
91.304 Foundations of
(Th ti l) C t S i(Theoretical) Computer Science

Chapter 1 Lecture Notes (Section 1.3: Regular Expressions)

David Martin
d @ l ddm@cs.uml.edu

with some modifications by Prof. Karen Daniels, Spring 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-

1

sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

Regular expressions

You might be familiar with theseYou might be familiar with these.
Example: "^int .*\(.*\);" is a (flex format)
regular expression that appears to match C regular expression that appears to match C
function prototypes that return ints.
In our treatment, a regular expression is a , g p
program that generates a language of
matching strings when you "run it“.

ll d f hWe will use a very compact definition that
simplifies things later.

2Flex = Fast Lexical Analyzer Generator

Regular expressions
Definition Let Σ be an alphabet not containing any of Definition. Let Σ be an alphabet not containing any of
the special characters in this list: ε ∅) (∪ · ∗
We define the syntax of the (programming) language
REX(Σ), abbreviated as REX, inductively:(), , y

Base cases
1. For all a∈Σ, a∈REX. In other words, each single character

from Σ is a regular expression all by itself.
2 ∈REX In other words the literal symbol is a regular 2. ε∈REX. In other words, the literal symbol ε is a regular

expression. In this context it is not the empty string but
rather the single-character name for the empty string.

3. ∅∈REX. Similarly, the literal symbol ∅ is a regular
expression.

Notes:
-REX is not defined in our textbook, but is helpful in continuing to build our
diagram of languages

3

diagram of languages.
-In our textbook, a represents language {a}, ε represents language {ε}.

Regular expressions

D fi iti ti dDefinition continued
Induction cases
4 For all r r ∈ REX4. For all r1, r2∈ REX,

(r1 ∪ r2) ∈ REX also

literal symbols variables

5. For all r1, r2∈ REX,
(r1 · r2) ∈ REX also

4

Note: Later we remove dot, which is denoted by empty circle in textbook (later also removed).

Regular expressions

Definition continuedDefinition continued
Induction cases continued
6. For all r ∈ REX,

(r*) ∈ REX also

Examples over Σ={0,1}
ε and 0 and 1 and ∅ε and 0 and 1 and ∅
(((1·0)·(ε∪∅))*)

εε is not a regular expressionεε is not a regular expression
Remember, in the context of regular
expressions, ε and ∅ are ordinary characters

5

Note: Textbook also defines R+=R R*, where R is a regular expression.

Semantics of regular expressions

Definition We define the meaning of the Definition. We define the meaning of the
language REX(Σ) inductively using the L()
operator so that L(r) denotes the
l t d b f lllanguage generated by r as follows:

Base cases
1. For all a∈Σ, L(a) = { a }. A single-character

regular expression generates the corresponding
single-character string.

2. L(ε) = { ε }. The symbol for the empty string
actually generates the empty string.

3. L(∅) = ∅. The symbol for the empty language
actually generates the empty language.

6

Regular expressions
Definition continuedDefinition continued

Induction cases
4. For all r1, r2∈ REX,

L((r ∪ r)) = L(r) ∪ L(r)L((r1 ∪ r2)) = L(r1) ∪ L(r2)
5. For all r1, r2∈ REX,

L((r1 · r2)) = L(r1) · L(r2)
6 For all r ∈ REX6. For all r ∈ REX,

L((r*)) = (L(r))*

No other string is in REX(Σ)

Example
L((((1·0)·(ε∪∅))*)) includes
ε 10 1010 101010 10101010

7

ε,10,1010,101010,10101010,...

Orientation

W d hi hl fl ibl th ti l We used highly flexible mathematical
notation and state-transition
diagrams to specify DFAs and NFAsdiagrams to specify DFAs and NFAs
Now we have a precise programming
language REX that generates language REX that generates
languages
REX is designed to close the REX is designed to close the
simplest languages under ∪, ∗, ·

8

Abbreviations
Instead of parentheses we use precedence to Instead of parentheses, we use precedence to
indicate grouping when possible.

