91.304 Foundations of (Theoretical) Computer Science

Chapter 4 Lecture Notes (Section 4.2: The "Halting" Problem)

David Martin dm@cs.uml.edu

With modifications by Prof. Karen Daniels, Fall 2014

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/bysa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Back to Σ_1

- So the fact that Σ₁ is not closed under complement means that there exists some language L that is not recognizable by any TM
- By Church-Turing thesis this means that no imaginable finite computer, even with infinite memory, could recognize this language L!

Non-recognizable languages

- We proceed to prove that non-Turing recognizable languages exist, in two ways:
 - A nonconstructive proof using Georg Cantor's famous 1873 diagonalization technique, and then
 - An explicit construction of such a language.

Learning how to count

Definition Let A and B be sets. Then we write A ≈ B and say that A is equinumerous to B if there exists a one-to-one, onto function (a "correspondence", i.e. a pairing)

 $f: \mathsf{A} \to \mathsf{B}$

- Note that this is a purely mathematical definition: the function *f* does not have to be expressible by a Turing machine or anything like that.
- **Example:** $\{1, 3, 2\} \approx \{\text{six, seven, BBCCD}\}$
- **Example:** $N \approx Q$ (textbook example 4.15)

See next slide...

Learning how to count (continued)

Example: $N \approx Q$ (textbook example 4.15)

FIGURE **4.16** A correspondence of N and Q

Source: Sipser textbook

5

Countability

Definition A set S is countable if S is finite or $S \approx N$.

- Saying that S is countable means that you can line up all of its elements, one after another, and cover them all
- Note that **R** is *not* countable (Theorem 4.17), basically because choosing a single real number requires making infinitely many choices of what each digit in it is (see next slide).

Countability (continued)

□ <u>Theorem 4.17</u>: **R** is *not* countable.

□ <u>Proof</u> Sketch: By way of contradiction, suppose $\mathbf{R} \approx \mathbf{N}$ using correspondence *f*.

Construct $x \in \mathbf{R}$ such that x is not paired with anything in **N**, providing a contradiction.

n	$\int f(n)$	$x \in (0,1)$	u is pot $f(u)$ for any u because it
1	3.14159		x is not $f(n)$ for any n because it
2	55.55555		differs from $f(n)$ in nth fractional
3	0.12 <u>3</u> 45	x = 0.4641	aigit.
4	0.500 <u>0</u> 0		
			Caveat: How to circumvent 0.1999= 0.2000 problem?

Source: Sipser textbook

7

$L \in \textbf{ALL} - \Sigma_1$

A non- Σ_1 language

Strategy

- □ We'll show that there are more (a *lot* more) languages in ALL than there are in Σ_1
 - Namely, that Σ₁ is countable but ALL isn't countable
 - Which implies that $\Sigma_1 \neq ALL$
 - Which implies that there exists some L that is not in Σ₁
- For simplicity and concreteness, we'll work in the universe of strings over the alphabet {0,1}.

Countability of Σ_1

Theorem Σ_1 is countable

Proof The strategy is simple. Σ₁ is the class of all languages that are Turing-recognizable. So each one has (at least) one TM that recognizes it. We'll concentrate on listing those TMs.

Countability of TM

- Notation: <M> means the **string encoding** of the object M
- Previously, we thought of our TMs as abstract mathematical things: drawings on the board, or 7-tuples: (Q,Σ,Γ,δ,q₀,q_a,q_r)
- But just as we can encode every C++ program as an ASCII string, surely we can also encode every TM as a string
- It's not hard to specify precisely how to do it—but it doesn't help us much either, so we won't bother
- Just note that in our full specification of a TM (Q,Σ,Γ,δ,q₀,q_a,q_r), each element in the list is finite by definition
- So writing down the sequence of 7 things can be done in a finite amount of text

□ In other words, each <M> is a string

Countability of TM

...

- Now we make a list of all possible strings in lexicographical (string) order,
- Cross out the ones that are not valid encodings of Turing Machines,
- \square And we have a mapping $f: \mathbb{N} \to \mathbb{TM}$
 - f(1) = first (smallest) TM encoding on list
 - f(2) = second TM encoding on list
- This is part of textbook's proof of Corollary 4.18 (Some languages are not Turingrecognizable).

Back to countability of Σ_1

□ Now consider the list $L(f(1)), L(f(2)), \cdots$

- Turns each TM enumerated by f into a language
- So we can define a function $g : \mathbf{N} \rightarrow \Sigma_1$ by g(i) = L(f(i)), where f(i) returns the ith Turing machine
- Now: is this a correspondence? Namely,
 - Is it onto?
 - Is it one-to-one?

