91.304 Foundations of
(Theoretical) Computer Science

Chapter 2 Lecture Notes (Section 2.3: Non-Context-Free Languages)

David Martin
dm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.

‘ @ \ To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,

California 94305, USA.

Picture so far

B={0"1"|n>01} ALL

\

0*(101)*

{0101, ¢ }

Each point is
a language in , : °

this Venn " Does this exist?
diagram

Strategy for finding a non-CFL

Just as we produced non-regular
languages with the assistance of RPP,
we'll produce non-context-free
languages with the assistance of the

context-free pumping property
B First we show that CFL C CFPP

B And then show that a particular language
L is not in CFPP

B Hence L can not be in CFL either

The Context-Free Pumping
Property, CFPP

Definition L iIs a member of CFPP If
There exists p>0 such that

B For every sel satistying |s| > p,
[0 There exist u,v,X,y,z € ¥* such that

1. s=uvxyz

2. IVy|>O bold, red text shows
3. |vxy|E p differences from RPP

4. Forall1 > O,
uvixy' zel

The non-CFPP

Rephrasing L is not in CFPP if
For every p>0
B There exists some sel satisfying |s| > p

such that
For every u,v,X,y,z € X" satisfying 1-3:

1. s=uvxyz,

2. |vy]=0, and
3. |vxy|sp
[0 There exists some 1 > O for which

uv' xy' z gL

Game theory formulation

The direct (non-contradiction) proof
of non-context-freeness can be
formulated as a two-player game

B You are the player who wants to
establish that L is not CF-pumpable

B Your opponent wants to make it difficult
for you to succeed

B Both of you have to play by the rules

Same setup as with regular pumping
(RPP)

Game theory continued

The game has just four steps.
1. Your opponent picks p>0

2. You pick selL such that |s|> p
3. Your opponent chooses u,v,X,y,Z €

>" such that s=uvxyz, |vy|=0, and
[vxyls p
4. You produce some i > 0 such that

uvixy'z ¢ L

Game theory continued

If you are able to succeed through step 4,

then you have won only one round of the
game

To show that a language is not in CFPP you
must show that you can always win,
regardless of your opponent's legal moves

B Realize that the opponent is free to choose the
most inconvenient or difficult p and u,v,X,y,z
Imaginable that are consistent with the rules

Game theory continued

So you have to present a strategy for
always winning — and convincingly
argue that it will always win

B So your choices in steps 2 & 4 have to
depend on the opponent's choices in
steps 1 & 3

B And you don't know what the opponent
will choose

B So your choices need to be framed In
terms of the variables p, u, v, X, vy, z

Towards proving CFL € CFPP

O

O

To prove the claim that CFL C CFPP we'll simplify
things by using Chomsky Normal Form (CNF)

Recall: a CFG G=(V,2,R,S,) Is in Chomsky Normal
Form if each rule is of one of these forms:
B A — BC, where A, Band C € V, and B£S, and C+£S,

(neither B nor C is the start symbol)
B A—>c,whereAeVandcezX

B S, > ¢ Where S, is the grammar's start symbol (this
IS the only ¢ production allowed)

Recall: Every context-free language L has a grammar
G that is in Chomsky Normal Form

10

Towards proving CFL C CFPP:
Length constraints

We will use some handy facts about CNF
grammars.

Definition. Suppose s Is some string
generated by a CNF grammar G. Then
let minheight(s) be the height (number of
levels - 1) INn the shortest parse tree for s
In the grammar G.

Example: minheight(e) > 1 for every G

11

Towards proving CFL C CFPP:
Length constraints

[0 Lemma Suppose G is in Chomsky Normal Form.
Then
1. For all n>1, if minheight(s)<n then

|s] £2". In other words, constraining the height of a
parse tree also constrains the length of the string.

1. Recall length of string = # terminals = # leaves of
parse tree.
2. For all n> 0, if |s]|=2", then minheight(s)> n. In

other words, large strings come from tall trees.

0 (The 2 in 2*X comes from the fact that each node in a
parse tree for s has at most two children, because
the grammar is in CNF.)

12

The Context-Free Pumping
Property, CFPP (repeat)

Definition L iIs a member of CFPP If
There exists p>0 such that

B For every sel satistying |s| > p,
[0 There exist u,v,X,y,zZ € X" such that

1. s=uvxyz

2. |vy|=0

3. |vxylsp

4. Forall1 > O,
uvixy zel

13

Theorem 2.19: CFL C CFPP:
Proof ldea

Let:
A be a CFL and
G be a CFG generating A
s be a “very” long string in A
[0 s has a parse tree for its derivation
B Parse tree is “very” long and contains a “long” path.
B Pigeon-hole principle:
[0 “Long” path contains repetition of some variable R.

