91.304 Foundations of (Theoretical) Computer Science

Chapter 4 Lecture Notes (Section 4.1: Decidable Languages)

David Martin dm@cs.uml.edu

With modifications by Prof. Karen Daniels, Fall2012

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/bysa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Back to Σ_1

- The fact that Σ₁ is not closed under complement means that there exists some language L that is not recognizable by any TM.
- By Church-Turing thesis this means that no imaginable finite computer, even with infinite memory, could recognize this language L!

Strategy

- Goal: Explore limits of algorithmic solvability.
- □ We'll show (later in Section 4.2) that there are more (a *lot* more) languages in ALL than there are in Σ_1
 - Namely, that Σ₁ is countable but ALL isn't countable
 - Which implies that $\Sigma_1 \neq ALL$
 - Which implies that there exists some L that is not in Σ₁

Decidable Languages (in Σ₀): to foster later appreciation of undecidable languages

- Regular Languages
 - □ A_{DFA}: Acceptance problem for DFAs
 - \Box A_{NFA}: Acceptance problem for NFAs
 - □ A_{REX}: Acceptance problem for Regular Expressions
 - \Box E_{DFA}: Emptiness testing for DFAs
 - □ EQ_{DFA}: 2 DFAs recognizing the same language
- Context-Free Languages (see next slide)...

Overview of Section 4.1 (cont.)

- Decidable Languages (in Σ₀): to foster later appreciation of undecidable languages
 - Context-Free Languages
 - A_{CFG}: Does a given CFG generate a given string?
 - \Box E_{CFG}: Is the language of a given CFG empty?
 - Every CFL is decidable by a Turing machine.

- Decidable Languages (in Σ₀): to foster later appreciation of undecidable languages
 - Regular Languages
 - □ A_{DFA}: Acceptance problem for DFAs
 - Acceptance problem for NFAs
 - Acceptance problem for Regular Expressions
 - Emptiness testing for DFAs
 - 2 DFAs recognizing the same language

Decidable Problems for Regular Languages: DFAs

Acceptance problem for DFAs

- $A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts a given string } w \}$
 - Language includes encodings of all DFAs and strings they accept.
 - Showing language is decidable is same as showing the computational problem is decidable.
- □ **Theorem 4.1**: A_{DFA} is a decidable language.
 - **Proof Idea**: Specify a TM *M* that decides A_{DFA}.
 - $\square M = "On input < B, w>, where B is a DFA and w is a string (implicit legal encoding check too):$
 - 1. Simulate *B* on input *w*.
 - 2. If simulation ends in accept state, *accept*. If it ends in nonaccepting state, *reject*."

Implementation details??

- Decidable Languages (in Σ₀): to foster later appreciation of undecidable languages
 - Regular Languages
 - Acceptance problem for DFAs
 - □ A_{NFA}: Acceptance problem for NFAs
 - Acceptance problem for Regular Expressions
 - **Emptiness testing for DFAs**
 - 2 DFAs recognizing the same language

Decidable Problems for Regular Languages: NFAs

Acceptance problem for NFAs

- $A_{NFA} = \{\langle B, w \rangle | B \text{ is an NFA that accepts a given string } w\}$
- **Theorem 4.2**: A_{NFA} is a decidable language.
 - Proof Idea: Specify a TM N that decides A_{NFA}.
 - □ N = "On input < B, w >, where B is an NFA and w is a string:
 - 1. Convert NFA *B* to equivalent DFA *C* using Theorem 1.39.

10

- **2**. Run TM *M* from Theorem 4.1 on input $\langle C, w \rangle$.
- 3. If *M* accepts, *accept*. Otherwise, *reject*."

N uses M as a "subroutine."

Alternatively, could we have modified proof of Theorem 4.1 to accommodate NFAs?

- Decidable Languages (in Σ₀): to foster later appreciation of undecidable languages
 - Regular Languages
 - □ Acceptance problem for DFAs
 - Acceptance problem for NFAs
 - AREX: Acceptance problem for Regular Expressions
 - Emptiness testing for DFAs
 - 2 DFAs recognizing the same language

Decidable Problems for Regular Languages: Regular Expressions

Acceptance problem for Regular Expressions

- $A_{REX} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$
- **Theorem 4.3**: A_{REX} is a decidable language.
 - Proof I dea: Specify a TM P that decides A_{REX}.
 - \square *P* = "On input <*R*,*w*>, where *R* is a regular expression and *w* is a string:
 - Convert regular expression *R* to equivalent NFA *A* using Theorem 1.54.
 - **2**. Run TM *N* from Theorem 4.2 on input $\langle A, w \rangle$.
 - 3. If N accepts, accept. If N rejects, reject."