Fixing g : $\mathbf{N} \rightarrow \Sigma_1$

- □ Go ahead and make the list g(1),g(2),...
- But cross out each element that is a repeat, removing it from the list
 Subtlety regarding EQ_{TM} undecidability (Ch 5)
- \Box Then let $h : \mathbb{N} \to \Sigma_1$ be defined by

h(i) = the ith element on the reduced list

Then h is both one-to-one and onto **Thus** Σ_1 is countable

What about ALL?

Theorem (Cantor, 1873) For *every* set A, A $\approx \mathcal{P}(A)$

- See next several slides for proof.
- See textbook for a different way to show ALL is uncountable using *characteristic sequence* associated with (uncountable) set of all infinite binary sequences.
- **Remember ALL** = $\mathcal{P}(\{0,1\}^*)$ if alphabet $\Sigma = \{0,1\}$
 - set of all (languages)
 - = set of all (subsets of $\{0,1\}^*$)
- Note that {0,1}* is countable
 - Just list all of the strings in lexicographical order
- **Corollary to Theorem** ALL = $\mathcal{P}(\{0,1\}^*)$ is

uncountable

- So Σ_1 is countable but ALL isn't
- So they're not equal

Cantor's Theorem

Theorem For every set A, $A \not\approx \mathcal{P}(A)$

Proof We'll show by contradiction that no function $f: A \rightarrow \mathcal{P}(A)$ is onto. So suppose $f: A \rightarrow \mathcal{P}(A)$ is onto. We define a set $K \subseteq A$ in terms of it:

 $K = \{ x \in A \mid x \notin f(x) \}$

Since $K \subseteq A$, $K \in \mathcal{P}(A)$ as well (by definition of \mathcal{P}). Since f is onto, there exists some $z \in A$ such that f(z) = K. Looking

closer

Case 1: If
$$Z \in K \Rightarrow Z \notin f(Z) \Rightarrow Z \notin K$$

by definition of K by definition of z so $z \in K$ certainly can't be true...

Cantor's Theorem

unchanged $\begin{cases} K = \{ x \in A \mid x \notin f(x) \} \\ K \in \mathcal{P}(A) \\ z \in A \text{ and } f(z) = K \end{cases}$

On the other hand,
Case 2: If
$$Z \notin K \Rightarrow Z \in f(Z) \Rightarrow Z \in K$$

by definition of K by definition of z

so z∉K can't be true either!

QED

Cantor's Theorem: Example

- □ For every *proposed* $f : A \rightarrow \mathcal{P}(A)$, the theorem constructs a set $K \in \mathcal{P}(A)$ that is not f(x) for any x
- □ Let A = { 1, 2, 3 } $\mathcal{P}(A) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\} \}$ □ Propose f : A→ $\mathcal{P}(A)$, show K

Diagonalization

- All we're really doing is identifying the squares on the diagonal and making them different than what's in our set K
- So that we're guaranteed K ≠ f(1), K ≠ f(2), …
- The construction works for infinite sets too

Non-recognizable languages

So we conclude that there exists some $L \in ALL - \Sigma_1$ (many such

languages)

- But we don't know what any L looks like exactly
- Turing constructed such an L also using diagonalization (but not the relation)
- We now turn our attention to it

Programs that process programs

- □ In §4.1, we considered languages such as $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G) \}$
- □ Each element of A_{CFG} is a *coded pair*
 - Meaning that the grammar G is encoded as a string and
 - w is an arbitrary string and
 - G,w> contains both pieces, in order, in such a way that the two pieces can be easily extracted
- □ The question "does grammar G₁ generate the string 00010?" can then be phrased equivalently as:
 - Is $< G_1,00010 > \in A_{CFG}$?

Programs that process programs

- Prelude to introducing Universal TM that can "process" programs.
- $\Box A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G) \}$
- The language A_{CFG} somehow represents the question "does this grammar accept that string?"
- Additionally we can ask: is A_{CFG} itself a regular language? context free? decidable? recognizable?
 - We showed previously that A_{CFG} is decidable (as is almost everything similar in §4.1)

A_{TM} and the Universal TM

- $\Box A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in L(M) \}$
- \Box We will show that $A_{TM} \in \Sigma_1 \Sigma_0$
 - (It's recognizable but not decidable)
- Theorem A_{TM} is Turing-recognized by a fixed TM called U (the Universal TM)
 - This is not stated as a theorem in the textbook (it does appear as part of proof of <u>Theorem 4.11</u>: A_{TM} is undecidable), but should be: it's really important

$$A_{TM} = L (U)$$

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in L(M) \}$

U is a 3-tape TM that keeps data like this:

1	< M >	never changes
		never changes

- 2
- q a state name $c_1 c_2 c_3 \cdots$ tape contents & head pos 3

On startup, U receives input <M,w> and writes <M> onto tape 1 and w onto tape 3. (If the input is not of the form $<\dot{M}$,w>, then U rejects it.) From $<\dot{M}>$, U can extract the encoded pieces $(\vec{Q}, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ at will. It continues by extracting and writing q_0 onto tape 2.

