run forever without accepting or rejecting x

1 We call this "looping" -- meaning that the TM
runs forever. (The "loop" might not be so
simple, the point is it runs forever.)

Some TMs always accept or reject and
never loop on any input whatsoever. You
could easily write an example of one. A TM
with this property is called a decider.

B A decider always halts on every input

24



Decidable languages

Definition A language is decidable if

there exists a decider TM M such that L =

L(M)

B Synonyms: L is "computable" and "recursive"

B Itis in general not easy to tell if a language is
decidable or not

Definition The class of all Turing-

decidable languages is

o ={ L CZ"|Lis Turing-decidable}

B Note X, (decidable) versus Z, (recognizable)
versus X (alphabet)

25



Turing-Decidable Languages

Turing |
Recognizable

Turing |
Decidable

Each point is
a language in
this Venn

ALL

diagram
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Decidable versus recognizable

Fact (obvious) X, C %,
B Every decider is automatically a recognizer too

Fact (not at all obvious) %, # £,

B This means that there exists some language

[l H is a language that can be recognized by some
TM, but can't be recognized by any TM that
always halts!

Fact (not at all obvious) X, = ALL

B This means that there exists some language

[l H,is a language that can't even be recognized
by any TM

27



Ultimately...

Turing
Recognizable

Turing |
Decidable

Each point is
a language in
this Venn
diagram

ALL
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Reminder

The decidable languages: %,
The recognizable languages: %,

29



Closure properties of X, and %,

2, Is closed under U,n, -, *, reversal
B Proofs for U and n are similar to the NFA

constructions we used, Iif you use a 2-
tape TM (section 3.2)

B Proof for reversal Is also easy with a 2-

tape TM (section 3.2)
B . and x are somewhat harder

B Not closed under complement
2o IS closed under all of these

%peltatleﬂ&and%emplemen%a%ﬁe%g




Preview: a non-recognizable L

This all means that some L exists that
IS not recognized by any TM

B \What does it look like?

B s it important?

YES, because of Church-Turing Thesis

I Intuitive notion of algorithms = Turing
machine algorithms

[ To be defined and discussed In Section 3.3

31
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