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Regular expressions

You might be familiar with theseYou might be familiar with these.
Example: "^int .*\(.*\);" is a (flex format) 
regular expression that appears to match C regular expression that appears to match C 
function prototypes that return ints.
In our treatment, a regular expression is a , g p
program that generates a language of 
matching strings when you "run it“.

ll d f hWe will use a very compact definition that 
simplifies things later.

2Flex = Fast Lexical Analyzer Generator



Regular expressions
Definition   Let Σ be an alphabet not containing any of Definition.  Let Σ be an alphabet not containing any of 
the special characters in this list: ε ∅ )  (  ∪ · ∗
We define the syntax of the (programming) language 
REX(Σ), abbreviated as REX, inductively:( ), , y

Base cases
1. For all a∈Σ, a∈REX.  In other words, each single character 

from Σ is a regular expression all by itself.
2 ∈REX   In other words  the literal symbol is a regular 2. ε∈REX.  In other words, the literal symbol ε is a regular 

expression.  In this context it is not the empty string but 
rather the single-character name for the empty string.

3. ∅∈REX.  Similarly, the literal symbol ∅ is a regular 
expression.

Notes: 
-REX is not defined in our textbook, but is helpful in continuing to build our 
diagram of languages
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diagram of languages.
-In our textbook, a represents language {a}, ε represents language {ε}.



Regular expressions

D fi iti  ti dDefinition continued
Induction cases
4 For all r  r ∈ REX4. For all r1, r2∈ REX,

(  r1 ∪ r2 ) ∈ REX also

literal symbols variables

5. For all r1, r2∈ REX,
(  r1 · r2 ) ∈ REX also
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Note: Later we remove dot, which is denoted by empty circle in textbook (later also removed).



Regular expressions

Definition continuedDefinition continued
Induction cases continued
6. For all r ∈ REX,

(  r* ) ∈ REX also

Examples over Σ={0,1}
ε and 0 and 1 and ∅ε and 0 and 1 and ∅
(((1·0)·(ε∪∅))*)

εε is not a regular expressionεε is not a regular expression
Remember, in the context of regular 
expressions, ε and ∅ are ordinary characters
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Note: Textbook also defines R+=R R*, where R is a regular expression.



Semantics of regular expressions

Definition   We define the meaning of the Definition.  We define the meaning of the 
language REX(Σ) inductively using the L() 
operator so that L(r) denotes the 
l  t d b   f lllanguage generated by r as follows:

Base cases
1. For all a∈Σ, L(a) = { a }.  A single-character 

regular expression generates the corresponding 
single-character string.

2. L(ε) = { ε }.  The symbol for the empty string 
actually generates the empty string.

3. L(∅) = ∅.  The symbol for the empty language 
actually generates the empty language.
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Regular expressions
Definition continuedDefinition continued

Induction cases
4. For all r1, r2∈ REX,

L(  (r ∪ r )  ) = L(r ) ∪ L(r )L(  (r1 ∪ r2)  ) = L(r1) ∪ L(r2)
5. For all r1, r2∈ REX,

L(  (r1 · r2)  ) = L(r1) · L(r2)
6 For all r ∈ REX6. For all r ∈ REX,

L(  (  r* )   ) = (L(r))*

No other string is in REX(Σ)

Example
L( (  ((1·0)·(ε∪∅))*  ) ) includes
ε 10 1010 101010 10101010
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ε,10,1010,101010,10101010,...



Orientation

W  d hi hl  fl ibl  th ti l We used highly flexible mathematical 
notation and state-transition 
diagrams to specify DFAs and NFAsdiagrams to specify DFAs and NFAs
Now we have a precise programming 
language REX that generates language REX that generates 
languages
REX is designed to close the REX is designed to close the 
simplest languages under ∪, ∗, ·
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Abbreviations
Instead of parentheses  we use precedence to Instead of parentheses, we use precedence to 
indicate grouping when possible.  