* (highest)
·
∪ (lowest)

Instead of · , we just write elements next to , j
each other

Example: (((1·0)·(ε∪∅))*) can be written as
(10(ε∪∅))*(10(ε∪∅))

If r∈ REX(Σ), instead of writing rr*, we write r+

9

Abbreviations

Instead of writing a union of all characters Instead of writing a union of all characters
from Σ together to mean "any character",
we just write Σj

In a flex/grep regular expression this would be
called "."

I t d f iti L() h i l Instead of writing L(r) when r is a regular
expression, we consider r alone to
simultaneously mean both the expression rsimultaneously mean both the expression r
and the language it generates, relying on
context to disambiguate

10

Abbreviations
Caution: regular expressions are stringsCaution: regular expressions are strings
(programs). They are equal only when
they contain exactly the same sequence of
h tcharacters.

(((1·0)·(ε∪∅))*) can be abbreviated (10(ε∪∅))*

however (((1·0)·(ε∪∅))*) ≠ (10(ε∪∅))* as strings
but (((1·0)·(ε∪∅))*) = (10(ε∪∅))* when they are
considered to be the generated languages

more accurately then more accurately then,
L((((1·0)·(ε∪∅))*)) = L((10(ε∪∅))*)

= L((10)*)

11

Examples

Find a regular expression for Find a regular expression for
{ w∈{0,1}* | w ≠ 10 }

Find a regular expression for Find a regular expression for
{ x∈{0,1}* | the 6th digit counting

from the rightmost g
character of x is 1}

Find a regular expression for
L {x∈{0 1}*| the binary number x is L3={x∈{0,1}*| the binary number x is

a multiple of 3 }
(foreshadowing: can be done by starting with DFA and then ripping states)

12+ Selected examples from textbook Example 1.53 (p. 65)

(foreshadowing: can be done by starting with DFA and then ripping states)

Facts

REX(Σ) is itself a language over an REX(Σ) is itself a language over an
alphabet Γ that is
Γ = Σ ∪{) (· ∗ ε ∅}Γ = Σ ∪ {) , (, ·, ∗, ε , ∅}
For every Σ, |REX(Σ)| = ∞
∅ (∅*) ((∅*)*) ∅,(∅),((∅)),...

even without knowing Σ there are infinitely
many elements in REX(Σ)y ()

Question: Can we find a DFA or NFA
M with L(M) = REX(Σ)?

13

1

The DFA for L3

0 1 2

0

1

1

0

0 1 2

1 0

Regular expression:
(0 ∪ 1 1) *(0 1* 0)* (0 ∪ 1 _____________ 1) (0 1 0)

(Recall precedence of operators.)

14

Regular expression for L3

(0 ∪ 1 (0 1* 0)* 1) *(0 ∪ 1 (0 1 0) 1)

L3 is closed under concatenation,
b f th ll f ()*because of the overall form ()*

Now suppose x∈L3. Is xR ∈ L3?

Yes: see this is by reversing the regular
expression and observing that the same
regular expression resultsregular expression results
So L3 is also closed under reversal

15

Equivalence with Finite Automata

Theorem 1 54 A language is regular if and Theorem 1.54 A language is regular if and
only if some regular expression describes it.

Proof: 2 directionsProof: 2 directions
Lemma 1.55: If a language is described by
a regular expression, then it is regular. g p , g
(Proof idea: Convert to an NFA.)
Lemma 1.60: If a language is regular,
h d b d b lthen it is described by a regular expression.

(Proof idea: Convert from DFA to GNFA to
regular expression)

16

regular expression.)

Regular expressions generate
regular languages

L 1 55 F l Lemma 1.55 For every regular
expression r, L(r) is a regular
languagelanguage.

Proof by induction on regular
expressionsexpressions.

