
91.304 Foundations of
(Th ti l) C t S i(Theoretical) Computer Science

Chapter 3 Lecture Notes (Section 3.2: Variants of Turing Machines)

David Martin
dm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-

1

sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

Variants of Turing Machines

R b t In a iance nde ce tain Robustness: Invariance under certain
changes
Wh t ki d f h ?What kinds of changes?

Stay put!
M lti l tMultiple tapes
Nondeterminism
E tEnumerators

(Abbreviate Turing Machine by TM.)

2

Stay Put!
Transition function of the form:Transition function of the form:

}SR,L,{: ×Γ×→Γ× QQδ

Does this really provide additional

}SR,L,{: Γ→Γ QQδ

computational power?
No! Can convert TM with “stay put”
feature to one without it How?feature to one without it. How?
Theme: Show 2 models are equivalent by
showing they can simulate each other.

3

Multi-Tape Turing Machines
Ordinary TM with several tapesOrdinary TM with several tapes.

Each tape has its own head for reading and writing.
Initially the input is on tape 1, with the other tapes
bl kblank.

Transition function of the form:
kkk QQ }SR,L,{: ×Γ×→Γ×δ

(k = number of tapes)

)LR,L,,,,,(),,,(11 KKK kjki bbqaaq =δ

When TM is in state qi and heads 1 through k are
reading symbols a1 through ak, TM goes to state qj,
writes symbols b1 through bk, and moves associated

4

tes sy bo s b1 t oug bk, a d o es assoc ated
tape heads L, R, or S.

Source: Sipser textbook
Note: k tapes (each with own alphabet) but only 1 common set of states!

Multi-Tape Turing Machines

Multi tape Turing machines are of equal Multi-tape Turing machines are of equal
computational power with ordinary Turing
machines!

Corollary 3.15: A language is Turing-
recognizable if and only if some multi-tape
Turing machine recognizes itTuring machine recognizes it.

One direction is easy (how?)
The other direction takes more thought…

Theorem 3.13: Every multi-tape Turing machine
has an equivalent single-tape Turing machine.
Proof idea: see next slide…

5

Source: Sipser textbook

Theorem 3.13: Simulating Multi-Tape g p
Turing Machine with Single Tape

Proof Ideas:Proof Ideas:
Simulate k-tape TM M’s operation using single-tape
TM S.
Create “virtual” tapes and heads.

is a delimiter separating contents of one tape from
another tape’s contents.
“Dotted” symbols represent head positions

add to tape alphabets.

k = 3 tapes

6

Source: Sipser textbook

Theorem 3.13: Simulating Multi-Tape g p
Turing Machine with Single Tape (cont.)

Processing input: www =Processing input:
Format S’s tape (different blank symbol v for presentation purposes):

nwww L1=

21 L&&L& ∨∨nwww
Simulate single move:

Scan rightwards to find symbols under virtual heads.
Update tapes according to M’s transition function.

Caveat: hitting right end (#) of a virtual tape:
rightward shift of S’s tape by 1 unit and insert blank, then continue simulation

Why?

7

Source: Sipser textbook

Nondeterministic Turing Machines

})RL{(: ×Γ×→Γ× QQ PδTransition function: })RL,{(: ×Γ×→Γ× QQ PδTransition function:
Computation is a tree whose branches correspond to
different possibilities.

If some branch leads to an accept state machine accepts
Example: board work

If some branch leads to an accept state, machine accepts.

Nondeterminism does not affect power of Turing machine!
Theorem 3.16:Every nondeterministic Turing machine (N)
h i l t d t i i ti T i hi (D)has an equivalent deterministic Turing machine (D).

Proof Idea: Simulate, simulate!

never changed

copy of N’s tape on some branch of
nondeterministic computation

keeps track of D’s location in N’s

8

keeps track of D s location in N s
nondeterministic computation tree

Source: Sipser textbook

Theorem 3.16 Proof (cont.)

Proof Idea (continued)
View N’s computation on input as a tree.

Each node is a configuration.
Search for an accepting configuration.
Important caveat: searching order matters

DFS vs. BFS (which is better and why?)

E di l ti dd tEncoding location on address tape:
Assume fan-out is at most b (what does this correspond to?)
Each node has address that is a string over alphabet: Σb = {1… b}

never changed

copy of N’s tape on some branch of
nondeterministic computation

9

keeps track of D’s location in N’s
nondeterministic computation tree

Source: Sipser textbook

Theorem 3.16 Proof (cont.)

Operation of deterministic TM D:
1. Put input w onto tape 1. Tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2.
3. Use tape 2 to simulate N with input w on one branch.