* (highest)
·
∪  (lowest)

Instead of  ·  , we just write elements next to , j
each other

Example: (((1·0)·(ε∪∅))*) can be written as 
(10(ε∪∅))*(10(ε∪∅))

If r∈ REX(Σ), instead of writing rr*, we write r+
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Abbreviations

Instead of writing a union of all characters Instead of writing a union of all characters 
from Σ together to mean "any character", 
we just write Σj

In a flex/grep regular expression this would be 
called "."

I t d f iti  L( ) h  i   l  Instead of writing L(r) when r is a regular 
expression, we consider r alone to 
simultaneously mean both the expression rsimultaneously mean both the expression r
and the language it generates, relying on 
context to disambiguate
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Abbreviations
Caution: regular expressions are stringsCaution: regular expressions are strings
(programs).  They are equal only when
they contain exactly the same sequence of 
h tcharacters.

(((1·0)·(ε∪∅))*) can be abbreviated (10(ε∪∅))*

however (((1·0)·(ε∪∅))*) ≠ (10(ε∪∅))* as strings
but (((1·0)·(ε∪∅))*) = (10(ε∪∅))* when they are 
considered to be the generated languages

more accurately then  more accurately then, 
L( (((1·0)·(ε∪∅))*) ) = L( (10(ε∪∅))* )

= L( (10)* )
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Examples

Find a regular expression for Find a regular expression for 
{ w∈{0,1}* | w ≠ 10 }

Find a regular expression for Find a regular expression for 
{ x∈{0,1}* | the 6th digit counting 

from the rightmost g
character of x is 1}

Find a regular expression for
L {x∈{0 1}*| the binary number x is L3={x∈{0,1}*| the binary number x is 

a multiple of 3 } 
(foreshadowing: can be done by starting with DFA and then ripping states)

12+ Selected examples from textbook Example 1.53 (p. 65)

(foreshadowing: can be done by starting with DFA and then ripping states)



Facts

REX(Σ) is itself a language over an REX(Σ) is itself a language over an 
alphabet Γ that is
Γ = Σ ∪{ )  (  ·  ∗  ε  ∅}Γ = Σ ∪  { ) , ( , ·, ∗, ε , ∅}
For every Σ, |REX(Σ)| = ∞
∅ (∅*) ((∅*)*)  ∅,(∅ ),((∅ ) ),... 

even without knowing Σ there are infinitely 
many elements in REX(Σ)y ( )

Question: Can we find a DFA or NFA 
M with L(M) = REX(Σ)?
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1

The DFA for L3

0 1 2

0

1

1

0

0 1 2

1 0

Regular expression:
(0 ∪ 1 1 ) *(0 1* 0)*  (0 ∪ 1 _____________ 1 ) (0 1  0)   

(Recall precedence of operators.)
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Regular expression for L3

(0    ∪ 1 (0 1* 0)* 1 ) *(0    ∪ 1 (0 1  0)  1 ) 

L3 is closed under concatenation, 
b  f th  ll f  ( )*because of the overall form ( )*

Now suppose x∈L3.  Is xR ∈ L3?

Yes: see this is by reversing the regular 
expression and observing that the same 
regular expression resultsregular expression results
So L3 is also closed under reversal
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Equivalence with Finite Automata

Theorem 1 54  A language is regular if and Theorem 1.54  A language is regular if and 
only if some regular expression describes it.

Proof: 2 directionsProof: 2 directions
Lemma 1.55: If a language is described by 
a regular expression, then it is regular. g p , g
(Proof idea: Convert to an NFA.)
Lemma 1.60: If a language is regular, 
h d b d b lthen it is described by a regular expression.

(Proof idea: Convert from DFA to GNFA to 
regular expression )
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regular expression.)



Regular expressions generate 
regular languages

L  1 55  F   l  Lemma 1.55  For every regular 
expression r, L(r) is a regular 
languagelanguage.

Proof by induction on regular 
expressionsexpressions.

We used induction to create all of the 
regular expressions and then to define their g p
languages, so we can use induction to visit 
each one and prove a property about it
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Recall that regular expressions were defined inductively.