[0 Repetition of R allows substitution of first occurrence of
R’s subtree where second occurrence of R’s subtree
OCCuUrs.

B Result is a legal parse tree for language A.

B Due to substitution we can cut s into 5 pieces uvxyz.

[0 Occurrences of v and y can be “pumped” to yield
uv'xy'z.

14

Theorem 2.19: CFL C CFPP:

Proof ldea

R
il ¢

Y

FIGURE 2.35
Surgery on parse trees

15
Source: Sipser textbook

Theorem 2.19: CFL C CFPP

Proof. Suppose LeCFL and let G=(V,%,R,S,) be any CNF
grammar that generates it.

We set p=2IVI+1,
Now suppose seL where |s|> p. We must show how

to produce u,v,X,y,z etc.
O Since |s| >2IVI#1 = 2Vl we can apply the length fact

to conclude that minheight(s)> |V]. But there are
only |V| variables in the grammar. So looking at the
parse tree for |s|, some variable R must be used more
than once.

B For convenience later, pick R to be a variable that
repeats on the bottom |V| +1 internal nodes
(corresponding to variables) of that path of the
tree.

O
L

16

CFL C CFPP continued

O

O

1 o AEER

We know that S; =" s and that R appears within this
derivation twice

So let u,v,X,y,z be strings satisfying

B uvXxyz=s

B S,=" uRz (first appearance)

B R =" VvRy (second appearance)

B R=>"X (then turning into x)

So S, =" uRz =~ uvRyz =~ uvxyz = s (we knew that
Sy, = s already)

But the grammar is context free, so we can apply any
of the R substitutions at any point

Thus Sp="URz =" uxz =u vOx y®z

And S, =" UVRyz =" UVWRYYZ =" uvvXxyyz = uv2xy?z
and so on. Hence, the pumping property holds.

17

CFL C CFPP continued

O O

We still have to see the length constraints |vy|>0 and
lvxy|=s p though.

Recall s = uvxyz.

Suppose that |vy|=0 (to get a contradiction). Then the

arse tree has to include
0= URz =2'uRz =" uxz (})

(>1 meaning "at least one substitution") This is because
we know that R is actually repeated in the tree.

But CNF rules always add to the string. The onlly
exception is the optional rule Sy,—e¢, but we've already

assumed that |s] is long, so itisn't &. Thus line (})
above can't be true, and hence |vy|=0 is impossible.

18

CFL C CFPP continued

We still have to see the length constraint |vxy|
< p.

We know that R repeats somewhere within the
bottom |V|+1 internal nodes (representing
variables) of the tree while producing the vxy
part of s. Let h be the actual height of this
subtree. Then

B minheight(vxy) £ h £ |V]+1 (length of longest branch) =

lvxy| £ 2IVI+1 = p (by lemma (1.0 on slide 12)).
Q.E.D.

19

Game theory (repeat)

The game has just four steps.
1. Your opponent picks p>0

2. You pick selL such that |s|> p
3. Your opponent chooses u,v,X,y,Z €

>" such that s=uvxyz, |vy|=0, and
[vxyls p
4. You produce some i > 0 such that

uvixy'z ¢ L

20

Example 2.36

O

O
O
=

L = {a"b"c" | n > 0} is not a CFL

To see this: let og)ponent choose p, then we set s =
aPbPcP, Clearly [s|>p and seL

So opponent breaks it up into u,v,x
length constraints [vy|=0 and [vxy[&'p

We need to show that some i exists for which uvixy'z
IS not in L.

B Note: the first character of v must be no more than p

chars Away from the last character of y, because
[vxy|s p.

B So in the string uv®xy®z, we have removed at least
one char and at most p chars — but we have
removed at most 2 types of characters: that is, some
"a"s & "b"s, or some "b"s & "c"s. It's impossible to
remove 3 types ("a'"'s & "b"s & "c"s) this way.

B So the resulting string isn't in L. i=0 is our exponent.

Y2 subject to the

21

Closure properties of CFL

Reminder: closure properties can help us
measure whether a computation model is
reasonable or not

CFL is closed under

B Union, concatenation
1 Thus, exponentiation and *

CFL Is not closed under
B |[ntersection

B Complement

Weak intersection:

If AecCFL and ReREG, then ANRe CFL

22

Revised Picture

Each point is
a language in
this Venn

diagram

-

REG

ALL

23