We used induction to create all of the
regular expressions and then to define their g p
languages, so we can use induction to visit
each one and prove a property about it

17
Recall that regular expressions were defined inductively.

L(REX) ⊆ REGL(REX) ⊆ REG

B Base cases:
1. For every a∈ Σ, L(a) = { a } is

b i l lobviously regular:
a

2. L(ε) ={ ε } ∈ REG also
3 L(∅) ∅ ∈ REG3. L(∅) = ∅ ∈ REG

18

L(REX) ⊆ REGL(REX) ⊆ REG

Induction cases:Induction cases:
4. Suppose the induction hypothesis holds for

r1 and r2. Namely, L(r1) ∈ REG and L(r2) ∈
REG We want to show that L((r ∪ r)) ∈REG. We want to show that L((r1∪ r2)) ∈
REG also. But look: by definition,

L((r1 ∪ r2)) = L(r1) ∪ L(r2)

Since both of these languages are regular,
we can apply Theorem 1 45 (closure of we can apply Theorem 1.45 (closure of
REG under ∪) to conclude that their union
is regular.

19

L(REX) ⊆ REGL(REX) ⊆ REG

Induction cases:Induction cases:
5. Now suppose L(r1)∈ REG and L(r2)∈ REG.

By definition,
L((r1· r2)) = L(r1) · L(r2)L((r1· r2)) = L(r1) · L(r2)

By Theorem 1.47 (closure of REG under ·) ,
this concatenation is regular too.

6 Fi ll L() REG Th b 6. Finally, suppose L(r)∈ REG. Then by
definition,

L((r*)) = (L(r))*

By Theorem 1.49 (closure of REG under *),
this language is also regular. QED

20

On to REG ⊆ L(REX)On to REG ⊆ L(REX)

Now we'll show that each regular Now we ll show that each regular
language (one accepted by an
automaton) also can be described by automaton) also can be described by
a regular expression

Hence REG = L(REX)
In other words, regular expressions are
equivalent in power to finite automata

This equivalence is called Kleene'sThis equivalence is called Kleene's
Theorem (Theorem 1.54 in book)

21

Converting DFAs to REX

L 1 60 i t tb kLemma 1.60 in textbook
This approach uses yet another form
f fi it t t ll d GNFAof finite automaton called a GNFA

(generalized NFA)
Th h i i i d d The technique is easier to understand
by working an example than by
studying the proofstudying the proof

22

Syntax of GNFA

A li d NFA i 5 t l A generalized NFA is a 5-tuple
(Q,Σ,δ,qs,qa) such that
1 Q is a finite set of states1. Q is a finite set of states
2. Σ is an alphabet
3 δ:(Q -{q })×(Q -{q })→ REX(Σ) is the 3. δ:(Q {qa})×(Q {qs})→ REX(Σ) is the

transition function
4. qs∈ Q is the start stateqs Q
5. qa∈ Q is the (one) accepting state

23

GNFA syntax summary

Arcs are labeled with regular expressionsArcs are labeled with regular expressions
Meaning is that "input matching the label moves
from old state to new state" -- just like NFA, but
not just a single character at a time

Start state has no incoming transitions,
accept has no outgoingaccept has no outgoing
Every pair of states (except start & accept)
has two arcs between themhas two arcs between them

Every state has a self-loop (except start &
accept)

24

Construction strategy

Will t DFA i t GNFA th Will convert a DFA into a GNFA then
iteratively shrink the GNFA until we
end up with a diagram like this:end up with a diagram like this:

giant regular expression
qs qa

meaning that exactly that input that meaning that exactly that input that
matches the giant regular expression
is in the language

25

g g

Converting DFA to GNFA
0 1

0 1 2

0

1 0DFA
0 1 2

1 0

1

qa

1 2

0

1

1

0ε

0

Adding new start state
qs is straightforward

Then make each DFA 1 2

1 0

q
ε

GNFA

0 Then make each DFA
accepting state have
an ε transition to the
single accepting state
q

26

qs GNFA qa

Note: 0 transitions are not drawn here for sake of clarity, but can be important later on.