L(REX) ⊆ REGL(REX) ⊆ REG

B  Base cases:
1. For every a∈  Σ, L(a) = { a } is 

b i l  lobviously regular:
a

2. L(ε)  ={ ε } ∈ REG also
3 L(∅)  ∅ ∈ REG3. L(∅) = ∅ ∈ REG
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L(REX) ⊆ REGL(REX) ⊆ REG

Induction cases:Induction cases:
4. Suppose the induction hypothesis holds for 

r1 and r2.  Namely, L(r1) ∈ REG and L(r2) ∈
REG   We want to show that L( (r ∪ r ) ) ∈REG.  We want to show that L( (r1∪ r2) ) ∈
REG also.  But look: by definition,

L( (r1 ∪ r2) ) = L(r1) ∪ L(r2)

Since both of these languages are regular, 
we can apply Theorem 1 45 (closure of we can apply Theorem 1.45 (closure of 
REG under ∪) to conclude that their union 
is regular.
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L(REX) ⊆ REGL(REX) ⊆ REG

Induction cases:Induction cases:
5. Now suppose L(r1)∈ REG and L(r2)∈ REG.  

By definition,
L( (r1· r2) ) = L(r1) · L(r2)L( (r1· r2) ) = L(r1) · L(r2)

By Theorem 1.47 (closure of REG under ·) , 
this concatenation is regular too.

6 Fi ll   L( ) REG   Th  b  6. Finally, suppose L(r)∈ REG.  Then by 
definition,

L(  (r*)  ) = (L(r))*

By Theorem 1.49 (closure of REG under *), 
this language is also regular.   QED
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On to REG ⊆ L(REX)On to REG ⊆ L(REX)

Now we'll show that each regular Now we ll show that each regular 
language (one accepted by an 
automaton) also can be described by automaton) also can be described by 
a regular expression

Hence REG = L(REX)
In other words, regular expressions are 
equivalent in power to finite automata

This equivalence is called Kleene'sThis equivalence is called Kleene's
Theorem (Theorem 1.54 in book)
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Converting DFAs to REX

L  1 60 i  t tb kLemma 1.60 in textbook
This approach uses yet another form 
f fi it  t t  ll d  GNFAof finite automaton called a GNFA

(generalized NFA)
Th  h i  i  i   d d The technique is easier to understand 
by working an example than by 
studying the proofstudying the proof
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Syntax of GNFA

A li d NFA i   5 t l  A generalized NFA is a 5-tuple 
(Q,Σ,δ,qs,qa) such that
1 Q is a finite set of states1. Q is a finite set of states
2. Σ is an alphabet 
3 δ:(Q -{q } )×(Q -{q } )→ REX(Σ) is the 3. δ:(Q {qa} )×(Q {qs} )→ REX(Σ) is the 

transition function
4. qs∈ Q is the start stateqs Q
5. qa∈ Q is the (one) accepting state
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GNFA syntax summary

Arcs are labeled with regular expressionsArcs are labeled with regular expressions
Meaning is that "input matching the label moves 
from old state to new state" -- just like NFA, but 
not just a single character at a time

Start state has no incoming transitions, 
accept has no outgoingaccept has no outgoing
Every pair of states (except start & accept) 
has two arcs between themhas two arcs between them

Every state has a self-loop (except start & 
accept)
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Construction strategy

Will t  DFA i t   GNFA th  Will convert a DFA into a GNFA then 
iteratively shrink the GNFA until we 
end up with a diagram like this:end up with a diagram like this:

giant regular expression
qs qa

meaning that exactly that input that meaning that exactly that input that 
matches the giant regular expression 
is in the language

25
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Converting DFA to GNFA
0 1

0 1 2

0

1 0DFA
0 1 2

1 0

1

qa

1 2

0

1

1

0ε

0

Adding new start state 
qs is straightforward

Then make each DFA 1 2

1 0

q
ε

GNFA

0 Then make each DFA 
accepting state have 
an ε transition to the 
single accepting state 
q

26

qs GNFA qa

Note:  0 transitions are not drawn here for sake of clarity, but can be important later on.