1. Before each step of N, consult tape 3 (why?)

4. Replace string on tape 3 with lexicographically next string.
Simulate next branch of N’s computation by going back to
step 2.

never changed

copy of N’s tape on some branch of
nondeterministic computation

keeps track of D’s location in N’s

10

keeps track of D s location in N s
nondeterministic computation tree

Source: Sipser textbook

Consequences of Theorem 3.16
Corollary 3 18: Corollary 3.18:

A language is Turing-recognizable if and only if
some nondeterministic Turing machine
recognizes itrecognizes it.

Proof Idea:
One direction is easy (how?)
Other direction comes from Theorem 3 16Other direction comes from Theorem 3.16.

Corollary 3.19:
A language is decidable if and only if some
nondeterministic Turing machine decides it.

Proof Idea:
Modify proof of Theorem 3.16 (how?)

11

Another model

Definition An enumerator E is a 2-tape TM with a special
state named qp ("print") (2nd tape is for printing)

The language generated by E is
L(E) = { x∈Σ* | (q0 t, q0 t) `* (u qp v, x qp z)

for some u, v, z ∈ Γ* }

Here the instantaneous description is split into two parts

(tape 1) (tape 2)

Here the instantaneous description is split into two parts
(tape1, tape2)
So this says that "x appears to the left of the tape 2 head
when E enters the qp state"
Note that E always starts with a blank tape and potentially Note that E always starts with a blank tape and potentially
runs forever
Basically, E generates the language consisting of all the strings
it decides to print

12

And it doesn't matter what's on tape 1 when E prints

Source: Sipser textbook

Theorem 3.21
L ∈ Σ1 ⇔ L=L(E) for some enumerator E (in L ∈ Σ1 ⇔ L L(E) for some enumerator E (in
other words, enumerators are equivalent to
TMs)
Proof First we show that L=L(E) ⇒ L∈Σ1 So

(Recall Σ1 is set of Turing-recognizable languages.)

Proof First we show that L=L(E) ⇒ L∈Σ1. So
assume that L=L(E); we need to produce a TM
M such that L=L(M). We define M as a 3-tape
TM that works like this:TM that works like this:
1. input w (on tape #1)
2. run E on M's tapes #2 and #3p
3. whenever E prints out a string x, compare x to w;

if they are equal, then accept
else goto 2 and continue running E

13

g g
So, M accepts input strings (via input w) that appear on E’s list.

Theorem 3.21 continued
Now we show that L∈Σ1 ⇒ L=L(E) for some Now we show that L∈Σ1 ⇒ L=L(E) for some
enumerator E. So assume that L=L(M) for
some TM M; we need to produce an ; p
enumerator E such that L=L(E). First let s1,
s2, L be the lexicographical enumeration of Σ*

E b h f ll(strings over M’s alphabet). E behaves as follows:
1. for i:=1 to ∞

2 run M on input si2. run M on input si

3. if M accepts s
i
then print string si

(else continue with next i)

DOES NOT WORK!!
14

DOES NOT WORK!!
WHY??

Theorem 3.21 continued
Now we show that L∈Σ1 ⇒ L=L(E) for some enumerator Now we show that L∈Σ1 ⇒ L L(E) for some enumerator
E. So assume that L=L(M) for some TM M; we need to
produce an enumerator E such that L=L(E). First let
s s be the lexicographical enumeration of Σ* E s1, s2, L be the lexicographical enumeration of Σ . E
behaves as follows:

1 f t 1 t 1. for t:=1 to ∞ /* t = time to allow */

2. for j:=1 to t /* continue resumes here */
3. compute the instantaneous description uqv in M

h th t `t (If M h lt b f t such that q0 sj `t uqv. (If M halts before t
steps, then continue)

4. if q = qacc then print string sj
(else continue)

exactly t steps of the ` relation

15

(else continue)

Theorem 3.21 continued
First E never prints out a string s that is not First, E never prints out a string sj that is not
accepted by M
Suppose that q0 s5 `27 u qacc v (in other

d M f l 27)words, M accepts s5 after exactly 27 steps)
Then E prints out s5 in iteration t=27, j=5

Since every string sj that is accepted by M is y g j p y
accepted in some number of steps tj, E will
print out sj in iteration t=tj and in no other
iteration

This is a slightly different construction than the
textbook, which prints out each accepted string sj
infinitely many times

16

Summary

R k bl th t d i t Remarkably, the presented variants
of the Turing machine model are all
equivalent in power!equivalent in power!

Essential feature:
Unrestricted access to unlimited memoryUnrestricted access to unlimited memory
More powerful than DFA, NFA, PDA…
Caveat: satisfy “reasonable requirements”y q

e.g. perform only finite work in a single step.

17