 $A_{TM} = L (U)$

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in L(M) \}$

1	< M >	never changes
2	q	a state name
3	$C_1 C_2 C_3 \cdots$	tape contents & head pos

To simulate a single computation step, U fetches the current character **c** from tape 3, the current state **q** on tape 2, and looks up the value of $\delta(q,c)$ on tape 1, obtaining a new state name, a new character to write, and a direction to move. U writes these on tapes 2 and 3 respectively.

If the new state is q_{acc} or q_{rej} then U accepts or rejects, respectively. Otherwise it continues with the next computation step.

The Universal TM U

- This U is hugely important: it's the theoretical basis for *programmable* computers.
- It says that there is a *fixed* machine U that can take computer programs as *input* and behave just like each of those programs
 - Note that U is not a decider
 - See VMware

□ Since $A_{TM} = L(U)$, we have shown that A_{TM} is Turing-recognizable (Σ₁)

The "Halting" Problem

- $\Box A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in L(M) \}$
- This appears in our textbook as:
 - $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$
 - This emphasizes the fact that U might loop (i.e. might not halt) on input <M,w>.
 - A_{TM} is therefore sometimes called the halting problem.
 - We use "" here due to Chapter 5's discussion...
 - \Box A_{TM} is called the acceptance problem in Chapter 5
 - □ The "real" halting problem is defined there as:
 - HALT_{TM} = { < M,w> | M is a TM and M halts on input w }

A_{TM} is undecidable

Theorem 4.11 (Turing) $A_{TM} \notin \Sigma_0$ **Proof** Suppose that $A_{TM} = L(H)$ where H is a decider. We'll show that this leads to a

contradiction.

 $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$

Let **D** be a TM that behaves as follows:

1. Input x

- 2. If x is not of the form <M> for some TM M, then D rejects
- 3. Simulate H on input <M, <M> description!

□ If H accepts <M, <M>>, then D rejects $\neg_{Do the}$

□ If H rejects < M, < M>>, then D accepts \int opposite!

"Simulate H"

- □ Steps 1 and 2 are not so hard to imagine
- How does D "simulate H on (some other input)"?
 - If someone creates an H, we follow this outline to build D — which has the entire H program built in as a subroutine
 - Note we run H on a *different* input than the one that D is given
- Also, we didn't say what D does if H goes into an infinite loop
 - It's OK because H does not do that, by the assumption that H is a decider

Language accepted by D

(Repeat) **D** behaves as follows:

- 1. D: input x
- if x is not of the form <M> for some TM M, then D rejects
- **3**. simulate H on input $\langle M, \langle M \rangle \rangle$
 - \Box If H accepts <M, <M>>, then D rejects
 - \Box If H rejects <M, <M>>, then D accepts

So L(D) = { < M> | H rejects < M, < M>> }

Now H is a recognizer (even a decider) for A_{TM} , so if H rejects <M, <M>> then it means that the machine M **does not accept** <M>.

So L(D) = { $\langle M \rangle | \langle M \rangle \notin L(M) \rangle$

Impossible machine

- □ So L(D) = { $\langle M \rangle$ | $\langle M \rangle$ \notin L(M) }
- What if we give a copy of D's own description <D> to itself as input? As in Cantor's theorem, we have trouble:
 <D> ∈ L(D) ⇒ <D> ∉ L(D) !!
 - $\langle D \rangle \notin L(D) \Rightarrow \langle D \rangle \in L(D)$!!
- So this D can't exist. But it was defined as a fairly straightforward wrapper around H: so H must not exist either. That is, there is no decider for A_{TM}. QED

To summarize...

$\int_{U} D \text{ rejects } <M> \text{ exactly when M accepts } <M>.$

H accepts < M,w> exactly when M accepts w.

D rejects < D> exactly when D accepts < D>.

Diagonalization in this proof?

M_i is a TM.