- Decidable Languages (in Σ₀): to foster later appreciation of undecidable languages
 - Regular Languages
 - Acceptance problem for DFAs
 - □ Acceptance problem for NFAs
 - Acceptance problem for Regular Expressions
 - □ E_{DFA}: Emptiness testing for DFAs
 - 2 DFAs recognizing the same language

Decidable Problems for Regular Languages: DFAs

- Emptiness problem for DFAs
 - $E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- □ **Theorem 4.4**: E_{DFA} is a decidable language.
 - **Proof Idea**: Specify a TM *T* that decides E_{DFA}.
 - \Box T = "On input <A>, where A is a DFA:
 - 1. Mark start state of *A*.
 - 2. Repeat until no new states are marked:
 - 3. Mark any state that has a transition coming into it from any state that is already marked.
 - If no accept state is marked, *accept*; otherwise, *reject.*"

- Decidable Languages (in Σ₀): to foster later appreciation of undecidable languages
 - Regular Languages
 - Acceptance problem for DFAs
 - Acceptance problem for NFAs
 - Acceptance problem for Regular Expressions
 - Emptiness testing for DFAs
 - EQ_{DFA}: 2 DFAs recognizing the same language

Decidable Problems for Regular Languages: DFAs

□ 2 DFAs recognizing the same language

 $EQ_{DFA} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

□ **Theorem 4.5**: EQ_{DFA} is a decidable language.

symmetric difference:

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Recall regular languages are closed under complement, intersection, union.

emptiness: $L(C) = \emptyset \iff L(A) = L(B)$ F = "On input $\langle A, B \rangle$, where A and B are DFAs:

- 1. Construct DFA C as described.
- **2.** Run TM T from Theorem 4.4 on input $\langle C \rangle$.
- 3. If T accepts, accept. If T rejects, reject."

FIGURE 4.6 The symmetric difference of L(A) and L(B)

Source: Sipser Textbook

- Decidable Languages (in Σ₀): to foster later appreciation of undecidable languages
 - Context-Free Languages
 - A_{CFG}: Does a given CFG generate a given string?
 - □ Is the language of a given CFG empty?
 - Every CFL is decidable by a Turing machine.

Decidable Problems for Context-Free Languages: CFGs

- Does a given CFG generate a given string? $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- □ Theorem 4.7: A_{CFG} is a decidable language.
 - Why is this unproductive: use G to go through all derivations to determine if any yields w?
 - Better Idea...**Proof Idea**: Specify a TM *S* that decides A_{CFG}.
 - \Box S = "On input <G,w>, where G is a CFG and w is a string:
 - 1. Convert G to equivalent Chomsky normal form grammar.
 - List all derivations with 2n-1 steps (why?), where n = length of w. (Except if n=0, only list derivations with 1 step.)
 - 3. If any of these derivations yield w, accept; otherwise, reject."

Decidable Languages (in Σ₀): to foster later appreciation of undecidable languages
 Context-Free Languages
 Does a given CFG generate a given string?
 E_{CFG}: Is the language of a given CFG empty?
 Every CFL is decidable by a Turing machine.

Decidable Problems for Context-Free Languages: CFGs

- □ Is the language of a given CFG empty? $E_{CFG} = \{ < G > | G \text{ is a CFG and } L(G) = \emptyset \}$
- **Theorem 4.8**: E_{CFG} is a decidable language.
 - **Proof Idea**: Specify a TM *R* that decides E_{CFG}.
 - \square R = "On input <G>, where G is a CFG:
 - 1. Mark all terminal symbols in G.
 - 2. Repeat until no new variables get marked:
 - 3. Mark any variable *A* where *G* has rule $A \rightarrow U_1 U_2 \dots U_k$ and each symbol $U_1 U_2 \dots U_k$ has already been marked.
 - 1. If start variable is not marked, accept; otherwise, reject."

Decidable (?) Problems for Context-Free Languages: CFGs

Check if 2 CFGs generate the same language.

 $EQ_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are } CFGs \text{ and } L(G) = L(H) \}$

□ Not decidable! (see Chapter 5)

□ Why is this possible? Why is this problem not in Σ_0 if CFL is in Σ_0 ?

Recall: Closure properties of CFL

- Reminder: closure properties can help us measure whether a computation model is reasonable or not
- CFL is closed under
 - Union, concatenation
 - Thus, exponentiation and *
- CFL is not closed under
 - Intersection
 - Complement
- Weak intersection:

If A∈CFL and R∈**REG**, then A∩R∈ CFL

- Decidable Languages (in Σ₀): to foster later appreciation of undecidable languages
 - Context-Free Languages
 Does a given CFG generate a given string?
 Is the language of a given CFG empty?
 - Every CFL is decidable by a Turing machine.

Decidable Problems for Context-Free Languages: CFLs

- Every CFL is decidable by a Turing machine.
- Bad Idea: Convert PDA for CFL into TM
- **Theorem 4.9**: Every context-free
 - language is decidable.
 - Let A be a CFL and G be a CFG for A. (Where does G come from?)
 - \square Design TM M_G that decides A.
 - \square M_G = "On input *w*, where *w* is a string:
 - **1**. Run TM *S* from Theorem 4.7 on input $\langle G, w \rangle$.
 - 2. If S accepts, accept. If S rejects, reject."

<u>Summary</u>: Some problems (languages) related to languages in Σ_0 have been shown in this lecture to be in Σ_0 .

Remember that just because a language is in Σ_0 does **not** mean that **every** problem (language) related to members of its class is also in Σ_0 !

25