Interpreting arcs
δ:(Q-{q })×(Q-{q })→ REX(Σ)δ:(Q-{qa})×(Q-{qs})→ REX(Σ)
In this diagram, for example,
δ(0 1)=1 δ(2 0)=∅ δ(2 q)=∅δ(0,1)=1 δ(2,0)=∅ δ(2,qa)=∅
δ(1,1)=∅ δ(2,2)=1 δ(0,qa)=ε

1

qa

1 2

0

1

1

0ε

0 1 2

1 0

q
ε

0

27

qs

Eliminating a GNFA state

W bit il h i t i t t We arbitrarily choose an interior state
(not qs or qa) to rip out of the
machine machine

R4

Question: how is the
ability of state i to get
to state j affected

i j
when we remove rip?

Only the solid and
labeled states and

rip
R1 R3

transitions are
relevant to that
question

28R2

Eliminating a GNFA state
We produce a new GNFA RWe produce a new GNFA
that omits rip

Its i-to-j label will
t f th i i

i j

R4

compensate for the missing
state
We will do this for every
(i j) ∈ (Q {q })×(Q {q })

R1 R3(i,j) ∈ (Q-{qa})×(Q-{qs})

So we have to rewrite
every label in order to
li i t thi t t

rip

R2

3

eliminate this one state
New label for i-to-j is
R4 ∪(R1 · (R2)*· R3)

2

29

Don't overlook

The case RThe case
(i,i) ∈ (Q-{qa})×(Q-{qs})

New label for i-to-i is still
i

R4

New label for i to i is still
R4 ∪(R1 · (R2)*· R3)

R1

R3

Example proceeds on
whiteboard, but first we’ll

rip

R2whiteboard, but first we ll
do textbook p. 75 (Figure
1.67) for a simpler one.

2

30

g/re/p

What does grep do?What does grep do?
(int | float)_rec.*emp becomes

(Σ*)(int ∪ float) rec(Σ*)emp(Σ*)()(∪ oa)_ () p()

What does it mean?
How does it work?How does it work?

Regular expression → NFA → DFA →
state reduction
Then run DFA against each line of input,
printing out the lines that it accepts

31

State machines
Very common programming techniqueVery common programming technique

while (true) {
switch (state) {
case NEW_CONNECTION:

process_login();
state=RECEIVE_CMD;
break;

case RECEIVE_CMD:
if (process cmd() == CMD QUIT)if (process_cmd() == CMD_QUIT)

state=SHUTDOWN;
break;

case SHUTDOWN:
…
}

…
}

32

This chapter so far
§1 1: Introduction to languages & DFAs§1.1: Introduction to languages & DFAs
§1.2: NFAs and DFAs recognize the same class

of languagesg g
§1.3: REX generates the same class of

languages
Th diff t i "l " Three different programming "languages"
specified in different levels of formality that
solve the same types of computational
problems

Four, if you count GNFAs

33

Strategies
If you're investigating a property of regular If you re investigating a property of regular
languages, then as soon as you know L ∈
REG, you know there are DFAs, NFAs,
R th t d ib it U h t Regexes that describe it. Use whatever
representation is convenient
But sometimes you're investigating the But sometimes you re investigating the
properties of the programs themselves:
changing states, adding a * to a regex, etc.
Then the knowledge that other Then the knowledge that other
representations exist might be relevant and
might not

34

All finite languages are regular
Theorem (not in book) FIN ⊆ REGTheorem (not in book) FIN ⊆ REG
Proof Suppose L ∈ FIN.
Then either L = ∅ or L={ s s L s } Then either L = ∅, or L={ s1, s2, L, sn }

where n∈N and each si∈Σ*.

A regular expression describing L is A regular expression describing L is,
therefore, either ∅ or
s1 ∪ s2 ∪ L ∪ sn QED1 2 n Q

Note that this proof does not work for
n=∞

35

Picture so far

ALLEach point is
a language in
this Venn this Venn
diagram

REG

FINREG = L(DFA)
= L(NFA)

REG

is there a
language = L(NFA)

= L(REX)
= L(GNFA)

≠ FIN

language
out here?

36"the class of languages generated by DFAs"