Blank entry implies either loop or reject.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	10
M_1 M_2 M	accept accept	accept	accept accept	accept	
M_4	accept	accept			10
*			3		

FIGURE 4.19 Entry *i*, *j* is accept if M_i accepts (M_j)

Now consider H, which is a decider.

$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	(deleter)
accept	reject	accept	reject	
accept	accept	accept	accept	
reject	reject	reject	reject	0(4.4)
accept	accept	reject	reject	
	(M ₁) accept accept reject accept	$\begin{array}{c c} \langle M_1 \rangle & \langle M_2 \rangle \\ accept & reject \\ accept & accept \\ reject & reject \\ accept & accept \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

FIGURE **4.20** Entry i, j is the value of H on input $(M_i, (M_j))$

Source: Sipser textbook

Diagonalization in this proof? (cont.)

D computes the opposite of each diagonal entry because its behavior is opposite H's behavior on input $< M_i, < M_i > >.$

If D

M_1 M_2 M_3 M_4	accept accept reject accept accept	accept accept accept	accept accept <u>reject</u> reject	reject accept reject reject		accept accept reject accept	
-					1	DIREAL	
D	reject	reject	accept	accept		_7	
- 51		3				1 2	TAN

Cannot compute opposite of this entry itself!

Source: Sipser textbook

Current landscape

Decidability versus recognizability

Theorem 4.22 For every language L, $L \in \Sigma_0 \Leftrightarrow (L \in \Sigma_1 \text{ and } L^c \in \Sigma_1)$

Recall that complement of a language is the language consisting of all strings that are not in that language.

Proof The \Rightarrow direction is easy, because $\Sigma_0 \subseteq \Sigma_1$ and Σ_0 is closed under complement.

For the \Leftarrow direction, suppose that $L \in \Sigma_1$ and $L^c \in \Sigma_1$. Then there exist TMs so that $L(M_1) = L$ and $L(M_2) = L^c$. To show that $L \in \Sigma_0$, we need to produce a *decider* M_3 such that $L = L(M_3)$.

Theorem 4.22 continued

 $L(M_1)=L$, $L(M_2)=L^c$, and we want a *decider* M_3 such that $L=L(M_3)$ Strategy: given an input x, we know that either $x \in L$ or $x \in L^c$. So M_3 does this:

- 1. M_3 : input x
- 2. set up tape #1 to simulate M_1 on input x and tape #2 to simulate M_2 on input x
- 3. compute one transition step of M_1 on tape 1 and one transition step of M_2 on tape 2
 - \square if M₁ accepts, then M₃ accepts
 - \square if M₂ accepts, then M₃ rejects
 - else goto 3

This is like running both M_1 and M_2 <u>in</u> <u>parallel</u>.

Theorem 4.22 conclusion

- For each string x, either M₁ accepts x or M₂ accepts x, but never both
 - So the machine M₃ will always halt eventually in step 3
 - Therefore, M₃ is a decider
- M₃ accepts those strings in L and rejects those strings in L^c

So
$$L(M_3) = L$$

QED

Getting a non-recognizable language from A_{TM}

- $\Box \ \mathsf{L} \in \Sigma_0 \Leftrightarrow (\mathsf{L} \in \Sigma_1 \text{ and } \mathsf{L}^c \in \Sigma_1)$
- $\Box \ \mathsf{L} \notin \Sigma_0 \Leftrightarrow (\mathsf{L} \notin \Sigma_1 \text{ or } \mathsf{L}^c \notin \Sigma_1)$
- Now since we know that $A_{TM} \notin \Sigma_0$, and we know that $A_{TM} \in \Sigma_1$, it must be true that $A_{TM}^c \notin \Sigma_1$. = $A_{TM}^c \notin \Sigma_1$. = $A_{TM} = \{ <M, w > \mid M \text{ is a TM and } w \in L(M) \}$
 - $A_{TM}^{c} = \{ x \mid x \text{ is not of the form } <M,w >$ or $(x = <M,w > and w \notin L(M)) \}$
- If we narrow this down to strings of the form <M,w>, then the language is still unrecognizable:
 - $NA_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \notin L(M) \}$

Unrecognizability

□ $NA_{TM} = \{ < M, w > | M \text{ is a TM and } w \notin L(M) \}$

- What does it mean that NA_{TM} is unrecognizable?
 - Every TM recognizes a language that's different than NA_{TM}
 - Either it accepts strings that are not in NA_{TM}, or it fails to accept some strings that actually are in NA_{TM}
- □ Analogy to C programs:
 - Write a C program that takes another C program as input and prints out "loop" if the other C program goes into an infinite loop.