Interpreting arcs
δ:(Q-{q })×(Q-{q })→ REX(Σ)δ:(Q-{qa})×(Q-{qs})→ REX(Σ)
In this diagram, for example,
δ(0 1)=1 δ(2 0)=∅ δ(2 q )=∅δ(0,1)=1 δ(2,0)=∅ δ(2,qa)=∅
δ(1,1)=∅ δ(2,2)=1 δ(0,qa)=ε

1

qa

1 2

0

1

1

0ε

0 1 2

1 0

q
ε

0
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Eliminating a GNFA state

W  bit il  h   i t i  t t  We arbitrarily choose an interior state 
(not qs or qa) to rip out of the 
machine  machine  

R4

Question: how is the 
ability of state i to get 
to state j affected 

i j
when we remove rip?

Only the solid and 
labeled states and 

rip
R1 R3

transitions are 
relevant to that 
question
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Eliminating a GNFA state
We produce a new GNFA RWe produce a new GNFA 
that omits rip

Its i-to-j label will 
t  f  th  i i  

i j

R4

compensate for the missing 
state
We will do this for every
(i j) ∈ (Q {q })×(Q {q })

R1 R3(i,j) ∈ (Q-{qa})×(Q-{qs})

So we have to rewrite 
every label in order to 
li i t  thi   t t

rip

R2

3

eliminate this one state
New label for i-to-j is
R4 ∪(R1 · (R2)*· R3)

2
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Don't overlook

The case RThe case 
(i,i) ∈ (Q-{qa})×(Q-{qs})

New label for i-to-i is still
i

R4

New label for i to i is still
R4 ∪(R1 · (R2)*· R3)

R1

R3

Example proceeds on 
whiteboard, but first we’ll 

rip

R2whiteboard, but first we ll 
do textbook p. 75 (Figure 
1.67) for a simpler one.

2
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g/re/p

What does grep do?What does grep do?
(int |  float)_rec.*emp  becomes

(Σ*)(int ∪ float) rec(Σ*)emp(Σ*)( )( ∪ oa )_ ( ) p( )

What does it mean?
How does it work?How does it work?

Regular expression → NFA → DFA →
state reduction
Then run DFA against each line of input, 
printing out the lines that it accepts
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State machines
Very common programming techniqueVery common programming technique

while (true) {
switch (state) {
case NEW_CONNECTION:

process_login(); 
state=RECEIVE_CMD;
break;

case RECEIVE_CMD:
if (process cmd() == CMD QUIT)if (process_cmd() == CMD_QUIT)

state=SHUTDOWN;
break;

case SHUTDOWN:
…
}

…
}
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This chapter so far
§1 1: Introduction to languages & DFAs§1.1: Introduction to languages & DFAs
§1.2: NFAs and DFAs recognize the same class 

of languagesg g
§1.3: REX generates the same class of 

languages
Th  diff t i  "l " Three different programming "languages" 
specified in different levels of formality that 
solve the same types of computational 
problems

Four, if you count GNFAs

33



Strategies
If you're investigating a property of regular If you re investigating a property of regular 
languages, then as soon as you know L ∈
REG, you know there are DFAs, NFAs, 
R  th t d ib  it   U  h t  Regexes that describe it.  Use whatever 
representation is convenient
But sometimes you're investigating the But sometimes you re investigating the 
properties of the programs themselves: 
changing states, adding a * to a regex, etc.  
Then the knowledge that other Then the knowledge that other 
representations exist might be relevant and 
might not
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All finite languages are regular
Theorem (not in book) FIN ⊆ REGTheorem (not in book) FIN ⊆ REG
Proof Suppose L ∈ FIN.
Then either L = ∅  or L={ s  s  L  s } Then either L = ∅, or L={ s1, s2, L, sn } 

where n∈N and each si∈Σ*.

A regular expression describing L is  A regular expression describing L is, 
therefore, either ∅ or
s1 ∪ s2 ∪ L ∪ sn QED1 2 n Q

Note that this proof does not work for 
n=∞
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Picture so far

ALLEach point is 
a language in 
this Venn this Venn 
diagram

REG

FINREG = L(DFA) 
= L(NFA) 

REG

is there a 
language = L(NFA) 

= L(REX) 
= L(GNFA)

≠ FIN

language 
out here?

36"the class of languages generated by DFAs"


